1
|
Dotto-Maurel A, Arzul I, Morga B, Chevignon G. Herpesviruses: overview of systematics, genomic complexity and life cycle. Virol J 2025; 22:155. [PMID: 40399963 PMCID: PMC12096621 DOI: 10.1186/s12985-025-02779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 05/07/2025] [Indexed: 05/23/2025] Open
Abstract
Herpesviruses are double-stranded DNA viruses with distinct morphological features and are among the largest and most complex viruses. According to the International Committee on Taxonomy of Viruses (ICTV), in 2022, there were 133 herpesviruses classified into three families: Orthoherpesviridae, infecting mammals and birds; Malacoherpesviridae infecting marine molluscs; and Alloherpesviridae infecting fish and amphibians. Herpesviruses have a complex genomic architecture, characterised by unique regions flanked by repeated and inverted sequences. Unique regions can undergo rearrangements leading to the formation of genomic isomers, which could have important implications for the life cycle of the virus. Herpesviruses life cycle consists of two main phases: the lytic phase, during which viral genes are expressed and translated into viral proteins that regulate DNA replication, capsid formation and the production of new particles; and the persistence phase, in which the virus persists in the host without being eliminated by the immune system. This review offers an updated and comprehensive overview of the Herpesvirales order, detailing their morphological characteristics, providing an in-depth taxonomic classification, examining their genomic architecture and isomers, and describing their life cycle.
Collapse
Affiliation(s)
- Aurélie Dotto-Maurel
- Ifremer, ASIM Adaptation et Santé des Invertébrés Marins, La Tremblade, F-17390, France.
| | - Isabelle Arzul
- Ifremer, ASIM Adaptation et Santé des Invertébrés Marins, La Tremblade, F-17390, France
| | - Benjamin Morga
- Ifremer, ASIM Adaptation et Santé des Invertébrés Marins, La Tremblade, F-17390, France
| | - Germain Chevignon
- Ifremer, ASIM Adaptation et Santé des Invertébrés Marins, La Tremblade, F-17390, France.
| |
Collapse
|
2
|
Ben Hamouda M, Pearson A. Small RNA sequencing analysis reveals regulation of microRNA expression in Madin-Darby canine kidney epithelial cells infected with Canid alphaherpesvirus 1. Virus Genes 2024; 60:537-548. [PMID: 39017941 DOI: 10.1007/s11262-024-02091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Canid alphaherpesvirus 1 (CHV-1) infection can cause spontaneous abortions in pregnant dams, and in young puppies, fatal systemic infections are common. MicroRNAs (miRNAs) affect viral infection by binding to messenger RNAs, and inhibiting expression of host and/or viral genes. We conducted deep sequencing of small RNAs in CHV-1-infected and mock-infected Madin-Darby Canine Kidney (MDCK) epithelial cells, and detected sequences corresponding to 282 cellular miRNAs. Of these, 18 were significantly upregulated at 12 h post-infection, most of which were encoded on the X chromosome. We next quantified the mature forms of several of the miRNAs using stem loop RT-qPCR. Our results revealed a discordance between the levels of small RNAs corresponding to canine miRNAs, and levels of the corresponding mature miRNAs, which suggests a block in miRNA biogenesis in infected cells. Nevertheless, we identified several mature miRNAs that exhibited a statistically significant increase upon infection. These included cfa-miR-8908b, a miRNA of unknown function, and cfa-miR-146a, homologs of which target innate immune pathways and are known to play a role in other viral infections. Interestingly, ontology analysis predicted that cfa-miR-8908b targets factors involved in the ubiquitin-like protein conjugation pathway and peroxisome biogenesis among other cellular functions. This is the first study to evaluate changes in miRNA levels upon CHV-1 infection. Based on our findings, we developed a model whereby CHV-1 infection results in changes in levels of a limited number of cellular miRNAs that target elements of the host immune response, which may provide clues regarding novel therapeutic targets.
Collapse
Affiliation(s)
- Maha Ben Hamouda
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Angela Pearson
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.
| |
Collapse
|
3
|
Rocchigiani AM, Bertoldi L, Coradduzza E, Lostia G, Pintus D, Scivoli R, Cancedda MG, Fiori MS, Bechere R, Murtino AP, Pala G, Cardeti G, Macioccu S, Dettori MA, Pintore A, Ligios C, Puggioni G. Whole-Genome Sequencing of Two Canine Herpesvirus 1 (CaHV-1) Isolates and Clinicopathological Outcomes of Infection in French Bulldog Puppies. Viruses 2024; 16:209. [PMID: 38399985 PMCID: PMC10893542 DOI: 10.3390/v16020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Canine herpesvirus 1 (CaHV-1) infects dogs, causing neonatal death and ocular, neurological, respiratory, and reproductive problems in adults. Although CaHV-1 is widespread in canine populations, only four studies have focused on the CaHV-1 whole genome. In such context, two CaHV-1 strains from both the kidney and spleen of 20-day-old deceased French Bulldog puppies were recently isolated in Sardinia, Italy. The extracted viral DNA underwent whole-genome sequencing using the Illumina MiSeq platform. The Italian CaHV-1 genomes were nearly identical (>99%), shared the same tree branch, and clustered near the ELAL-1 (MW353125) and BTU-1 (KX828242) strains, enlarging the completely separated clade discussed by Lewin et al., in 2020. This study aims to provide new insights on the evolution of the CaHV-1, based on high-resolution whole-genome phylogenetic analysis, and on its clinicopathological characterization during a fatal outbreak in puppies.
Collapse
Affiliation(s)
- Angela Maria Rocchigiani
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (A.M.R.); (G.L.); (D.P.); (R.S.); (M.G.C.); (M.S.F.); (R.B.); (A.P.M.); (G.P.); (S.M.); (M.A.D.); (A.P.); (C.L.); (G.P.)
| | | | - Elisabetta Coradduzza
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (A.M.R.); (G.L.); (D.P.); (R.S.); (M.G.C.); (M.S.F.); (R.B.); (A.P.M.); (G.P.); (S.M.); (M.A.D.); (A.P.); (C.L.); (G.P.)
| | - Giada Lostia
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (A.M.R.); (G.L.); (D.P.); (R.S.); (M.G.C.); (M.S.F.); (R.B.); (A.P.M.); (G.P.); (S.M.); (M.A.D.); (A.P.); (C.L.); (G.P.)
| | - Davide Pintus
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (A.M.R.); (G.L.); (D.P.); (R.S.); (M.G.C.); (M.S.F.); (R.B.); (A.P.M.); (G.P.); (S.M.); (M.A.D.); (A.P.); (C.L.); (G.P.)
| | - Rosario Scivoli
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (A.M.R.); (G.L.); (D.P.); (R.S.); (M.G.C.); (M.S.F.); (R.B.); (A.P.M.); (G.P.); (S.M.); (M.A.D.); (A.P.); (C.L.); (G.P.)
| | - Maria Giovanna Cancedda
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (A.M.R.); (G.L.); (D.P.); (R.S.); (M.G.C.); (M.S.F.); (R.B.); (A.P.M.); (G.P.); (S.M.); (M.A.D.); (A.P.); (C.L.); (G.P.)
| | - Mariangela Stefania Fiori
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (A.M.R.); (G.L.); (D.P.); (R.S.); (M.G.C.); (M.S.F.); (R.B.); (A.P.M.); (G.P.); (S.M.); (M.A.D.); (A.P.); (C.L.); (G.P.)
| | - Roberto Bechere
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (A.M.R.); (G.L.); (D.P.); (R.S.); (M.G.C.); (M.S.F.); (R.B.); (A.P.M.); (G.P.); (S.M.); (M.A.D.); (A.P.); (C.L.); (G.P.)
| | - Anna Pina Murtino
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (A.M.R.); (G.L.); (D.P.); (R.S.); (M.G.C.); (M.S.F.); (R.B.); (A.P.M.); (G.P.); (S.M.); (M.A.D.); (A.P.); (C.L.); (G.P.)
| | - Giovanni Pala
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (A.M.R.); (G.L.); (D.P.); (R.S.); (M.G.C.); (M.S.F.); (R.B.); (A.P.M.); (G.P.); (S.M.); (M.A.D.); (A.P.); (C.L.); (G.P.)
| | - Giusy Cardeti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, 00178 Roma, Italy;
| | - Simona Macioccu
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (A.M.R.); (G.L.); (D.P.); (R.S.); (M.G.C.); (M.S.F.); (R.B.); (A.P.M.); (G.P.); (S.M.); (M.A.D.); (A.P.); (C.L.); (G.P.)
| | - Maria Antonietta Dettori
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (A.M.R.); (G.L.); (D.P.); (R.S.); (M.G.C.); (M.S.F.); (R.B.); (A.P.M.); (G.P.); (S.M.); (M.A.D.); (A.P.); (C.L.); (G.P.)
| | - Antonio Pintore
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (A.M.R.); (G.L.); (D.P.); (R.S.); (M.G.C.); (M.S.F.); (R.B.); (A.P.M.); (G.P.); (S.M.); (M.A.D.); (A.P.); (C.L.); (G.P.)
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (A.M.R.); (G.L.); (D.P.); (R.S.); (M.G.C.); (M.S.F.); (R.B.); (A.P.M.); (G.P.); (S.M.); (M.A.D.); (A.P.); (C.L.); (G.P.)
| | - Giantonella Puggioni
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (A.M.R.); (G.L.); (D.P.); (R.S.); (M.G.C.); (M.S.F.); (R.B.); (A.P.M.); (G.P.); (S.M.); (M.A.D.); (A.P.); (C.L.); (G.P.)
| |
Collapse
|
4
|
Canid herpesvirus 1 Preferentially Infects Polarized Madin-Darby Canine Kidney Cells from the Basolateral Surface. Viruses 2022; 14:v14061291. [PMID: 35746762 PMCID: PMC9230387 DOI: 10.3390/v14061291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/15/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022] Open
Abstract
Canid herpesvirus 1 (CHV-1) infects polarized canine epithelia. Herein, we present our initial work characterizing CHV-1 infection of Madin-Darby canine kidney (MDCK) cells that were polarized on trans-wells. We previously showed that infection of these cells in non-polarized cultures stimulated the formation of extensive lamellipodial membrane protrusions. Uninfected polarized MDCK cells already form extensive lamellipodial membrane protrusions on the apical surface in the absence of virus. Using scanning electron microscopy, we found that CHV-1 infection does not lead to a change in the form of the lamellipodial membrane protrusions on the apical surface of polarized MDCK cells. We found that CHV-1 was able to infect polarized cultures from either the apical or basolateral side; however, higher viral titers were produced upon infection of the basolateral side. Regardless of the side infected, titers of virus were higher in the apical compartment compared to the basal compartment; however, these differences were not statistically significant. In addition to cell-free virus that was recovered in the media, the highest amount of virus produced remained cell-associated over the course of the experiment. The efficiency of CHV-1 infection of the basolateral side of polarized epithelial cells is consistent with the pathobiology of this varicellovirus.
Collapse
|
5
|
Castro MDS, David MBM, Gonçalves EC, Siqueira AS, Virgulino RR, Aguiar DCF. First molecular detection of canine herpesvirus 1 (CaHV-1) in the Eastern Brazilian Amazon. J Vet Sci 2022; 23:e18. [PMID: 35187876 PMCID: PMC8977539 DOI: 10.4142/jvs.21202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/24/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Marcela dos Santos Castro
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | | | - Evonnildo Costa Gonçalves
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Andrei Santos Siqueira
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Rodrigo Rodrigues Virgulino
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| | - Delia Cristina Figueira Aguiar
- Laboratório de Tecnologia Biomolecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-110, Brazil
| |
Collapse
|
6
|
Eisa M, Loucif H, van Grevenynghe J, Pearson A. Entry of the Varicellovirus Canid herpesvirus 1 into Madin-Darby canine kidney epithelial cells is pH-independent and occurs via a macropinocytosis-like mechanism but without increase in fluid uptake. Cell Microbiol 2021; 23:e13398. [PMID: 34697890 DOI: 10.1111/cmi.13398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022]
Abstract
Canid herpesvirus 1 (CHV-1) is a Varicellovirus that causes self-limiting infections in adult dogs but morbidity and mortality in puppies. Using a multipronged approach, we discovered the CHV-1 entry pathway into Madin-Darby canine kidney (MDCK) epithelial cells. We found that CHV-1 triggered extensive host cell membrane lamellipodial ruffling and rapid internalisation of virions in large, uncoated vacuoles, suggestive of macropinocytosis. Treatment with inhibitors targeting key macropinocytosis factors, including inhibitors of Na+ /H+ exchangers, F-actin, myosin light-chain kinase, protein kinase C, p21-activated kinase, phosphatidylinositol-3-kinase and focal adhesion kinase, significantly reduced viral replication. Moreover, the effect was restricted to exposure to the inhibitors early in infection, confirming a role for the macropinocytic machinery during entry. The profile of inhibitors also suggested a role for signalling via integrins and receptor tyrosine kinases in viral entry. In contrast, inhibitors of clathrin, caveolin, microtubules and endosomal acidification did not affect CHV-1 entry into MDCK cells. We found that the virus colocalised with the fluid-phase uptake marker dextran; however, surprisingly, CHV-1 infection did not enhance the uptake of dextran. Thus, our results indicate that CHV-1 uses a macropinocytosis-like, pH-independent entry pathway into MDCK cells, which nevertheless is not based on stimulation of fluid uptake. TAKE AWAYS: CHV-1 enters epithelial cells via a macropinocytosis-like mechanism. CHV-1 induces extensive lamellipodial ruffling. CHV-1 entry into MDCK cells is pH-independent.
Collapse
Affiliation(s)
- Mohamed Eisa
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Hamza Loucif
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Julien van Grevenynghe
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| | - Angela Pearson
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Québec, Canada
| |
Collapse
|
7
|
Phylogenomic Analysis of Global Isolates of Canid Alphaherpesvirus 1. Viruses 2020; 12:v12121421. [PMID: 33322040 PMCID: PMC7764265 DOI: 10.3390/v12121421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/03/2023] Open
Abstract
Canid alphaherpesvirus 1 (CHV-1) is a widespread pathogen of dogs with multiple associated clinical signs. There has been limited prior investigation into the genomics and phylogeny of this virus using whole viral genome analysis. Fifteen CHV-1 isolates were collected from animals with ocular disease based in the USA. Viral DNA was extracted for Illumina MiSeq full genome sequencing from each isolate. These data were combined with genomes of previously sequenced CHV-1 isolates obtained from hosts in the UK, Australia and Brazil. Genomic, recombinational and phylogenetic analysis were performed using multiple programs. Two isolates were separated into a clade apart from the remaining isolates and accounted for the majority of genomic distance (0.09%): one was obtained in 2019 from a USA-based host (ELAL-1) and the other in 2012 from a host in Brazil (BTU-1). ELAL-1 was found to contain variants previously reported in BTU-1 but also novel variants in the V57 gene region. Multiple non-synonymous variants were found in USA-based isolates in regions associated with antiviral resistance. Evidence of recombination was detected between ELAL-1 and BTU-1. Collectively, this represents evidence of trans-boundary transmission of a novel form of CHV-1, which highlights the importance of surveillance for this pathogen in domestic dog populations.
Collapse
|
8
|
Lewin AC, Coghill LM, McLellan GJ, Bentley E, Kousoulas KG. Genomic analysis for virulence determinants in feline herpesvirus type-1 isolates. Virus Genes 2020; 56:49-57. [PMID: 31776852 PMCID: PMC7027352 DOI: 10.1007/s11262-019-01718-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/21/2019] [Indexed: 12/27/2022]
Abstract
Feline herpesvirus type 1 (FHV-1) is a widespread cause of respiratory and ocular disease in domestic cats. A spectrum of disease severity is observed in host animals, but there has been limited prior investigation into viral genome factors which could be responsible. Stocks of FHV-1 were established from oropharyngeal swabs obtained from twenty-five cats with signs of infection housed in eight animal shelters around the USA. A standardized numerical host clinical disease severity scoring scheme was used for each cat from which an isolate was obtained. Illumina MiSeq was used to sequence the genome of each isolate. Genomic homogeneity among isolates was relatively high. A general linear model for fixed effects determined that only two synonymous single nucleotide polymorphisms across two genes (UL37/39) in the same isolate (from one host animal with a low disease severity score) were significantly associated (p ≤ 0.05) with assigned host respiratory and total disease severity score. No variants in any isolate were found to be significantly associated with assigned host ocular disease severity score. A concurrent analysis of missense mutations among the viral isolates identified three genes as being primarily involved in the observed genomic variation, but none were significantly associated with host disease severity scores. An ancestral state likelihood reconstruction was performed and determined that there was no evidence of a connection between host disease severity score and viral evolutionary state. We conclude from our results that the spectrum of host disease severity observed with FHV-1 is unlikely to be primarily related to viral genomic variations, and is instead due to host response and/or other factors.
Collapse
Affiliation(s)
- Andrew C Lewin
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA.
| | - Lyndon M Coghill
- Center for Computation and Technology, Louisiana State University, 340 E Parker Boulevard, Baton Rouge, LA, 70808, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Gillian J McLellan
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI, 53706, USA
| | - Ellison Bentley
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| |
Collapse
|
9
|
Kamel M, El-Sayed A. Utilization of herpesviridae as recombinant viral vectors in vaccine development against animal pathogens. Virus Res 2019; 270:197648. [PMID: 31279828 DOI: 10.1016/j.virusres.2019.197648] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Throughout the past few decades, numerous viral species have been generated as vaccine vectors. Every viral vector has its own distinct characteristics. For example, the family herpesviridae encompasses several viruses that have medical and veterinary importance. Attenuated herpesviruses are developed as vectors to convey heterologous immunogens targeting several serious and crucial pathogens. Some of these vectors have already been licensed for use in the veterinary field. One of their prominent features is their capability to accommodate large amount of foreign DNA, and to stimulate both cell-mediated and humoral immune responses. A better understanding of vector-host interaction builds up a robust foundation for the future development of herpesviruses-based vectors. At the time, many molecular tools are applied to enable the generation of herpesvirus-based recombinant vaccine vectors such as BAC technology, homologous and two-step en passant mutagenesis, codon optimization, and the CRISPR/Cas9 system. This review article highlights the most important techniques applied in constructing recombinant herpesviruses vectors, advantages and disadvantages of each recombinant herpesvirus vector, and the most recent research regarding their use to control major animal diseases.
Collapse
Affiliation(s)
- Mohamed Kamel
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt.
| | - Amr El-Sayed
- Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
Genomic, Recombinational and Phylogenetic Characterization of Global Feline Herpesvirus 1 Isolates. Virology 2018; 518:385-397. [PMID: 29605685 DOI: 10.1016/j.virol.2018.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 11/23/2022]
Abstract
Feline herpes virus type 1 (FHV-1) is widely considered to be the leading cause of ocular disease in cats and has been implicated in upper respiratory tract infections. Little, however is known about interstrain phylogenetic relationships, and details of the genomic structure. For the present study, twenty-six FHV-1 isolates from different cats in animal shelters were collected from eight separate locations in the USA, and the genomes sequenced. Genomic characterization of these isolates includied short sequence repeat (SSR) detection, with fewer SSRs detected, compared to herpes simplex viruses type 1 and 2. For phylogenetic and recombination analysis, 27 previously sequenced isolates of FHV-1 were combined with the 26 strains sequenced for the present study. The overall genomic interstrain genetic distance between all available isolates was 0.093%. Phylogenetic analysis identified four main FHV-1 clades primarily corresponding to geographical collection site. Recombination analysis suggested that interclade recombination has occurred.
Collapse
|
11
|
Lou B, Song Y, RoyChowdhury M, Deng C, Niu Y, Fan Q, Tang Y, Zhou C. Development of a Tandem Repeat-Based Polymerase Chain Displacement Reaction Method for Highly Sensitive Detection of 'Candidatus Liberibacter asiaticus'. PHYTOPATHOLOGY 2018; 108:292-298. [PMID: 29019271 DOI: 10.1094/phyto-06-17-0210-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Huanglongbing (HLB) is one of the most destructive diseases in citrus production worldwide. Early detection of HLB pathogens can facilitate timely removal of infected citrus trees in the field. However, low titer and uneven distribution of HLB pathogens in host plants make reliable detection challenging. Therefore, the development of effective detection methods with high sensitivity is imperative. This study reports the development of a novel method, tandem repeat-based polymerase chain displacement reaction (TR-PCDR), for the detection of 'Candidatus Liberibacter asiaticus', a widely distributed HLB-associated bacterium. A uniquely designed primer set (TR2-PCDR-F/TR2-PCDR-1R) and a thermostable Taq DNA polymerase mutant with strand displacement activity were used for TR-PCDR amplification. Performed in a regular thermal cycler, TR-PCDR could produce more than two amplicons after each amplification cycle. Sensitivity of the developed TR-PCDR was 10 copies of target DNA fragment. The sensitive level was proven to be 100× higher than conventional PCR and similar to real-time PCR. Data from the detection of 'Ca. L. asiaticus' with filed samples using the above three methods also showed similar results. No false-positive TR-PCDR amplification was observed from healthy citrus samples and water controls. These results thereby illustrated that the developed TR-PCDR method can be applied to the reliable, highly sensitive, and cost-effective detection of 'Ca. L. asiaticus'.
Collapse
Affiliation(s)
- Binghai Lou
- First author: College of Plant Protection, Southwest University, Chongqing 400715, P.R. China; first, second, fourth, fifth, sixth, and seventh authors: Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, Guangxi 541004, P.R. China; third author: Department of Biological Sciences, Idaho State University, 650 Memorial Dr., Pocatello 83201; and eighth author: Citrus Research Institute, Southwest University, Chongqing 400715, P.R. China
| | - Yaqin Song
- First author: College of Plant Protection, Southwest University, Chongqing 400715, P.R. China; first, second, fourth, fifth, sixth, and seventh authors: Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, Guangxi 541004, P.R. China; third author: Department of Biological Sciences, Idaho State University, 650 Memorial Dr., Pocatello 83201; and eighth author: Citrus Research Institute, Southwest University, Chongqing 400715, P.R. China
| | - Moytri RoyChowdhury
- First author: College of Plant Protection, Southwest University, Chongqing 400715, P.R. China; first, second, fourth, fifth, sixth, and seventh authors: Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, Guangxi 541004, P.R. China; third author: Department of Biological Sciences, Idaho State University, 650 Memorial Dr., Pocatello 83201; and eighth author: Citrus Research Institute, Southwest University, Chongqing 400715, P.R. China
| | - Chongling Deng
- First author: College of Plant Protection, Southwest University, Chongqing 400715, P.R. China; first, second, fourth, fifth, sixth, and seventh authors: Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, Guangxi 541004, P.R. China; third author: Department of Biological Sciences, Idaho State University, 650 Memorial Dr., Pocatello 83201; and eighth author: Citrus Research Institute, Southwest University, Chongqing 400715, P.R. China
| | - Ying Niu
- First author: College of Plant Protection, Southwest University, Chongqing 400715, P.R. China; first, second, fourth, fifth, sixth, and seventh authors: Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, Guangxi 541004, P.R. China; third author: Department of Biological Sciences, Idaho State University, 650 Memorial Dr., Pocatello 83201; and eighth author: Citrus Research Institute, Southwest University, Chongqing 400715, P.R. China
| | - Qijun Fan
- First author: College of Plant Protection, Southwest University, Chongqing 400715, P.R. China; first, second, fourth, fifth, sixth, and seventh authors: Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, Guangxi 541004, P.R. China; third author: Department of Biological Sciences, Idaho State University, 650 Memorial Dr., Pocatello 83201; and eighth author: Citrus Research Institute, Southwest University, Chongqing 400715, P.R. China
| | - Yan Tang
- First author: College of Plant Protection, Southwest University, Chongqing 400715, P.R. China; first, second, fourth, fifth, sixth, and seventh authors: Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, Guangxi 541004, P.R. China; third author: Department of Biological Sciences, Idaho State University, 650 Memorial Dr., Pocatello 83201; and eighth author: Citrus Research Institute, Southwest University, Chongqing 400715, P.R. China
| | - Changyong Zhou
- First author: College of Plant Protection, Southwest University, Chongqing 400715, P.R. China; first, second, fourth, fifth, sixth, and seventh authors: Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, Guangxi 541004, P.R. China; third author: Department of Biological Sciences, Idaho State University, 650 Memorial Dr., Pocatello 83201; and eighth author: Citrus Research Institute, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
12
|
Sarker S, Das S, Helbig K, Peters A, Raidal SR. Genome sequence of an Australian strain of canid alphaherpesvirus 1. Aust Vet J 2017; 96:24-27. [PMID: 29265176 DOI: 10.1111/avj.12659] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/04/2017] [Accepted: 06/25/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Characterisation of a complete genome sequence of an Australian strain of canid alphaherpesvirus 1 (CHV-1) and its phylogenetic relationship with other varicellovirus species. METHODS Standard pathology and PCR methods were used to initially detect herpesvirus in hepatic tissue from an infected 4-week-old Labrador Retriever puppy. The complete CHV-1 genome was sequenced using next-generation sequencing technology followed by de novo and reference assembly, and genome annotation. RESULTS The CHV-1 genome was 125 kbp in length and contained 74 predicted open reading frames encoding functional proteins, all of which have counterparts in other alphaherpesviruses. Phylogenetic analysis using the DNA polymerase gene revealed that the newly sequenced CHV-1 clustered with canid alphaherpesvirus isolated from the UK and shared a 99% overall nucleotide sequence similarity. CONCLUSION This is the first complete genome of an Australian strain of CHV-1, which will contribute to our understanding of the genetics and evolution of herpesvirus.
Collapse
Affiliation(s)
- S Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - S Das
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - K Helbig
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - A Peters
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - S R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| |
Collapse
|
13
|
Kolb AW, Lewin AC, Moeller Trane R, McLellan GJ, Brandt CR. Phylogenetic and recombination analysis of the herpesvirus genus varicellovirus. BMC Genomics 2017; 18:887. [PMID: 29157201 PMCID: PMC5697016 DOI: 10.1186/s12864-017-4283-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The varicelloviruses comprise a genus within the alphaherpesvirus subfamily, and infect both humans and other mammals. Recently, next-generation sequencing has been used to generate genomic sequences of several members of the Varicellovirus genus. Here, currently available varicellovirus genomic sequences were used for phylogenetic, recombination, and genetic distance analysis. RESULTS A phylogenetic network including genomic sequences of individual species, was generated and suggested a potential restriction between the ungulate and non-ungulate viruses. Intraspecies genetic distances were higher in the ungulate viruses (pseudorabies virus (SuHV-1) 1.65%, bovine herpes virus type 1 (BHV-1) 0.81%, equine herpes virus type 1 (EHV-1) 0.79%, equine herpes virus type 4 (EHV-4) 0.16%) than non-ungulate viruses (feline herpes virus type 1 (FHV-1) 0.0089%, canine herpes virus type 1 (CHV-1) 0.005%, varicella-zoster virus (VZV) 0.136%). The G + C content of the ungulate viruses was also higher (SuHV-1 73.6%, BHV-1 72.6%, EHV-1 56.6%, EHV-4 50.5%) compared to the non-ungulate viruses (FHV-1 45.8%, CHV-1 31.6%, VZV 45.8%), which suggests a possible link between G + C content and intraspecies genetic diversity. Varicellovirus clade nomenclature is variable across different species, and we propose a standardization based on genomic genetic distance. A recent study reported no recombination between sequenced FHV-1 strains, however in the present study, both splitstree, bootscan, and PHI analysis indicated recombination. We also found that the recently sequenced Brazilian CHV-1 strain BTU-1 may contain a genetic signal in the UL50 gene from an unknown varicellovirus. CONCLUSION Together, the data contribute to a greater understanding of varicellovirus genomics, and we also suggest a new clade nomenclature scheme based on genetic distances.
Collapse
Affiliation(s)
- Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA
| | - Andrew C Lewin
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Ralph Moeller Trane
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA
| | - Gillian J McLellan
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, 550 Bardeen Laboratories, 1300 University Ave., Madison, WI, 53706, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
- Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
14
|
Jager MC, Sloma EA, Shelton M, Miller AD. Naturally Acquired Canine Herpesvirus-Associated Meningoencephalitis. Vet Pathol 2017; 54:820-827. [DOI: 10.1177/0300985817716263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Mason C. Jager
- Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Erica A. Sloma
- Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Morgan Shelton
- Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Andrew D. Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| |
Collapse
|