1
|
Čepukaitytė G, Newton C, Chan D. Early detection of diseases causing dementia using digital navigation and gait measures: A systematic review of evidence. Alzheimers Dement 2024; 20:3054-3073. [PMID: 38425234 PMCID: PMC11032572 DOI: 10.1002/alz.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
Wearable digital technologies capable of measuring everyday behaviors could improve the early detection of dementia-causing diseases. We conducted two systematic reviews following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines to establish the evidence base for measuring navigation and gait, two everyday behaviors affected early in AD and non-AD disorders and not adequately measured in current practice. PubMed and Web of Science databases were searched for studies on asymptomatic and early-stage symptomatic individuals at risk of dementia, with the Newcastle-Ottawa Scale used to assess bias and evaluate methodological quality. Of 316 navigation and 2086 gait records identified, 27 and 83, respectively, were included in the final sample. We highlight several measures that may identify at-risk individuals, whose quantifiability with different devices mitigates the risk of future technological obsolescence. Beyond navigation and gait, this review also provides the framework for evaluating the evidence base for future digital measures of behaviors considered for early disease detection.
Collapse
|
2
|
Fahmy EM, Rabah AM, Hashem SE, Rashed LA, Deraz HA, Ismail RS. Serum Apo Lipoprotein E, Apo Lipoprotein E Gene Polymorphisms, and Parkinson's Disease. Neurol India 2024; 72:319-325. [PMID: 38691476 DOI: 10.4103/ni.ni_940_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/18/2023] [Indexed: 05/03/2024]
Abstract
BACKGROUND A central role for apolipoprotein E (APOE) has been suggested in modulating processes of neurodegeneration. OBJECTIVE To study the association between serum APOE levels, APOE gene polymorphisms, and Parkinson's disease (PD). MATERIAL AND METHODS Fifty-five patients with PD and 30 healthy subjects were enrolled. PD patients were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS), Modified Hoehn and Yahr scale, and Schwab-England Activities of Daily Living scale. Serum APOE level and genotyping for APOE polymorphisms were done for PD patients and controls using enzyme-linked immunosorbent assay and polymerase chain reaction, respectively. RESULTS Mean serum APOE level was significantly higher in PD patients compared with healthy controls. APOE ε2/4 genotype was present in a significantly higher proportion of patients compared with controls. APOE ε4 allele was significantly associated with a higher score on the "mentation, behavior, and mood section" of UPDRS compared with ε2 allele. APOE ε2 allele was significantly associated with a shorter disease duration compared with ε3 and ε4 alleles. Mean serum APOE level was significantly higher in patients presenting predominantly by rigidity and bradykinesia compared with those presenting predominantly by tremors. Serum APOE level was positively correlated with mean scores of "mentation, behavior, and mood section" of UPDRS and disease duration. Serum APOE level was a significant predictor for the scores of "mentation, behavior, and mood section" of UPDRS. CONCLUSION APOE ε2/4 genotype might be a susceptibility variant for PD. There may be a possible role for APOE in modulating the process of neurodegeneration in PD.
Collapse
Affiliation(s)
- Ebtesam M Fahmy
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amany M Rabah
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Saher E Hashem
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba A Deraz
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania S Ismail
- Department of Neurology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Ji X, Peng X, Tang H, Pan H, Wang W, Wu J, Chen J, Wei N. Alzheimer's disease phenotype based upon the carrier status of the apolipoprotein E ɛ4 allele. Brain Pathol 2024; 34:e13208. [PMID: 37646624 PMCID: PMC10711266 DOI: 10.1111/bpa.13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 08/05/2023] [Indexed: 09/01/2023] Open
Abstract
The apolipoprotein E ɛ4 allele (APOE4) is universally acknowledged as the most potent genetic risk factor for Alzheimer's disease (AD). APOE4 promotes the initiation and progression of AD. Although the underlying mechanisms are unclearly understood, differences in lipid-bound affinity among the three APOE isoforms may constitute the basis. The protein APOE4 isoform has a high affinity with triglycerides and cholesterol. A distinction in lipid metabolism extensively impacts neurons, microglia, and astrocytes. APOE4 carriers exhibit phenotypic differences from non-carriers in clinical examinations and respond differently to multiple treatments. Therefore, we hypothesized that phenotypic classification of AD patients according to the status of APOE4 carrier will help specify research and promote its use in diagnosing and treating AD. Recent reviews have mainly evaluated the differences between APOE4 allele carriers and non-carriers from gene to protein structures, clinical features, neuroimaging, pathology, the neural network, and the response to various treatments, and have provided the feasibility of phenotypic group classification based on APOE4 carrier status. This review will facilitate the application of APOE phenomics concept in clinical practice and promote further medical research on AD.
Collapse
Affiliation(s)
- Xiao‐Yu Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Xin‐Yuan Peng
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Hai‐Liang Tang
- Fudan University Huashan Hospital, Department of Neurosurgery, State Key Laboratory for Medical NeurobiologyInstitutes of Brain Science, Shanghai Medical College‐Fudan UniversityShanghaiChina
| | - Hui Pan
- Shantou Longhu People's HospitalShantouGuangdongChina
| | - Wei‐Tang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Jie Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
- Brain Function and Disease LaboratoryShantou University Medical CollegeGuangdongChina
| | - Jian Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| | - Nai‐Li Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeGuangdongChina
| |
Collapse
|
4
|
Longhurst JK, Rider JV, Cummings JL, John SE, Poston B, Landers MR. Cognitive-motor dual-task interference in Alzheimer's disease, Parkinson's disease, and prodromal neurodegeneration: A scoping review. Gait Posture 2023; 105:58-74. [PMID: 37487365 PMCID: PMC10720398 DOI: 10.1016/j.gaitpost.2023.07.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2022] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Cognitive-motor interference (CMI) is a common deficit in Alzheimer's (AD) disease and Parkinson's disease (PD) and may have utility in identification of prodromal neurodegeneration. There is lack of consensus regarding measurement of CMI resulting from dual task paradigms. RESEARCH QUESTION How are individuals with AD, PD, and prodromal neurodegeneration impacted by CMI as measured by dual-task (DT) performance? METHODS A systematic literature search was performed in six datasets using the PRISMA guidelines. Studies were included if they had samples of participants with AD, PD, or prodromal neurodegeneration and reported at least one measure of cognitive-motor DT performance. RESULTS 4741 articles were screened and 95 included as part of this scoping review. Articles were divided into three non-mutually exclusive groups based on diagnoses, with 26 articles in AD, 56 articles in PD, and 29 articles in prodromal neurodegeneration, and results presented accordingly. SIGNIFICANCE Individuals with AD and PD are both impacted by CMI, though the impact is likely different for each disease. We found a robust body of evidence regarding the utility of measures of DT performance in the detection of subtle deficits in prodromal AD and some signals of utility in prodromal PD. There are several key methodological challenges related to DT paradigms for the measurement of CMI in neurodegeneration. Overall, DT paradigms show good potential as a clinical method to probe specific brain regions, networks, and function; however, task selection and effect measurement should be carefully considered.
Collapse
Affiliation(s)
- Jason K Longhurst
- Department of Physical Therapy and Athletic Training, Saint Louis University, 3437 Caroline St. Suite, 1011 St. Louis, MO, USA.
| | - John V Rider
- School of Occupational Therapy, Touro University Nevada, Henderson, NV, USA; Department of Physical Therapy, University of Nevada, Las Vegas, NV, USA.
| | | | - Samantha E John
- Department of Brain Health, University of Nevada, Las Vegas, NV, USA.
| | - Brach Poston
- Department of Kinesiology and Nutrition, University of Nevada, Las Vegas, NV, USA.
| | - Merrill R Landers
- Department of Physical Therapy, University of Nevada, Las Vegas, NV, USA.
| |
Collapse
|
5
|
Morris R, Martini DN, Kelly VE, Smulders K, Ramsey K, Hiller A, Chung KA, Hu SC, Zabetian CP, Poston KL, Mata IF, Edwards KL, Lapidus J, Cholerton B, Montine TJ, Quinn JF, Horak F. Gait and balance in apolipoprotein Ɛ4 allele carriers in older adults and Parkinson's disease. Clin Park Relat Disord 2023; 9:100201. [PMID: 37252677 PMCID: PMC10209874 DOI: 10.1016/j.prdoa.2023.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/09/2023] [Accepted: 05/14/2023] [Indexed: 05/31/2023] Open
Abstract
Background Gait and balance impairments are among the most troublesome and heterogeneous in Parkinson's disease (PD). This heterogeneity may, in part, reflect genetic variation. The apolipoprotein E (APOE) gene has three major allelic variants (ε2, ε3 and ε4). Previous work has demonstrated that older adult (OA) APOE ε4 carriers demonstrate gait deficits. This study compared gait and balance measures between APOE ε4 carriers and non-carriers in both OA and PD. Methods 334 people with PD (81 APOE ε4 carriers and 253 non-carriers) and 144 OA (41 carriers and 103 non-carriers) were recruited. Gait and balance were assessed using body-worn inertial sensors. Two-way analyses of covariance (ANCOVA) compared gait and balance characteristics between APOE ε4 carriers and non-carriers in people with PD and OA, controlling for age, gender, and testing site. Results Gait and balance were worse in people with PD compared to OA. However, there were no differences between APOE ε4 carriers and non-carriers in either the OA or PD group. In addition, there were no significant group (OA/PD) by APOE ε4 status (carrier/non-carrier) interaction effects for any measures of gait or balance. Conclusions Although we found expected impairments in gait and balance in PD compared to OA, gait and balance characteristics did not differ between APOE ε4 carriers and non-carriers in either group. While APOE status did not impact gait and balance in this cross-sectional study, future work is needed to determine whether progression of gait and balance deficits is faster in PD APOE Ɛ4 carriers.
Collapse
Affiliation(s)
- Rosie Morris
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK
| | - Douglas N. Martini
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Valerie E. Kelly
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Katrijn Smulders
- Sint Maartenskliniek Research Department, Nijmegen, the Netherlands
| | - Katrina Ramsey
- School of Public Health, Oregon Health and Science University, Portland, OR, USA
| | - Amie Hiller
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Kathryn A. Chung
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Shu-Ching Hu
- Sint Maartenskliniek Research Department, Nijmegen, the Netherlands
- Portland Veterans Affairs Health Care System, Portland, OR, USA
| | - Cyrus P. Zabetian
- Sint Maartenskliniek Research Department, Nijmegen, the Netherlands
- Portland Veterans Affairs Health Care System, Portland, OR, USA
| | - Kathleen L. Poston
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ignacio F. Mata
- Sint Maartenskliniek Research Department, Nijmegen, the Netherlands
- Portland Veterans Affairs Health Care System, Portland, OR, USA
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Karen L. Edwards
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, CA, US
| | - Jodi Lapidus
- School of Public Health, Oregon Health and Science University, Portland, OR, USA
| | - Brenna Cholerton
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Thomas J. Montine
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Fay Horak
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
6
|
Longhurst JK, Cummings JL, John SE, Poston B, Rider JV, Salazar AM, Mishra VR, Ritter A, Caldwell JZ, Miller JB, Kinney JW, Landers MR. Dual Task Performance Is Associated with Amyloidosis in Cognitively Healthy Adults. J Prev Alzheimers Dis 2022; 9:297-305. [PMID: 35543003 PMCID: PMC9286710 DOI: 10.14283/jpad.2022.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Preclinical Alzheimer's disease (AD) provides an opportunity for the study and implementation of interventions and strategies aimed at delaying, mitigating, and preventing AD. While this preclinical state is an ideal target, it is difficult to identify efficiently and cost-effectively. Recent findings have suggested that cognitive-motor dual task paradigms may provide additional inference. OBJECTIVES Investigate the relationship between dual task performance and amyloidosis, suggestive of preclinical Alzheimer's disease and whether dual task performance provides additional information beyond a cognitive composite, to help in the identification of amyloidosis. DESIGN Cross-sectional. SETTING Outpatient specialty brain health clinical research institution in the United States. PARTICIPANTS 52 cognitively healthy adults. MEASUREMENTS The data included demographics, amyloid standardized uptake value ratio obtained via florbetapir-PET, neuropsychological testing, apolipoprotien E genotype, and dual task performance measures. Data were analyzed via hierarchal multiple linear regression or logistic regression, controlling for age, education, and apolipoprotien E genotype. Receiver operating characteristic curves were plotted, and sensitivity and specificity calculated via 2x2 contingency tables. RESULTS There was a moderate relationship (rs>.30) between motor and cognitive dual task effects and amyloid standardized uptake value ratio (ps<.042). A strong relationship (r=.58) was found between combined dual task effect, a measure of automaticity derived from dual task performance, and amyloid standardized uptake value ratio (p<.001). Additionally, combined dual task effect showed promise in its unique contributions to amyloid standardized uptake value ratio, accounting for 7.8% of amyloid standardized uptake value ratio variance beyond cognitive composite scores (p=.018). Additionally, when incorporated into the cognitive composite, combined dual task effect resulted in improved diagnostic accuracy for determining elevated amyloid standardized uptake value ratio, and increased the sensitivity and specificity of the cognitive composite. CONCLUSSION Dual task performance using the combined dual task effect, a measure of automaticity, was a moderate predictor of cerebral amyloidosis, which suggests that it has utility in the screening and diagnosis of individuals for preclinical AD. Additionally, when combined with the cognitive composite, the combined dual task effect improves diagnostic accuracy. Further research is warranted.
Collapse
Affiliation(s)
- J K Longhurst
- Jason K. Longhurst, PT, DPT, PHD, Department of Physical Therapy and Athletic Training, Saint Louis University, Saint Louis, Missouri, USA, 63104, , tel: 314-977-8533, fax: 314-977-8513
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Oh C. Single-Task or Dual-Task? Gait Assessment as a Potential Diagnostic Tool for Alzheimer's Dementia. J Alzheimers Dis 2021; 84:1183-1192. [PMID: 34633320 PMCID: PMC8673517 DOI: 10.3233/jad-210690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: A person’s gait performance requires the integration of sensorimotor and cognitive systems. Therefore, a person’s gait may be influenced by concurrent cognitive load such as simultaneous talking. Although it has been known that gait performance of people with Alzheimer’s dementia (AD) is compromised when they attempt a dual-task walking task, it is unclear if using a dual-task gait performance during an AD assessment yields higher diagnostic accuracy. Objective: This study was designed to compare the predictive power for AD of dual-task gait performance in an AD assessment to that of single-task gait performance. Methods: Participants (14 with AD and 15 healthy controls) walked across the GAITRite© Portable Walkway mat under three different cognitive load conditions: no simultaneous cognitive load, walking while counting numbers by ones, and walking while completing category naming. Results: Multiple logistic regression revealed that the gait performance under a dual-task condition (i.e., concurrent counting or category naming) increased the proportion of variance explained by the FAP, SL, and DST, of the incidence of AD. Conclusion: Dual-task walking and talking may be a more effective diagnostic feature than single-task walking in a comprehensive AD diagnostic assessment.
Collapse
Affiliation(s)
- Chorong Oh
- School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH, USA
| |
Collapse
|
8
|
Rosso AL, Metti AL, Faulkner K, Redfern M, Yaffe K, Launer L, Elizabeth Shaaban C, Nadkarni NK, Rosano C. Complex Walking Tasks and Risk for Cognitive Decline in High Functioning Older Adults. J Alzheimers Dis 2020; 71:S65-S73. [PMID: 30814353 DOI: 10.3233/jad-181140] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Performance on complex walking tasks may provide a screen for future cognitive decline. OBJECTIVE To identify walking tasks that are most strongly associated with subsequent cognitive decline. METHODS Community-dwelling older adults with Modified Mini-Mental State (3MS) >85 at baseline (n = 223; mean age = 78.7, 52.5% women, 25.6% black) completed usual-pace walking and three complex walking tasks (fast-pace, narrow-path, visuospatial dual-task). Slope of 3MS scores for up to 9 subsequent years (average = 5.2) were used to calculate a cognitive maintainer (slope ≥0) or decliner (slope <0) outcome variable. Logistic regression models assessed associations between gait speeds and being a cognitive decliner. A sensitivity analysis in a subsample of individuals (n = 66) confirmed results with adjudicated mild cognitive impairment (MCI) or dementia at 8-9 years post-walking assessment. RESULTS Cognitive decliners were 52.5% of the sample and on average were slower for all walking tasks compared to maintainers. In models adjusted for demographic and health variables, faster fast-pace (OR = 0.87 per 0.1 m/s, 95% CI: 0.78, 0.97) and dual-task (OR = 0.84 per 0.1 m/s, 95% CI: 0.73, 0.96) gait speeds were associated with lower likelihood of being a cognitive decliner. Usual-pace gait speed was not associated (OR = 0.96 per 0.1 m/s, 95% CI: 0.85, 1.08). Results were nearly identical in analyses with adjudicated MCI or dementia as the outcome. CONCLUSION Fast-pace and dual-task walking may provide simple and effective tools for assessing risk for cognitive decline in older individuals with high cognitive function. Such screening tools are important for strategies to prevent or delay onset of clinically meaningful change.
Collapse
Affiliation(s)
- Andrea L Rosso
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrea L Metti
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kimberly Faulkner
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Redfern
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristine Yaffe
- Department of Psychiatry, Neurology and Epidemiology, University of California, San Francisco, CA, USA
| | - Lenore Launer
- Intramural Research Program, National Institute on Aging, Bethesda, MD, USA
| | - C Elizabeth Shaaban
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neelesh K Nadkarni
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Caterina Rosano
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Martini DN, Morris R, Kelly VE, Hiller A, Chung KA, Hu SC, Zabetian CP, Oakley J, Poston K, Mata IF, Edwards KL, Lapidus JA, Grabowski TJ, Montine TJ, Quinn JF, Horak F. Sensorimotor Inhibition and Mobility in Genetic Subgroups of Parkinson's Disease. Front Neurol 2020; 11:893. [PMID: 33013627 PMCID: PMC7498564 DOI: 10.3389/fneur.2020.00893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Mobility and sensorimotor inhibition impairments are heterogeneous in Parkinson's disease (PD). Genetics may contribute to this heterogeneity since the apolipoprotein (APOE) ε4 allele and glucocerebrosidase (GBA) gene variants have been related to mobility impairments in otherwise healthy older adult (OA) and PD cohorts. The purpose of this study is to determine if APOE or GBA genetic status affects sensorimotor inhibition and whether the relationship between sensorimotor inhibition and mobility differs in genetic sub-groups of PD. Methods: Ninety-three participants with idiopathic PD (53 non-carriers; 23 ε4 carriers; 17 GBA variants) and 72 OA (45 non-carriers; 27 ε4 carriers) had sensorimotor inhibition characterized by short-latency afferent inhibition. Mobility was assessed in four gait domains (pace/turning, rhythm, trunk, variability) and two postural sway domains (area/jerkiness and velocity) using inertial sensors. Results: Sensorimotor inhibition was worse in the PD than OA group, with no effect of genetic status. Gait pace/turning was slower and variability was higher (p < 0.01) in PD compared to OA. Postural sway area/jerkiness (p < 0.01) and velocity (p < 0.01) were also worse in the PD than OA group. Genetic status was not significantly related to any gait or postural sway domain. Sensorimotor inhibition was significantly correlated with gait variability (r = 0.27; p = 0.02) and trunk movement (r = 0.23; p = 0.045) in the PD group. In PD non-carriers, sensorimotor inhibition related to variability (r = 0.35; p = 0.010) and trunk movement (r = 0.31; p = 0.025). In the PD ε4 group, sensorimotor inhibition only related to rhythm (r = 0.47; p = 0.024), while sensorimotor inhibition related to pace/turning (r = -0.49; p = 0.046) and rhythm (r = 0.59; p = 0.013) in the PD GBA group. Sensorimotor inhibition was significantly correlated with gait pace/turning (r = -0.27; p = 0.04) in the OA group. There was no relationship between sensorimotor inhibition and postural sway. Conclusion: ε4 and GBA genetic status did not affect sensorimotor inhibition or mobility impairments in this PD cohort. However, worse sensorimotor inhibition was associated with gait variability in PD non-carriers, but with gait rhythm in PD ε4 carriers and with gait rhythm and pace in PD with GBA variants. Impaired sensorimotor inhibition had a larger effect on mobility in people with PD than OA and affected different domains of mobility depending on genetic status.
Collapse
Affiliation(s)
- Douglas N Martini
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Rosie Morris
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Valerie E Kelly
- Department of Rehabilitation Medicine, University of Washington School of Medicine, Seattle, WA, United States
| | - Amie Hiller
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Portland Veterans Affairs Health Care System, Portland, OR, United States
| | - Kathryn A Chung
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Portland Veterans Affairs Health Care System, Portland, OR, United States
| | - Shu-Ching Hu
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States.,Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Cyrus P Zabetian
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States.,Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - John Oakley
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| | - Kathleen Poston
- Department of Neurology and Neurological Sciences, Stanford School of Medicine, Palo Alto, CA, United States
| | - Ignacio F Mata
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States.,Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States.,Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Karen L Edwards
- Department of Epidemiology, University of California, Irvine, Irvine, CA, United States
| | - Jodi A Lapidus
- Biostatistics & Design Program, Oregon Health and Science University, Portland, OR, United States
| | - Thomas J Grabowski
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Thomas J Montine
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Portland Veterans Affairs Health Care System, Portland, OR, United States
| | - Fay Horak
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
10
|
Mc Ardle R, Morris R, Hickey A, Del Din S, Koychev I, Gunn RN, Lawson J, Zamboni G, Ridha B, Sahakian BJ, Rowe JB, Thomas A, Zetterberg H, MacKay C, Lovestone S, Rochester L. Gait in Mild Alzheimer's Disease: Feasibility of Multi-Center Measurement in the Clinic and Home with Body-Worn Sensors: A Pilot Study. J Alzheimers Dis 2018; 63:331-341. [PMID: 29614664 PMCID: PMC7617011 DOI: 10.3233/jad-171116] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gait is emerging as a potential diagnostic tool for cognitive decline. The 'Deep and Frequent Phenotyping for Experimental Medicine in Dementia Study' (D&FP) is a multicenter feasibility study embedded in the United Kingdom Dementia Platform designed to determine participant acceptability and feasibility of extensive and repeated phenotyping to determine the optimal combination of biomarkers to detect disease progression and identify early risk of Alzheimer's disease (AD). Gait is included as a clinical biomarker. The tools to quantify gait in the clinic and home, and suitability for multi-center application have not been examined. Six centers from the National Institute for Health Research Translational Research Collaboration in Dementia initiative recruited 20 individuals with early onset AD. Participants wore a single wearable (tri-axial accelerometer) and completed both clinic-based and free-living gait assessment. A series of macro (behavioral) and micro (spatiotemporal) characteristics were derived from the resultant data using previously validated algorithms. Results indicate good participant acceptability, and potential for use of body-worn sensors in both the clinic and the home. Recommendations for future studies have been provided. Gait has been demonstrated to be a feasible and suitable measure, and future research should examine its suitability as a biomarker in AD.
Collapse
Affiliation(s)
- Ríona Mc Ardle
- Institute of Neuroscience, Newcastle University, Newcastle
| | - Rosie Morris
- Institute of Neuroscience, Newcastle University, Newcastle
| | - Aodhán Hickey
- Institute of Neuroscience, Newcastle University, Newcastle
| | - Silvia Del Din
- Institute of Neuroscience, Newcastle University, Newcastle
| | - Ivan Koychev
- UK Department of Psychiatry, University of Oxford, UK
| | - Roger N. Gunn
- IMANOVA Ltd
- Department of Medicine, Imperial College, UK
| | | | | | - Basil Ridha
- NIHR Queen Square Dementia Biomedical Research Unit, University College London, UK
| | | | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, UK and MRC Cognition and Brain Sciences Unit, Cambridge, UK
| | - Alan Thomas
- Institute of Neuroscience, Newcastle University, Newcastle
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute, London, UK
| | - Clare MacKay
- UK Department of Psychiatry, University of Oxford, UK
| | | | - Lynn Rochester
- Institute of Neuroscience, Newcastle University, Newcastle
| |
Collapse
|
11
|
Sakurai R, Montero-Odasso M. Apolipoprotein E4 Allele and Gait Performance in Mild Cognitive Impairment: Results From the Gait and Brain Study. J Gerontol A Biol Sci Med Sci 2017; 72:1676-1682. [PMID: 28482102 DOI: 10.1093/gerona/glx075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/17/2017] [Indexed: 11/14/2022] Open
Abstract
Background The apolipoprotein E polymorphism ε4 allele (ApoE4) and gait impairment are both known risk factors for developing cognitive decline and dementia. However, it is unclear the interrelationship between these factors, particularly among older adults with mild cognitive impairment (MCI) who are considered as prodromal for Alzheimer's disease. This study aimed to determine whether ApoE4 carrier individuals with MCI may experience greater impairment in gait performance. Methods Fifty-six older adults with MCI from the "Gait and Brain Study" who were identified as either ApoE4 carriers (n = 20) or non-ApoE4 carriers (n = 36) with 1 year of follow-up were included. Gait variability, the main outcome variable, was assessed as stride time variability with an electronic walkway. Additional gait variables and cognitive performance (mini-mental state examination [MMSE] and Montreal Cognitive Assessment [MoCA]) were also recorded. Covariates included age, sex, education level, body mass index, and number of comorbidities. Results Baseline characteristics were similar for both groups. Repeated measures analysis of covariance showed that gait stride time and stride length variabilities significantly increased in ApoE4 carriers but was maintained in the non-ApoE4 carriers. Similarly, ApoE4 carriers showed greater decrease in MMSE score at follow-up. Conclusions In this sample of older adults with MCI, the presence of at least one copy of ApoE4 was associated with the development of both increased gait variability and cognitive decline during 1 year of follow-up. ApoE4 genotype might be considered as a potential mediator of decline in mobility function in MCI; future studies with larger samples are needed to confirm our preliminary findings.
Collapse
Affiliation(s)
- Ryota Sakurai
- Gait and Brain Lab, Parkwood Institute, Lawson Health Research Institute, London, Canada.,Schulich School of Medicine and Dentistry, Department of Medicine, Division of Geriatric Medicine, University of Western Ontario, London, Canada.,Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Manuel Montero-Odasso
- Gait and Brain Lab, Parkwood Institute, Lawson Health Research Institute, London, Canada.,Schulich School of Medicine and Dentistry, Department of Medicine, Division of Geriatric Medicine, University of Western Ontario, London, Canada.,Department of Epidemiology and Biostatistics, University of Western Ontario, London, Canada
| |
Collapse
|
12
|
Improving Sensitivity to Detect Mild Cognitive Impairment: Cognitive Load Dual-Task Gait Speed Assessment. J Int Neuropsychol Soc 2017; 23:493-501. [PMID: 28413999 DOI: 10.1017/s1355617717000261] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Longitudinal research indicates that cognitive load dual-task gait assessment is predictive of cognitive decline and thus might provide a sensitive measure to screen for mild cognitive impairment (MCI). However, research among older adults being clinically evaluated for cognitive concerns, a defining feature of MCI, is lacking. The present study investigated the effect of performing a cognitive task on normal walking speed in patients presenting to a memory clinic with cognitive complaints. METHODS Sixty-one patients with a mean age of 68 years underwent comprehensive neuropsychological testing, clinical interview, and gait speed (simple- and dual-task conditions) assessments. Thirty-four of the 61 patients met criteria for MCI. RESULTS Repeated measure analyses of covariance revealed that greater age and MCI both significantly associated with slower gait speed, ps<.05. Follow-up analysis indicated that the MCI group had significantly slower dual-task gait speed but did not differ in simple-gait speed. Multivariate linear regression across groups found that executive attention performance accounted for 27.4% of the variance in dual-task gait speed beyond relevant demographic and health risk factors. CONCLUSIONS The present study increases the external validity of dual-task gait assessment of MCI. Differences in dual-task gait speed appears to be largely attributable to executive attention processes. These findings have clinical implications as they demonstrate expected patterns of gait-brain behavior relationships in response to a cognitive dual task within a clinically representative population. Cognitive load dual-task gait assessment may provide a cost efficient and sensitive measure to detect older adults at high risk of a dementia disorder. (JINS, 2017, 23, 493-501).
Collapse
|