1
|
Osasona OG, Oguntoye OO, Arowosaye AO, Abdulkareem LO, Adewumi MO, Happi C, Folarin O. Patterns of hepatitis b virus immune escape and pol/rt mutations across clinical cohorts of patients with genotypes a, e and occult hepatitis b infection in Nigeria: A multi-centre study. Virulence 2023; 14:2218076. [PMID: 37262110 DOI: 10.1080/21505594.2023.2218076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/27/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023] Open
Abstract
Hepatitis B virus (HBV) immune escape and Pol/RT mutations account for HBV immunoprophylactic, therapeutic, and diagnostic failure globally. Little is known about circulating HBV immune escape and Pol/RT mutants in Nigeria. This study focused on narrowing the knowledge gap of the pattern and prevalence of the HBV mutants across clinical cohorts of infected patients in southwestern Nigeria. Ninety-five enrollees were purposively recruited across clinical cohorts of HBV-infected patients with HBsAg or anti-HBc positive serological outcome and occult HBV infection. Total DNA was extracted from patients' sera. HBV S and Pol gene-specific nested PCR amplification was carried out. The amplicons were further sequenced for serotypic, genotypic, phylogenetic, and mutational analysis. HBV S and Pol genes were amplified in 60 (63.2%) and 19 (20%) of HBV isolates, respectively. All the sixty HBV S gene and 14 of 19 Pol gene sequences were exploitable. The ayw4 serotype was predominant (95%) while ayw1 serotype was identified in 5% of isolates. Genotype E predominates in 95% of sequences, while genotype A, sub-genotype A3 was observed in 5%. Prevalence of HBV IEMs in the "a" determinant region was 29%. Commonest HBV IEM was S113T followed by G145A and D144E. The Pol/RT mutations rtV214A and rtI163V among others were identified in this study. This study provided data on the occurrence of existing and new HBV IEMs and Pol gene mutations in Nigeria.
Collapse
Affiliation(s)
- Oluwadamilola G Osasona
- African Centre of Excellence for the Genomics of Infectious Diseases, Redeemers University, Ede, Nigeria
| | | | - Abiola O Arowosaye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Lukman O Abdulkareem
- Department of Internal Medicine, University of Abuja Teaching Hospital, Gwagwalada, Abuja, Nigeria
| | - Moses O Adewumi
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Christian Happi
- African Centre of Excellence for the Genomics of Infectious Diseases, Redeemers University, Ede, Nigeria
| | - Onikepe Folarin
- African Centre of Excellence for the Genomics of Infectious Diseases, Redeemers University, Ede, Nigeria
| |
Collapse
|
2
|
Attiku K, Bonney J, Agbosu E, Bonney E, Puplampu P, Ganu V, Odoom J, Aboagye J, Mensah J, Agyemang S, Awuku-Larbi Y, Arjarquah A, Mawuli G, Quaye O. Circulation of hepatitis delta virus and occult hepatitis B virus infection amongst HIV/HBV co-infected patients in Korle-Bu, Ghana. PLoS One 2021; 16:e0244507. [PMID: 33411715 PMCID: PMC7790253 DOI: 10.1371/journal.pone.0244507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Within HIV/HBV infected patients, an increase in HDV infection has been observed; there is inadequate information on HDV prevalence as well as virologic profile in Ghana. This study sought to determine the presence of HDV in HIV/HBV co-infected patients in Ghana. METHODS This was a longitudinal purposive study which enrolled 113 HIV/HBV co-infected patients attending clinic at Korle-Bu Teaching Hospital (KBTH) in Accra, Ghana. After consenting, 5 mL whole blood was collected at two-time points (baseline and 4-6 months afterwards). The sera obtained were tested to confirm the presence of HIV, HBV antibodies and/or antigens, and HBV DNA. Antibodies and viral RNA were also determined for HDV. Amplified HBV DNA and HDV RNA were sequenced and phylogenetic analysis carried out with reference sequences from the GenBank to establish the genotypes. RESULTS Of the 113 samples tested 63 (55.7%) were females and 50 (44.25%) were males with a median age of 45 years. A total of 100 (88.5%) samples had detectable HBV surface antigen (HBsAg), and 32 out of the 113 had detectable HBV DNA. Nucleotide sequences were obtained for 15 and 2 samples of HBV and HDV, respectively. Phylogenetic analysis was predominantly genotype E for the HBVs and genotype 1 for the HDVs. Of the 13 samples that were HBsAg unreactive, 4 (30.8%) had detectable HBV DNA suggesting the incidence of occult HBV infections. The percentage occurrence of HDV in this study was observed to be 3.54. CONCLUSION Our data suggest the presence and circulation of HDV and incidence of occult HBV infection in HIV/HBV co-infected patients in Ghana. This informs health staff and makes it imperative to look out for the presence of HDV and occult HBV in HIV/HBV co-infected patients presenting with potential risk of liver cancers and HBV transmission through haemodialysis and blood transfusions.
Collapse
Affiliation(s)
- Keren Attiku
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Bonney
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Esinam Agbosu
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Bonney
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | | | - Vincent Ganu
- Fevers Unit, Korle-Bu Teaching Hospital, Accra, Ghana
| | - John Odoom
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - James Aboagye
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - John Mensah
- Fevers Unit, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Seth Agyemang
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Fevers Unit, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Yaw Awuku-Larbi
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
| | - Augustina Arjarquah
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Gifty Mawuli
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Abesig J, Chen Y, Wang H, Sompo FM, Wu IXY. Prevalence of viral hepatitis B in Ghana between 2015 and 2019: A systematic review and meta-analysis. PLoS One 2020; 15:e0234348. [PMID: 32530945 PMCID: PMC7292378 DOI: 10.1371/journal.pone.0234348] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B (HBV) remains a significant public health problem in Ghana and past reviews conducted could not calculate a nationwide prevalence of the disease due to lack of primary research for some regions of the country. We therefore conducted this study to summarize and update the available information on HBV infection burden (prevalence) in Ghana from 2015-2019.We systematically searched PubMed, Embase, ScienceDirect, and Google Scholar to retrieve primary studies published in peer-reviewed journals from November 2015 to September 2019, assessing the prevalence of HBV among the Ghanaian populace. The review included 21 studies across all ten old regions of Ghana with a total sample population of 29 061. The HBV prevalence was estimated for subpopulations as follows: 8.36% in the adult population, 14.30% in the adolescent population, and 0.55% in children under five years (pre-school). Among adults, HBV infection prevalence was the highest in the special occupation group (14.40%) and the lowest prevalence rate of 7.17% was recorded among blood donors. Prevalence was lower in the north than in the southern part of the country. The Ashanti region had the most studies at 6/21 (29%), while no study was identified for the Upper West region. Across the country, the highest HBV infection prevalence rates were recorded in the age group of 20-40 years. The burden of hepatitis B is enormous and remains an important public health issue in Ghana. Addressing the issue will require an integrated public health strategy and rethinking of the implementation gaps in the current HBV infection control program. This will help propel the country towards eliminating the disease by 2030.
Collapse
Affiliation(s)
- Julius Abesig
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Yancong Chen
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Huan Wang
- Xiangya School of Public Health, Central South University, Changsha, China
| | | | - Irene X. Y. Wu
- Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
4
|
Assih M, Ouattara AK, Diarra B, Yonli AT, Compaore TR, Obiri-Yeboah D, Djigma FW, Karou S, Simpore J. Genetic diversity of hepatitis viruses in West-African countries from 1996 to 2018. World J Hepatol 2018; 10:807-821. [PMID: 30533182 PMCID: PMC6280160 DOI: 10.4254/wjh.v10.i11.807] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/10/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
The severity of hepatic pathology and the response to treatment depend on the hepatitis virus genotype in the infected host. The objective of this review was to determine the distribution of hepatitis virus genotypes in West African countries. A systematic review of the literature in PubMed, Google Scholar and Science Direct was performed to identify 52 relevant articles reporting hepatitis A, B, C, D, E and G viruses genotypes. Hepatitis B virus (HBV) genotype E with a prevalence of 90.6% (95%CI: 0.891-0.920) found in this review, is characterized by low genetic diversity. Hepatitis C virus (HCV) genotypes 1 and 2 represented 96.4% of HCV infections in West African countries, while hepatitis delta virus, hepatitis A virus, hepatitis G virus genotypes 1 and HEV genotype 3 were reported in some studies in Ghana and Nigeria. HBV genotype E is characterized by high prevalence, low genetic diversity and wide geographical distribution. Further studies on the clinical implications of HBV genotype E and HCV genotypes 1 and 2 are needed for the development of an effective treatment against this viral hepatitis in West African countries. Surveillance of the distribution of different genotypes is also needed to reduce recombination rates and prevent the emergence of more virulent viral strains.
Collapse
Affiliation(s)
- Maléki Assih
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Abdoul Karim Ouattara
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso.
| | - Birama Diarra
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Albert Theophane Yonli
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Tegwindé Rebeca Compaore
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Dorcas Obiri-Yeboah
- Department of Microbiology and Immunology, School of Medical Sciences, University of Cape Coast, Cape Coast 00233, Ghana
| | - Florencia Wendkuuni Djigma
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| | - Simplice Karou
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA-UL), Universite de Lome, Lome 00229, Togo
| | - Jacques Simpore
- Biochemistry-Microbiology, CERBA/LABIOGENE, Ouagadougou 02006, Burkina Faso
- Laboratory of Molecular Biology and Molecular Genetics (LABIOGENE) UFR/SVT, University Ouaga I Prof Joseph KI-ZERBO, Ouagadougou 00226, Burkina Faso
| |
Collapse
|
5
|
Transmission of Hepatitis B and D Viruses in an African Rural Community. mSystems 2018; 3:mSystems00120-18. [PMID: 30246145 PMCID: PMC6143728 DOI: 10.1128/msystems.00120-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
According to the World Health Organization (WHO), an estimated 257 million people worldwide are chronically infected with hepatitis B virus (HBV), with approximately 15 million of them being coinfected with hepatitis D virus (HDV). To investigate the prevalence and transmission of HBV and HDV within the general population of a rural village in Cameroon, we analyzed serum samples from most (401/448) of the villagers. HBV surface antigen (HBsAg) was detected in 54 (13.5%) of the 401 samples, with 15% of them also containing anti-HDV antibodies. Although Cameroon has integrated HBV vaccination into their Expanded Program on Immunization for newborns in 2005, an HBsAg carriage rate of 5% was found in children below the age of 5 years. Of the 54 HBsAg-positive samples, 49 HBV pre-S/S sequences (7 genotype A and 42 genotype E sequences) could be amplified by PCR. In spite of the extreme geographical restriction in the recruitment of study participants, a remarkable genetic diversity within HBV genotypes was observed. Phylogenetic analysis of the sequences obtained from PCR products combined with demographic information revealed that the presence of some genetic variants was restricted to members of one household, indicative of intrafamilial transmission, which appears to take place at least in part perinatally from mother to child. Other genetic variants were more widely distributed, reflecting horizontal interhousehold transmission. Data for two households with more than one HBV-HDV-coinfected individual indicate that the two viruses are not necessarily transmitted together, as family members with identical HBV sequences had different HDV statuses. IMPORTANCE This study revealed that the prevalence of HBV and HDV in a rural area of Cameroon is extremely high, underlining the pressing need for the improvement of control strategies. Systematic serological and phylogenetic analyses of HBV sequences turned out to be useful tools to identify networks of virus transmission within and between households. The high HBsAg carriage rate found among children demonstrates that implementation of the HBV birth dose vaccine and improvement of vaccine coverage will be key elements in preventing both HBV and HDV infections. In addition, the high HBsAg carriage rate in adolescents and adults emphasizes the need for identification of chronically infected individuals and linkage to WHO-recommended treatment to prevent progression to liver cirrhosis and hepatocellular carcinoma.
Collapse
|
6
|
Prevalence of hepatitis D virus infection in sub-Saharan Africa: a systematic review and meta-analysis. LANCET GLOBAL HEALTH 2018; 5:e992-e1003. [PMID: 28911765 PMCID: PMC5599428 DOI: 10.1016/s2214-109x(17)30298-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/26/2017] [Accepted: 07/18/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Hepatitis D virus (also known as hepatitis delta virus) can establish a persistent infection in people with chronic hepatitis B, leading to accelerated progression of liver disease. In sub-Saharan Africa, where HBsAg prevalence is higher than 8%, hepatitis D virus might represent an important additive cause of chronic liver disease. We aimed to establish the prevalence of hepatitis D virus among HBsAg-positive populations in sub-Saharan Africa. METHODS We systematically reviewed studies of hepatitis D virus prevalence among HBsAg-positive populations in sub-Saharan Africa. We searched PubMed, Embase, and Scopus for papers published between Jan 1, 1995, and Aug 30, 2016, in which patient selection criteria and geographical setting were described. Search strings included sub-Saharan Africa, the countries therein, and permutations of hepatitis D virus. Cohort data were also added from HIV-positive populations in Malawi and Ghana. Populations undergoing assessment in liver disease clinics and those sampled from other populations (defined as general populations) were analysed. We did a meta-analysis with a DerSimonian-Laird random-effects model to calculate a pooled estimate of hepatitis D virus seroprevalence. FINDINGS Of 374 studies identified by our search, 30 were included in our study, only eight of which included detection of hepatitis D virus RNA among anti-hepatitis D virus seropositive participants. In west Africa, the pooled seroprevalence of hepatitis D virus was 7·33% (95% CI 3·55-12·20) in general populations and 9·57% (2·31-20·43) in liver-disease populations. In central Africa, seroprevalence was 25·64% (12·09-42·00) in general populations and 37·77% (12·13-67·54) in liver-disease populations. In east and southern Africa, seroprevalence was 0·05% (0·00-1·78) in general populations. The odds ratio for anti-hepatitis D virus detection among HBsAg-positive patients with liver fibrosis or hepatocellular carcinoma was 5·24 (95% CI 2·74-10·01; p<0·0001) relative to asymptomatic controls. INTERPRETATION Findings suggest localised clusters of hepatitis D virus endemicity across sub-Saharan Africa. Epidemiological data are needed from southern and east Africa, and from patients with established liver disease. Further studies should aim to define the reliability of hepatitis D virus testing methods, identify risk factors for transmission, and characterise the natural history of the infection in the region. FUNDING Wellcome Trust, Royal Society.
Collapse
|
7
|
de Pina-Araujo IIM, Spitz N, Soares CC, Niel C, Lago BV, Gomes SA. Hepatitis B virus genotypes A1, A2 and E in Cape Verde: Unequal distribution through the islands and association with human flows. PLoS One 2018; 13:e0192595. [PMID: 29447232 PMCID: PMC5813952 DOI: 10.1371/journal.pone.0192595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/28/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) diversity has not been previously studied in Cape Verde. The archipelago was discovered in 1460 by Portuguese explorers, who brought African slaves to colonise the islands. In this study, we investigated the HBV characteristics from 183 HBsAg-positive Cape Verdean individuals. Phylogenetic analysis of the pre-S/S region and the full-length genomes revealed 54 isolates with HBV/A1 (57%), 21 with HBV/A2 (22%), 19 with HBV/E (20%), and one with HBV/D (1%). HBV genotypes and subgenotypes were unequally distributed through the islands. In São Vicente, the main northern island, most isolates (84%) belonged to the African-originated HBV/A1, with the remaining isolates belonging to HBV/A2, which is prevalent in Europe. Interestingly, the HBV/A1 isolates from São Vicente were closely related to Brazilian sequences into the Asian-American clade, which suggests the dissemination of common African ancestors through slave trade. In contrast, in Santiago and nearby southern islands, where a recent influx from different populations circulates, a higher diversity of HBV was observed: HBV/A1 (40%); HBV/E (32%); HBV/A2 (28%); and HBV/D (1%). HBV/E is a recent genotype disseminated in Africa that was absent in the era of the slave trade. African and European human flows at different times of the history may explain the HBV diversity in Cape Verde. The possible origin and specifics of each HBV genotype circulating in Cape Verde are discussed.
Collapse
Affiliation(s)
| | - Natalia Spitz
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Caroline C. Soares
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Christian Niel
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Barbara V. Lago
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ, Rio de Janeiro, Brazil
| | - Selma A. Gomes
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
8
|
Breakwell L, Tevi-Benissan C, Childs L, Mihigo R, Tohme R. The status of hepatitis B control in the African region. Pan Afr Med J 2017; 27:17. [PMID: 29296152 PMCID: PMC5745934 DOI: 10.11604/pamj.supp.2017.27.3.11981] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/10/2017] [Indexed: 01/05/2023] Open
Abstract
The World Health Organization (WHO) African Region has approximately 100 million people with chronic hepatitis B virus (HBV) infection. This review describes the status of hepatitis B control in the Region. We present hepatitis B vaccine (HepB) coverage data and from available data in the published literature, the impact of HepB vaccination on hepatitis B surface antigen (HBsAg) prevalence, a marker of chronic infection, among children, HBsAg prevalence in pregnant women, and risk of perinatal transmission. Lastly, we describe challenges with HepB birth dose (HepB-BD) introduction reported in the Region, and propose strategies to increase coverage. In 2015, regional three dose HepB coverage was 76%, and 16(34%) of 47 countries reported ≥ 90% coverage. Overall, 11 countries introduced HepB-BD; only nine provide universal HepB-BD, and of these, five reported ≥ 80% coverage. From non-nationally representative serosurveys among children, HBsAg prevalence was lower among children born after HepB introduction compared to those born before HepB introduction. However, some studies still found HBsAg prevalence to be above 2%. From limited surveys among pregnant women, the median HBsAg prevalence varied by country, ranging from 1.9% (Madagascar) to 16.1% (Niger); hepatitis B e antigen (HBeAg) prevalence among HBsAg-positive women ranged from 3.3% (Zimbabwe) to 28.5% (Nigeria). Studies in three countries indicated that the risk of perinatal HBV transmission was associated with HBeAg expression or high HBV DNA viral load. Major challenges for timely HepB-BD administration were poor knowledge of or lack of national HepB-BD vaccination guidelines, high prevalence of home births, and unreliable vaccine supply. Overall, substantial progress has been made in the region. However, countries need to improve HepB3 coverage and some countries might need to consider introducing the HepB-BD to help achieve the regional hepatitis B control goal of < 2% HBsAg prevalence among children < 5 years old by 2020. To facilitate HepB-BD introduction and improve timely coverage, strategies are needed to reach both facility-based and home births. Strong political commitment, clear policy recommendations and staff training on HepB-BD administration are also required. Furthermore, high quality nationally representative serosurveys among children are needed to inform decision makers about progress towards the regional control goal.
Collapse
Affiliation(s)
- Lucy Breakwell
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Carol Tevi-Benissan
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| | - Lana Childs
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Oak Ridge Institute for Science and Education, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Richard Mihigo
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| | - Rania Tohme
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|