1
|
Elshamly AMS, Abaza AS. Precise partial root-zone irrigation technique and potassium-zinc fertigation management improve maize physio-biochemical responses, yield, and water use in arid climate. BMC PLANT BIOLOGY 2024; 24:775. [PMID: 39143521 PMCID: PMC11325621 DOI: 10.1186/s12870-024-05467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND To optimize irrigation water use and productivity, understanding the interactions between plants, irrigation techniques, and fertilization practices is crucial. Therefore, the experiment aims to assess the effectiveness of two application methods of potassium humate combined with chelated zinc under partial root-zone drip irrigation techniques on maize nutrient uptake, yield, and irrigation water use efficiency across two irrigation levels. METHODS Open-field experiments were carried out in two summer seasons of 2021 and 2022 under alternate and fixed partial root-zone drip irrigation techniques to investigate their impacts at two irrigation levels and applied foliar and soil applications of potassium humate or chelated zinc in a sole and combinations on maize. RESULTS Deficit irrigation significantly increased hydrogen peroxide levels and decreased proline, antioxidant enzymes, carbohydrate, chlorophyll (a + b), and nutrient uptake in both partial root-zone techniques. The implementation of combined soil application of potassium humate and chelated zinc under drought conditions on maize led to varying impacts on antioxidant enzymes and nutritional status, depending on the type of partial root-zone technique. Meanwhile, the results showed that fixed partial root-zone irrigation diminished the negative effects of drought stress by enhancing phosphorus uptake (53.8%), potassium uptake (59.2%), proline (74.4%) and catalase (75%); compared to the control. These enhancements may contribute to improving the defense system of maize plants in such conditions. On the other hand, the same previous treatments under alternate partial root zone modified the defense mechanism of plants and improved the contents of peroxidase, superoxide dismutase, and the uptake of magnesium, zinc, and iron by 81.3%, 82.3%, 85.1%, 56.9%, and 80.2%, respectively. CONCLUSIONS Adopting 75% of the irrigation requirements and treating maize plants with the soil application of 3 g l-1 potassium humate combined with 1.25 kg ha-1 chelated zinc under alternate partial root-zone technique, resulted in the maximum root length, leaf water content, chlorophyll content, yield, and irrigation water use efficiency.
Collapse
Affiliation(s)
- Ayman M S Elshamly
- Water Studies and Research Complex. National Water Research Center, Cairo, Egypt.
- National Water Research Center, Research Institute for Groundwater, El-Kanater, El-Khairiya, Egypt.
| | - A S Abaza
- Water Studies and Research Complex. National Water Research Center, Cairo, Egypt
| |
Collapse
|
2
|
Sun M, Shen Y. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111892. [PMID: 37821024 DOI: 10.1016/j.plantsci.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), β-CC (β-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.
Collapse
Affiliation(s)
- Mimi Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China.
| |
Collapse
|
3
|
Zhao M, Du C, Zeng J, Gao Z, Zhu Y, Wang J, Zhang Y, Zhu Z, Wang Y, Chen M, Wang Y, Chang J, Yang G, He G, Li Y, Chen X. Integrated omic analysis provides insights into the molecular regulation of stress tolerance by partial root-zone drying in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1156514. [PMID: 37360728 PMCID: PMC10288491 DOI: 10.3389/fpls.2023.1156514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/26/2023] [Indexed: 06/28/2023]
Abstract
Partial root-zone drying (PRD) is an effective water-saving irrigation strategy that improves stress tolerance and facilitates efficient water use in several crops. It has long been considered that abscisic acid (ABA)-dependent drought resistance may be involved during partial root-zone drying. However, the molecular mechanisms underlying PRD-mediated stress tolerance remain unclear. It's hypothesized that other mechanisms might contribute to PRD-mediated drought tolerance. Here, rice seedlings were used as a research model and the complex transcriptomic and metabolic reprogramming processes were revealed during PRD, with several key genes involved in osmotic stress tolerance identified by using a combination of physiological, transcriptome, and metabolome analyses. Our results demonstrated that PRD induces transcriptomic alteration mainly in the roots but not in the leaves and adjusts several amino-acid and phytohormone metabolic pathways to maintain the balance between growth and stress response compared to the polyethylene glycol (PEG)-treated roots. Integrated analysis of the transcriptome and metabolome associated the co-expression modules with PRD-induced metabolic reprogramming. Several genes encoding the key transcription factors (TFs) were identified in these co-expression modules, highlighting several key TFs, including TCP19, WRI1a, ABF1, ABF2, DERF1, and TZF7, involved in nitrogen metabolism, lipid metabolism, ABA signaling, ethylene signaling, and stress regulation. Thus, our work presents the first evidence that molecular mechanisms other than ABA-mediated drought resistance are involved in PRD-mediated stress tolerance. Overall, our results provide new insights into PRD-mediated osmotic stress tolerance, clarify the molecular regulation induced by PRD, and identify genes useful for further improving water-use efficiency and/or stress tolerance in rice.
Collapse
Affiliation(s)
- Minhua Zhao
- Henry Fok School of Biology and Agriculture, Guangdong Engineering Technology Research Center for Efficient Utilization of Water and Soil Resources in North Region, Shaoguan University, Shaoguan, Guangdong, China
| | - Canghao Du
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Zeng
- Henry Fok School of Biology and Agriculture, Guangdong Engineering Technology Research Center for Efficient Utilization of Water and Soil Resources in North Region, Shaoguan University, Shaoguan, Guangdong, China
| | - Zhihong Gao
- Henry Fok School of Biology and Agriculture, Guangdong Engineering Technology Research Center for Efficient Utilization of Water and Soil Resources in North Region, Shaoguan University, Shaoguan, Guangdong, China
| | - Yongyong Zhu
- Henry Fok School of Biology and Agriculture, Guangdong Engineering Technology Research Center for Efficient Utilization of Water and Soil Resources in North Region, Shaoguan University, Shaoguan, Guangdong, China
| | - Jinfei Wang
- Henry Fok School of Biology and Agriculture, Guangdong Engineering Technology Research Center for Efficient Utilization of Water and Soil Resources in North Region, Shaoguan University, Shaoguan, Guangdong, China
| | - Yupeng Zhang
- Henry Fok School of Biology and Agriculture, Guangdong Engineering Technology Research Center for Efficient Utilization of Water and Soil Resources in North Region, Shaoguan University, Shaoguan, Guangdong, China
| | - Zetao Zhu
- Henry Fok School of Biology and Agriculture, Guangdong Engineering Technology Research Center for Efficient Utilization of Water and Soil Resources in North Region, Shaoguan University, Shaoguan, Guangdong, China
| | - Yaqiong Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyuan Chen
- Henry Fok School of Biology and Agriculture, Guangdong Engineering Technology Research Center for Efficient Utilization of Water and Soil Resources in North Region, Shaoguan University, Shaoguan, Guangdong, China
| |
Collapse
|
4
|
Gorgues L, Li X, Maurel C, Martinière A, Nacry P. Root osmotic sensing from local perception to systemic responses. STRESS BIOLOGY 2022; 2:36. [PMID: 37676549 PMCID: PMC10442022 DOI: 10.1007/s44154-022-00054-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/28/2022] [Indexed: 09/08/2023]
Abstract
Plants face a constantly changing environment, requiring fine tuning of their growth and development. Plants have therefore developed numerous mechanisms to cope with environmental stress conditions. One striking example is root response to water deficit. Upon drought (which causes osmotic stress to cells), plants can among other responses alter locally their root system architecture (hydropatterning) or orientate their root growth to optimize water uptake (hydrotropism). They can also modify their hydraulic properties, metabolism and development coordinately at the whole root and plant levels. Upstream of these developmental and physiological changes, plant roots must perceive and transduce signals for water availability. Here, we review current knowledge on plant osmotic perception and discuss how long distance signaling can play a role in signal integration, leading to the great phenotypic plasticity of roots and plant development.
Collapse
Affiliation(s)
- Lucille Gorgues
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | - Xuelian Li
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | - Christophe Maurel
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| | | | - Philippe Nacry
- IPSiM, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France
| |
Collapse
|
5
|
Haworth M, Marino G, Loreto F, Centritto M. Integrating stomatal physiology and morphology: evolution of stomatal control and development of future crops. Oecologia 2021; 197:867-883. [PMID: 33515295 PMCID: PMC8591009 DOI: 10.1007/s00442-021-04857-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
Stomata are central players in the hydrological and carbon cycles, regulating the uptake of carbon dioxide (CO2) for photosynthesis and transpirative loss of water (H2O) between plants and the atmosphere. The necessity to balance water-loss and CO2-uptake has played a key role in the evolution of plants, and is increasingly important in a hotter and drier world. The conductance of CO2 and water vapour across the leaf surface is determined by epidermal and stomatal morphology (the number, size, and spacing of stomatal pores) and stomatal physiology (the regulation of stomatal pore aperture in response to environmental conditions). The proportion of the epidermis allocated to stomata and the evolution of amphistomaty are linked to the physiological function of stomata. Moreover, the relationship between stomatal density and [CO2] is mediated by physiological stomatal behaviour; species with less responsive stomata to light and [CO2] are most likely to adjust stomatal initiation. These differences in the sensitivity of the stomatal density—[CO2] relationship between species influence the efficacy of the ‘stomatal method’ that is widely used to infer the palaeo-atmospheric [CO2] in which fossil leaves developed. Many studies have investigated stomatal physiology or morphology in isolation, which may result in the loss of the ‘overall picture’ as these traits operate in a coordinated manner to produce distinct mechanisms for stomatal control. Consideration of the interaction between stomatal morphology and physiology is critical to our understanding of plant evolutionary history, plant responses to on-going climate change and the production of more efficient and climate-resilient food and bio-fuel crops.
Collapse
Affiliation(s)
- Matthew Haworth
- National Research Council of Italy, Institute of Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy.
| | - Giovanni Marino
- National Research Council of Italy, Institute of Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences (CNR-DiSBA), National Research Council of Italy, Rome, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Mauro Centritto
- National Research Council of Italy, Institute of Sustainable Plant Protection (CNR-IPSP), Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
- ENI-CNR Water Research Center "Hypatia of Alexandria", Research Center Metapontum Agrobios, Metaponto, Italy
| |
Collapse
|
6
|
Ghafari H, Hassanpour H, Jafari M, Besharat S. Physiological, biochemical and gene-expressional responses to water deficit in apple subjected to partial root-zone drying (PRD). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:333-346. [PMID: 32004917 DOI: 10.1016/j.plaphy.2020.01.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/07/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Water scarcity is one of the major factors limiting apple production. Partial root-zone drying (PRD) is a water-saving irrigation technique necessary to improve the efficiency of irrigation techniques to optimize the amount of fruit produced with the volume of water used. The apple trees cv. Red Delicious were exposed to four treatments, including (1) control with 100% of the crop evapotranspiration (ETc) needs; (2) alternate partial root-zone drying with 75% of the ETc needs (APRD75); (3) fixed partial root-zone drying with 75% of the ETc needs (FPRD75); (4) fixed partial root-zone irrigation with 50% of the ETc needs (FPRD50) in a semiarid region of Iran. Results showed that leaf water potential (Ψ leaf), and chlorophyll were significantly decreased in FPRD50 compared to control and other PRD treatments. APRD75 and FPRD75 treatments significantly enhanced (+) -catechin (+C), epicatechin (EC), chlorogenic acid (CGA), caffeic acid (CA) as well as increased water use efficiency (WUE) (by 30-40% compared to control) without significant reduction of yield. PRD reduced gibberellic acid (GA3) and kinetin, while, increased the abscisic acid (ABA) and salicylic acid (SA) levels. The abiotic stress-responsive transcription factors (TFs) MdoMYB121, MdoMYB155, MdbZIP2, and MdbZIP48 were highly expressed in all PRD treatments. Our results demonstrated that APRD75 and FPRD75 have the potential to stimulate antioxidant defense mechanisms, hormonal signaling pathways, and expression of drought-tolerance TFs to improve WUE while maintaining crop yield. Therefore, APRD75andFPRD75 with water savings as compared to full irrigation might be a suitable strategy for irrigation apple trees under water scarcity.
Collapse
Affiliation(s)
- Hajar Ghafari
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, Urmia University, Urmia, Iran
| | - Hamid Hassanpour
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, Urmia University, Urmia, Iran.
| | - Morad Jafari
- Department of Plant Breeding and Biotechnology, Faculty of Agricultural Sciences, Urmia University, Urmia, Iran
| | - Sina Besharat
- Department of Water Engineering, Faculty of Agricultural Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
7
|
Marino G, Haworth M, Scartazza A, Tognetti R, Centritto M. A Comparison of the Variable J and Carbon-Isotopic Composition of Sugars Methods to Assess Mesophyll Conductance from the Leaf to the Canopy Scale in Drought-Stressed Cherry. Int J Mol Sci 2020; 21:E1222. [PMID: 32059382 PMCID: PMC7072943 DOI: 10.3390/ijms21041222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/27/2023] Open
Abstract
Conductance of CO2 across the mesophyll (Gm) frequently constrains photosynthesis (PN) but cannot be measured directly. We examined Gm of cherry (Prunus avium L.) subjected to severe drought using the variable J method and carbon-isotopic composition (δ13C) of sugars from the centre of the leaf, the leaf petiole sap, and sap from the largest branch. Depending upon the location of the plant from which sugars are sampled, Gm may be estimated over scales ranging from a portion of the leaf to a canopy of leaves. Both the variable J and δ13C of sugars methods showed a reduction in Gm as soil water availability declined. The δ13C of sugars further from the source of their synthesis within the leaf did not correspond as closely to the diffusive and C-isotopic discrimination conditions reflected in the instantaneous measurement of gas exchange and chlorophyll-fluorescence utilised by the variable J approach. Post-photosynthetic fractionation processes and/or the release of sugars from stored carbohydrates (previously fixed under different environmental and C-isotopic discrimination conditions) may reduce the efficacy of the δ13C of sugars from leaf petiole and branch sap in estimating Gm in a short-term study. Consideration should be given to the spatial and temporal scales at which Gm is under observation in any experimental analysis.
Collapse
Affiliation(s)
- Giovanni Marino
- National Research Council of Italy - Institute of Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; (M.H.); (M.C.)
| | - Matthew Haworth
- National Research Council of Italy - Institute of Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; (M.H.); (M.C.)
| | - Andrea Scartazza
- National Research Council of Italy—Research Institute on Terrestrial Ecosystems (CNR–IRET), Via Moruzzi 1, 56124 Pisa, Italy;
| | - Roberto Tognetti
- Department of Agricultural, Environmental and Food Sciences - University of Molise, Via Francesco De Sanctis, 86100 Campobasso, Italy;
- The EFI Project Centre on Mountain Forests (MOUNTFOR), Edmund Mach Foundation, 38010 San Michele all’Adige (TN), Italy
| | - Mauro Centritto
- National Research Council of Italy - Institute of Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; (M.H.); (M.C.)
- CNR-Eni Research Center “Acqua”, Research Center Metapontum Agrobios, 750125 Metaponto, Italy
| |
Collapse
|
8
|
Brunetti C, Gori A, Marino G, Latini P, Sobolev AP, Nardini A, Haworth M, Giovannelli A, Capitani D, Loreto F, Taylor G, Mugnozza GS, Harfouche A, Centritto M. Dynamic changes in ABA content in water-stressed Populus nigra: effects on carbon fixation and soluble carbohydrates. ANNALS OF BOTANY 2019; 124:627-644. [PMID: 30715123 PMCID: PMC6821382 DOI: 10.1093/aob/mcz005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 01/03/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Hydraulic and chemical signals operate in tandem to regulate systemic plant responses to drought. Transport of abscisic acid (ABA) through the xylem and phloem from the root to shoot has been suggested to serve as the main signal of water deficit. There is evidence that ABA and its ABA-glycosyl-ester (ABA-GE) are also formed in leaves and stems through the chloroplastic 2-C-methylerythritol-5-phosphate (MEP) pathway. This study aimed to evaluate how hormonal and hydraulic signals contribute to optimize stomatal (gs), mesophyll (gm) and leaf hydraulic (Kleaf) conductance under well-watered and water-stressed conditions in Populus nigra (black poplar) plants. In addition, we assessed possible relationships between ABA and soluble carbohydrates within the leaf and stem. METHODS Plants were subjected to three water treatments: well-watered (WW), moderate stress (WS1) and severe stress (WS2). This experimental set-up enabled a time-course analysis of the response to water deficit at the physiological [leaf gas exchange, plant water relations, (Kleaf)], biochemical (ABA and its metabolite/catabolite quantification in xylem sap, leaves, wood, bark and roots) and molecular (gene expression of ABA biosynthesis) levels. KEY RESULTS Our results showed strong coordination between gs, gm and Kleaf under water stress, which reduced transpiration and increased intrinsic water use efficiency (WUEint). Analysis of gene expression of 9-cis-epoxycarotenoid dioxygenase (NCED) and ABA content in different tissues showed a general up-regulation of the biosynthesis of this hormone and its finely-tuned catabolism in response to water stress. Significant linear relationships were found between soluble carbohydrates and ABA contents in both leaves and stems, suggesting a putative function for this hormone in carbohydrate mobilization under severe water stress. CONCLUSIONS This study demonstrates the tight regulation of the photosynthetic machinery by levels of ABA in different plants organs on a daily basis in both well-watered and water stress conditions to optimize WUEint and coordinate whole plant acclimation responses to drought.
Collapse
Affiliation(s)
- Cecilia Brunetti
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino (FI), Italy
| | - Antonella Gori
- University of Florence, Department of Agri-Food Production and Environmental Sciences, Florence, Italy
| | - Giovanni Marino
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino (FI), Italy
| | - Paolo Latini
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Anatoly P Sobolev
- Istituto di Metodologie Chimiche, Consiglio Nazionale delle Ricerche, Monterotondo (Roma), Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy
| | - Matthew Haworth
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino (FI), Italy
| | - Alessio Giovannelli
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino (FI), Italy
| | - Donatella Capitani
- Istituto di Metodologie Chimiche, Consiglio Nazionale delle Ricerche, Monterotondo (Roma), Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Gail Taylor
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield Campus, Southampton, UK
- Department of Plant Sciences, University of California-Davis, CA, USA
| | - Giuseppe Scarascia Mugnozza
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Antoine Harfouche
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Mauro Centritto
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino (FI), Italy
| |
Collapse
|
9
|
Parveen S, Rashid MHU, Inafuku M, Iwasaki H, Oku H. Molecular regulatory mechanism of isoprene emission under short-term drought stress in the tropical tree Ficus septica. TREE PHYSIOLOGY 2019; 39:440-453. [PMID: 30445554 DOI: 10.1093/treephys/tpy123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/04/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023]
Abstract
Isoprene is emitted by many plants and is thought to function as an antioxidant under stressful conditions. However, the detailed regulatory mechanism of isoprene emission in relation to the antioxidant system remains unclear. Therefore, in this study, we explored the molecular regulatory mechanism of isoprene emission under short-term drought stress in the tropical tree Ficus septica Burm.f. We found that the soil moisture content gradually decreased from 55% on Day 1 (D1) to 23% (wilting point) on D5 after withholding water for 4 days and then returning to the initial level following re-watering on D6. On D5, drought-stressed plants had more than twofold higher isoprene emission and 90.6% lower photosynthesis rates, 99.5% lower stomatal conductance and 82.3% lower transpiration rates than well-watered control plants. It was also estimated that the isoprene concentration inside the leaf greatly increased on D5 due to the increased isoprene emission rate and reduced stomatal conductance. Among the traits related to the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, which is responsible for isoprene biosynthesis, the isoprene synthase (IspS) protein level was positively correlated with the isoprene emission rate in stressed plants. The transcripts of the antioxidant genes peroxidase 2 (POD2), POD4, copper-zinc superoxide dismutase 2 (Cu-ZnSOD2) and manganese superoxide dismutase 1 (Mn-SOD1) also increased during the drying period, while those of ascorbate peroxidase 1 (APX1) decreased. However, there was only a weak correlation between isoprene emission and antioxidant enzyme gene expression, indicating that the regulation of isoprene biosynthesis is not directly linked to the antioxidant defense network in drought-stressed F. septica. These findings suggest that the post-transcriptional regulation of IspS led to the observed change in isoprene emission rate, which enhanced the quenching of reactive oxygen species (ROS) and, in combination with the increased antioxidant enzyme activity, conferred tolerance to drought stress in this species.
Collapse
Affiliation(s)
- Shahanaz Parveen
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima, Japan
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, Bangladesh
| | - Md Harun-Ur- Rashid
- The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima, Japan
- Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, Bangladesh
| | - Masashi Inafuku
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, Japan
| | - Hironori Iwasaki
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, Japan
| | - Hirosuke Oku
- Tropical Biosphere Research Center, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, Japan
| |
Collapse
|
10
|
Haworth M, Marino G, Brunetti C, Killi D, De Carlo A, Centritto M. The Impact of Heat Stress and Water Deficit on the Photosynthetic and Stomatal Physiology of Olive ( Olea europaea L.)-A Case Study of the 2017 Heat Wave. PLANTS (BASEL, SWITZERLAND) 2018; 7:E76. [PMID: 30241389 PMCID: PMC6313851 DOI: 10.3390/plants7040076] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023]
Abstract
Heat waves are predicted to increase in frequency and duration in many regions as global temperatures rise. These transient increases in temperature above normal average values will have pronounced impacts upon the photosynthetic and stomatal physiology of plants. During the summer of 2017, much of the Mediterranean experienced a severe heat wave. Here, we report photosynthetic leaf gas exchange and chlorophyll fluorescence parameters of olive (Olea europaea cv. Leccino) grown under water deficit and full irrigation over the course of the heat wave as midday temperatures rose over 40 °C in Central Italy. Heat stress induced a decline in the photosynthetic capacity of the olives consistent with reduced ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity. Damage to photosystem II was more apparent in plants subject to water deficit. In contrast to previous studies, higher temperatures induced reductions in stomatal conductance. Heat stress adversely affected the carbon efficiency of olive. The selection of olive varieties with enhanced tolerance to heat stress and/or strategies to mitigate the impact of higher temperatures will become increasingly important in developing sustainable agriculture in the Mediterranean as global temperatures rise.
Collapse
Affiliation(s)
- Matthew Haworth
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano 10, 50019 Firenze, Italy.
| | - Giovanni Marino
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano 10, 50019 Firenze, Italy.
| | - Cecilia Brunetti
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano 10, 50019 Firenze, Italy.
- Department of Agrifood Production and Environmental Sciences (DiSPAA), University of Florence, Viale delle Idee 30, 50019 Firenze, Italy.
| | - Dilek Killi
- Institute of Biometeorology, National Research Council of Italy (CNR-IBIMET), Via Giovanni Caproni 8, 50145 Firenze, Italy.
| | - Anna De Carlo
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano 10, 50019 Firenze, Italy.
| | - Mauro Centritto
- Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano 10, 50019 Firenze, Italy.
| |
Collapse
|
11
|
Ben Abdallah M, Trupiano D, Polzella A, De Zio E, Sassi M, Scaloni A, Zarrouk M, Ben Youssef N, Scippa GS. Unraveling physiological, biochemical and molecular mechanisms involved in olive (Olea europaea L. cv. Chétoui) tolerance to drought and salt stresses. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:83-95. [PMID: 29161576 DOI: 10.1016/j.jplph.2017.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 05/26/2023]
Abstract
Olive (Olea europaea L.) is an economically important crop for the Mediterranean basin, where prolonged drought and soil salinization may occur. This plant has developed a series of mechanisms to tolerate and grow under these adverse conditions. By using an integrated approach, we described in Chétoui olive cultivar the changes in plant growth, oxidative damage and osmolyte accumulation in leaves, in combination with corresponding changes in physiological parameters and proteome. Our results showed, under both stress conditions, a greater growth reduction of the aboveground plant organs than of the underground counterparts. This was associated with a reduction of all photosynthetic parameters, the integrity of photosystem II and leaf nitrogen content, and corresponding representation of photosynthetic apparatus proteins, Calvin-Benson cycle and nitrogen metabolism. The most significant changes were observed under the salinity stress condition. Oxidative stress was also observed, in particular, lipid peroxidation, which could be tentatively balanced by a concomitant photoprotective/antioxidative increase of carotenoid levels. At the same time, various compensative mechanisms to cope with nitrogen source demands and to control plant cell osmolarity were also shown by olive plants under these stresses. Taken together, these findings suggest that the Chétoui variety is moderately sensitive to both drought and salt stress, although it has greater ability to tolerate water depletion.
Collapse
Affiliation(s)
- Mariem Ben Abdallah
- Laboratory of Olive Biotechnology, University Tunis El Manar, Biotechnology Center of Borj-Cedria, 2050 Hammam-Lif, Tunisia
| | - Dalila Trupiano
- Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy.
| | - Antonella Polzella
- Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy
| | - Elena De Zio
- Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy
| | - Mauro Sassi
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Napoli, Italy
| | - Mokhtar Zarrouk
- Laboratory of Olive Biotechnology, University Tunis El Manar, Biotechnology Center of Borj-Cedria, 2050 Hammam-Lif, Tunisia
| | - Nabil Ben Youssef
- Laboratory of Olive Biotechnology, University Tunis El Manar, Biotechnology Center of Borj-Cedria, 2050 Hammam-Lif, Tunisia; Department of Biology, College of Sciences, University of Dammam, 31451 Dammam, Saudi Arabia
| | | |
Collapse
|
12
|
Chakhchar A, Haworth M, El Modafar C, Lauteri M, Mattioni C, Wahbi S, Centritto M. An Assessment of Genetic Diversity and Drought Tolerance in Argan Tree ( Argania spinosa) Populations: Potential for the Development of Improved Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:276. [PMID: 28303146 PMCID: PMC5332407 DOI: 10.3389/fpls.2017.00276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/14/2017] [Indexed: 05/10/2023]
Abstract
The argan tree (Argania spinosa) occurs in a restricted area of Southwestern Morocco characterized by low water availability and high evapotranspirative demand. Despite the adaptation of the argan tree to drought stress, the extent of the argan forest has declined markedly due to increased aridity, land use changes and the expansion of olive cultivation. The oil of the argan seed is used for cooking and as the basis for numerous cosmetics. The identification of argan tree varieties with enhanced drought tolerance may minimize the economic losses associated with the decline of the argan forest and constrain the spread of desertification. In this study we collected argan ecotypes from four contrasting habitats and grew them under identical controlled environment conditions to investigate their response to drought. Leaf gas exchange analysis indicated that the argan ecotypes showed a high degree of adaptation to drought stress, maintaining photosynthetic activity at low levels of foliar water content and co-ordinating photosynthesis, stomatal behavior and metabolism. The stomata of the argan trees were highly sensitive to increased leaf to air vapor pressure deficit, representing an adaptation to growth in an arid environment where potential evapotranspiration is high. However, despite originating in contrasting environments, the four argan ecotypes exhibited similar gas exchange characteristics under both fully irrigated and water deficit conditions. Population genetic analyses using microsatellite markers indicated a high degree of relatedness between the four ecotypes; indicative of both artificial selection and the transport of ecotypes between different provinces throughout centuries of management of the argan forest. The majority of genetic variation across the four populations (71%) was observed between individuals, suggesting that improvement of argan is possible. Phenotypic screening of physiological responses to drought may prove effective in identifying individuals and then developing varieties with enhanced drought tolerance to enable the maintenance of argan production as climate change results in more frequent and severe drought events in Northern Africa.
Collapse
Affiliation(s)
- Abdelghani Chakhchar
- Laboratoire de Biotechnologie Valorisation et Protection des Agroressources, Faculté des Sciences et Techniques Guéliz, Université Cadi AyyadMarrakech, Morocco
| | - Matthew Haworth
- Tree and Timber Institute, National Research Council – Istituto per la Valorizzazione del Legno e delle Specie ArboreeFlorence, Italy
| | - Cherkaoui El Modafar
- Laboratoire de Biotechnologie Valorisation et Protection des Agroressources, Faculté des Sciences et Techniques Guéliz, Université Cadi AyyadMarrakech, Morocco
| | - Marco Lauteri
- Institute of Agro-Environmental and Forest Biology, National Research Council – Istituto di Biologia Agroambientale e ForestalePorano, Italy
| | - Claudia Mattioni
- Institute of Agro-Environmental and Forest Biology, National Research Council – Istituto di Biologia Agroambientale e ForestalePorano, Italy
| | - Said Wahbi
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences Semlalia, Université Cadi AyyadMarrakech, Morocco
| | - Mauro Centritto
- Tree and Timber Institute, National Research Council – Istituto per la Valorizzazione del Legno e delle Specie ArboreeFlorence, Italy
| |
Collapse
|
13
|
Haworth M, Catola S, Marino G, Brunetti C, Michelozzi M, Riggi E, Avola G, Cosentino SL, Loreto F, Centritto M. Moderate Drought Stress Induces Increased Foliar Dimethylsulphoniopropionate (DMSP) Concentration and Isoprene Emission in Two Contrasting Ecotypes of Arundo donax. FRONTIERS IN PLANT SCIENCE 2017; 8:1016. [PMID: 28659959 PMCID: PMC5468454 DOI: 10.3389/fpls.2017.01016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/26/2017] [Indexed: 05/14/2023]
Abstract
The function of dimethylsulphoniopropionate (DMSP) in plants is unclear. It has been proposed as an antioxidant, osmolyte and overflow for excess energy under stress conditions. The formation of DMSP is part of the methionine (MET) pathway that is involved in plant stress responses. We used a new analytical approach to accurately quantify the changes in DMSP concentration that occurred in two ecotypes of the biomass crop Arundo donax subject to moderate drought stress under field conditions. The ecotypes of A. donax were from a hot semi-arid habitat in Morocco and a warm-humid environment in Central Italy. The Moroccan ecotype showed more pronounced reductions in photosynthesis, stomatal conductance and photochemical electron transport than the Italian ecotype. An increase in isoprene emission occurred in both ecotypes alongside enhanced foliar concentrations of DMSP, indicative of a protective function of these two metabolites in the amelioration of the deleterious effects of excess energy and oxidative stress. This is consistent with the modification of carbon within the methyl-erythritol and MET pathways responsible for increased synthesis of isoprene and DMSP under moderate drought. The results of this study indicate that DMSP is an important adaptive component of the stress response regulated via the MET pathway in A. donax. DMSP is likely a multifunctional molecule playing a number of roles in the response of A. donax to reduced water availability.
Collapse
Affiliation(s)
- Matthew Haworth
- Tree and Timber Institute, National Research CouncilSesto Fiorentino, Italy
| | - Stefano Catola
- Tree and Timber Institute, National Research CouncilSesto Fiorentino, Italy
| | - Giovanni Marino
- Tree and Timber Institute, National Research CouncilSesto Fiorentino, Italy
| | - Cecilia Brunetti
- Tree and Timber Institute, National Research CouncilSesto Fiorentino, Italy
- Department of Agrifood Production and Environmental Sciences, University of FlorenceSesto Fiorentino, Italy
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research CouncilSesto Fiorentino, Italy
| | - Ezio Riggi
- Tree and Timber Institute, National Research CouncilSesto Fiorentino, Italy
| | - Giovanni Avola
- Tree and Timber Institute, National Research CouncilSesto Fiorentino, Italy
| | - Salvatore L. Cosentino
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di CataniaCatania, Italy
| | - Francesco Loreto
- Department of Biology, Agriculture and Food Sciences, National Research CouncilRome, Italy
| | - Mauro Centritto
- Tree and Timber Institute, National Research CouncilSesto Fiorentino, Italy
- *Correspondence: Mauro Centritto,
| |
Collapse
|