1
|
Matsushita D, Toyoda Y, Lee Y, Aoi M, Matsuo H, Takada T, Nishizawa T. Structural basis of urate transport by glucose transporter 9. Cell Rep 2025; 44:115514. [PMID: 40186864 DOI: 10.1016/j.celrep.2025.115514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/17/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025] Open
Abstract
Glucose transporter 9 (GLUT9) is a critical urate transporter involved in renal reabsorption, playing a pivotal role in regulating physiological urate levels and representing a potential therapeutic target for gout. Despite such clinical significance, the structural basis of urate recognition and transport by GLUT9 remains elusive. Here, we present the cryoelectron microscopy (cryo-EM) structures of GLUT9 in the inward-open conformation in both apo and urate-bound states. Urate binds in a cleft between the N-terminal and C-terminal domains, interacting via hydrogen bonds and hydrophobic interactions. Structural comparison with sugar-transporting GLUTs highlights unique amino acid compositions in the substrate recognition pocket of GLUT9. Functional and mutational studies directly measuring GLUT9-mediated urate uptake further demonstrate the cooperative roles of multiple residues in urate recognition. Our findings elucidate the structural basis of urate transport by GLUT9 and provide valuable insights for the development of uricosuric drugs targeting GLUT9.
Collapse
Affiliation(s)
- Daiki Matsushita
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan; Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Yongchan Lee
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Maeda Aoi
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Tomohiro Nishizawa
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan.
| |
Collapse
|
2
|
Toyoda Y, Matsuo H, Takada T. Functional characterization of variants in human ABCC11, an axillary osmidrosis risk factor. Hum Cell 2024; 37:1070-1079. [PMID: 38750405 DOI: 10.1007/s13577-024-01074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/03/2024] [Indexed: 06/24/2024]
Abstract
Human ATP-binding cassette transporter C11 (ABCC11) is a membrane protein exhibiting ATP-dependent transport activity for a variety of lipophilic anions including endogenous substances and xenobiotics such as anti-cancer agents. Accumulating evidence indicates that ABCC11 wild type is responsible for the high-secretion phenotypes in human apocrine glands including wet type of earwax and the risk of axillary osmidrosis. Also, a less-functional variant of ABCC11 was reportedly associated with a risk for drug-induced toxicity in humans. Thus, functional change in ABCC11 may affect individual's constitution and drug toxicity, which led us to reason that functional validation of genetic variations in ABCC11 should be of importance. Therefore, in addition to p.G180R (a well-characterized non-functional variant of ABCC11), we studied cellular expression and function of 10 variants of ABCC11. In this study, ABCC11 function was evaluated as an ATP-dependent transport of radio labeled-dehydroepiandrosterone sulfate using ABCC11-expressing plasma membrane vesicles. Except for p.G180R, other 10 variants were maturated as an N-linked glycoprotein and expressed on the plasma membrane. We found that six variants impaired the net cellular function of ABCC11. Among them, p.R630W was most influential. Including this identification of a significantly-dysfunctional variant, our findings will extend our understanding of genetic variations and biochemical features of ABCC11 protein.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
3
|
Toyoda Y, Miyata H, Shigesawa R, Matsuo H, Suzuki H, Takada T. SVCT2/SLC23A2 is a sodium-dependent urate transporter: functional properties and practical application. J Biol Chem 2023; 299:104976. [PMID: 37390985 PMCID: PMC10374969 DOI: 10.1016/j.jbc.2023.104976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
Urate transporters play a pivotal role in urate handling in the human body, but the urate transporters identified to date do not account for all known molecular processes of urate handling, suggesting the presence of latent machineries. We recently showed that a urate transporter SLC2A12 is also a physiologically important exporter of ascorbate (the main form of vitamin C in the body) that would cooperate with an ascorbate importer, sodium-dependent vitamin C transporter 2 (SVCT2). Based on the dual functions of SLC2A12 and cooperativity between SLC2A12 and SVCT2, we hypothesized that SVCT2 might be able to transport urate. To test this proposal, we conducted cell-based analyses using SVCT2-expressing mammalian cells. The results demonstrated that SVCT2 is a novel urate transporter. Vitamin C inhibited SVCT2-mediated urate transport with a half-maximal inhibitory concentration of 36.59 μM, suggesting that the urate transport activity may be sensitive to physiological ascorbate levels in blood. Similar results were obtained for mouse Svct2. Further, using SVCT2 as a sodium-dependent urate importer, we established a cell-based urate efflux assay that will be useful for identification of other novel urate exporters as well as functional characterization of nonsynonymous variants of already-identified urate exporters including ATP-binding cassette transporter G2. While more studies will be needed to elucidate the physiological impact of SVCT2-mediated urate transport, our findings deepen understanding of urate transport machineries.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Miyata
- Department of Pharmacy, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Ryuichiro Shigesawa
- Department of Pharmacy, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Vitamin C transporter SVCT1 serves a physiological role as a urate importer: functional analyses and in vivo investigations. Pflugers Arch 2023; 475:489-504. [PMID: 36749388 PMCID: PMC10011331 DOI: 10.1007/s00424-023-02792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
Uric acid, the end product of purine metabolism in humans, is crucial because of its anti-oxidant activity and a causal relationship with hyperuricemia and gout. Several physiologically important urate transporters regulate this water-soluble metabolite in the human body; however, the existence of latent transporters has been suggested in the literature. We focused on the Escherichia coli urate transporter YgfU, a nucleobase-ascorbate transporter (NAT) family member, to address this issue. Only SLC23A proteins are members of the NAT family in humans. Based on the amino acid sequence similarity to YgfU, we hypothesized that SLC23A1, also known as sodium-dependent vitamin C transporter 1 (SVCT1), might be a urate transporter. First, we identified human SVCT1 and mouse Svct1 as sodium-dependent low-affinity/high-capacity urate transporters using mammalian cell-based transport assays. Next, using the CRISPR-Cas9 system followed by the crossing of mice, we generated Svct1 knockout mice lacking both urate transporter 1 and uricase. In the hyperuricemic mice model, serum urate levels were lower than controls, suggesting that Svct1 disruption could reduce serum urate. Given that Svct1 physiologically functions as a renal vitamin C re-absorber, it could also be involved in urate re-uptake from urine, though additional studies are required to obtain deeper insights into the underlying mechanisms. Our findings regarding the dual-substrate specificity of SVCT1 expand the understanding of urate handling systems and functional evolutionary changes in NAT family proteins.
Collapse
|
5
|
Toyoda Y, Cho SK, Tasic V, Pavelcová K, Bohatá J, Suzuki H, David VA, Yoon J, Pallaiova A, Šaligová J, Nousome D, Cachau R, Winkler CA, Takada T, Stibůrková B. Identification of a dysfunctional exon-skipping splice variant in GLUT9/ SLC2A9 causal for renal hypouricemia type 2. Front Genet 2023; 13:1048330. [PMID: 36733941 PMCID: PMC9887137 DOI: 10.3389/fgene.2022.1048330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Renal hypouricemia (RHUC) is a pathological condition characterized by extremely low serum urate and overexcretion of urate in the kidney; this inheritable disorder is classified into type 1 and type 2 based on causative genes encoding physiologically-important urate transporters, URAT1 and GLUT9, respectively; however, research on RHUC type 2 is still behind type 1. We herein describe a typical familial case of RHUC type 2 found in a Slovak family with severe hypouricemia and hyperuricosuria. Via clinico-genetic analyses including whole exome sequencing and in vitro functional assays, we identified an intronic GLUT9 variant, c.1419+1G>A, as the causal mutation that could lead the expression of p.Gly431GlufsTer28, a functionally-null variant resulting from exon 11 skipping. The causal relationship was also confirmed in another unrelated Macedonian family with mild hypouricemia. Accordingly, non-coding regions should be also kept in mind during genetic diagnosis for hypouricemia. Our findings provide a better pathogenic understanding of RHUC and pathophysiological importance of GLUT9.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Sung Kweon Cho
- Molecular Genetics Epidemiology Section, Basic Research Laboratory, National Cancer Institute and Frederick National Laboratory for Cancer Research, Frederick, MD, United States,Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea
| | - Velibor Tasic
- Faculty of Medicine, University Ss. Cyril and Methodius, Skopje, North Macedonia
| | | | | | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Victor A. David
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Jaeho Yoon
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | | | - Jana Šaligová
- Metabolic Clinic, Children’s Faculty Hospital, Košice, Slovakia
| | - Darryl Nousome
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Raul Cachau
- Integrated Data Science Section, Research Technologies Branch, National Institute of Allergies and Infectious Diseases, Bethesda, MD, United States
| | - Cheryl A. Winkler
- Molecular Genetics Epidemiology Section, Basic Research Laboratory, National Cancer Institute and Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Blanka Stibůrková
- Institute of Rheumatology, Prague, Czechia,Department of Rheumatology, First Faculty of Medicine, Charles University, Prague, Czechia,Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia,*Correspondence: Blanka Stibůrková,
| |
Collapse
|
6
|
Objective Odor Assessment in Patients with Osmidrosis. Plast Reconstr Surg Glob Open 2022; 10:e4622. [PMID: 36299814 PMCID: PMC9592423 DOI: 10.1097/gox.0000000000004622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
UNLABELLED No standards for the assessment of axillary odor intensity and the effects of therapy for osmidrosis have been established. This study presents an objective method for assessing odor severity in patients with osmidrosis and investigates the volatile odorants and skin flora. METHODS The odor intensity was measured pre- and postoperatively using an industrial odor sensor in 79 patients with osmidrosis. Cultures of the axillary skin were obtained during skin flap surgery. Volatile odorants of the patients were assessed using an odor-sensor gas chromatograph mass spectrometer, and samples collected from clothing worn by the patients before and after surgery. The skin pH of the axilla was measured before and after surgery. The locations of odorants and bacteria in the skin were observed using electron microscopy. RESULTS The mean patient age was 28.8 years, and the male-to-female ratio was 4:3. The odor significantly decreased from 52.6 preoperatively to 20.5 postoperatively (P < 0.001). The bacterial flora on the skin included mostly Staphylococcus. Multiple causative substances (volatile proteins) were identified on gas chromatography. The mean preoperative axillary skin pH was 6.21, which was significantly different than that of patients without osmidrosis (5.92; P < 0.01). CONCLUSIONS An odor sensor accurately assesses odor intensity in patients with osmidrosis. The neutralization of axillary pH may promote the production of odorants by creating the optimal pH for bacterial growth. Odor sensor and pH values can be used pre- and postoperatively as objective assessment measurements for patients with osmidrosis.
Collapse
|
7
|
Toyoda Y, Kawamura Y, Nakayama A, Morimoto K, Shimizu S, Tanahashi Y, Tamura T, Kondo T, Kato Y, Ichida K, Suzuki H, Shinomiya N, Kobayashi Y, Takada T, Matsuo H. OAT10/SLC22A13 Acts as a Renal Urate Re-Absorber: Clinico-Genetic and Functional Analyses With Pharmacological Impacts. Front Pharmacol 2022; 13:842717. [PMID: 35462902 PMCID: PMC9019507 DOI: 10.3389/fphar.2022.842717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/09/2022] [Indexed: 01/23/2023] Open
Abstract
Dysfunctional missense variant of organic anion transporter 10 (OAT10/SLC22A13), rs117371763 (c.1129C>T; p.R377C), is associated with a lower susceptibility to gout. OAT10 is a urate transporter; however, its physiological role in urate handling remains unclear. We hypothesized that OAT10 could be a renal urate re-absorber that will be a new molecular target of urate-lowering therapy like urate transporter 1 (URAT1, a physiologically-important well-known renal urate re-absorber) and aimed to examine the effect of OAT10 dysfunction on renal urate handling. For this purpose, we conducted quantitative trait locus analyses of serum urate and fractional excretion of uric acid (FEUA) using samples obtained from 4,521 Japanese males. Moreover, we performed immunohistochemical and functional analyses to assess the molecular properties of OAT10 as a renal urate transporter and evaluated its potential interaction with urate-lowering drugs. Clinico-genetic analyses revealed that carriers with the dysfunctional OAT10 variant exhibited significantly lower serum urate levels and higher FEUA values than the non-carriers, indicating that dysfunction of OAT10 increases renal urate excretion. Given the results of functional assays and immunohistochemical analysis demonstrating the expression of human OAT10 in the apical side of renal proximal tubular cells, our data indicate that OAT10 is involved in the renal urate reabsorption in renal proximal tubules from urine. Additionally, we found that renal OAT10 inhibition might be involved in the urate-lowering effect of losartan and lesinurad which exhibit uricosuric effects; indeed, losartan, an approved drug, inhibits OAT10 more strongly than URAT1. Accordingly, OAT10 can be a novel potential molecular target for urate-lowering therapy.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Keito Morimoto
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Yuki Tanahashi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Takaaki Kondo
- Program in Radiological and Medical Laboratory Sciences, Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yasufumi Kato
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
| | - Yasushi Kobayashi
- Department of Anatomy and Neurobiology, National Defense Medical College, Saitama, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
- *Correspondence: Tappei Takada, ; Hirotaka Matsuo,
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama, Japan
- *Correspondence: Tappei Takada, ; Hirotaka Matsuo,
| |
Collapse
|
8
|
Miyata H, Toyoda Y, Takada T, Hiragi T, Kubota Y, Shigesawa R, Koyama R, Ikegaya Y, Suzuki H. Identification of an exporter that regulates vitamin C supply from blood to the brain. iScience 2022; 25:103642. [PMID: 35106468 PMCID: PMC8786643 DOI: 10.1016/j.isci.2021.103642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/12/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
Vitamin C (VC) distribution in our body requires VC transporters. However, mammalian VC exporters are yet to be identified. Herein, to unravel this long-standing mystery, we focused on the pathways whereby VC moves from blood to the brain, which should require a VC entrance and exit system composed of an importer and a latent exporter. Via cell-based transport analyses of VC efflux and using knockout mice generated via the CRISPR-Cas9 system, we identified GLUT12/SLC2A12 as a physiologically important VC efflux protein expressed in the choroid plexus; Glut12/Slc2a12 knockout halved the cerebral VC levels, markedly increased VC accumulation in the choroid plexus, and reduced the cerebrospinal fluid VC levels. These findings facilitate our understanding of VC regulation and the physiological impact of VC in our body. A long-standing mystery in vitamin C handling in mammalians was uncovered GLUT12 was identified as a physiologically important vitamin C efflux protein—VCEP GLUT12 is expressed in the choroid plexus and acts as a vitamin C exporter Glut12 knockout halved the cerebral vitamin C levels in mice
Collapse
Affiliation(s)
- Hiroshi Miyata
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toshimitsu Hiragi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yu Kubota
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryuichiro Shigesawa
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
9
|
Identification of Two Dysfunctional Variants in the ABCG2 Urate Transporter Associated with Pediatric-Onset of Familial Hyperuricemia and Early-Onset Gout. Int J Mol Sci 2021; 22:ijms22041935. [PMID: 33669292 PMCID: PMC7920026 DOI: 10.3390/ijms22041935] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
The ABCG2 gene is a well-established hyperuricemia/gout risk locus encoding a urate transporter that plays a crucial role in renal and intestinal urate excretion. Hitherto, p.Q141K—a common variant of ABCG2 exhibiting approximately one half the cellular function compared to the wild-type—has been reportedly associated with early-onset gout in some populations. However, compared with adult-onset gout, little clinical information is available regarding the association of other uricemia-associated genetic variations with early-onset gout; the latent involvement of ABCG2 in the development of this disease requires further evidence. We describe a representative case of familial pediatric-onset hyperuricemia and early-onset gout associated with a dysfunctional ABCG2, i.e., a clinical history of three generations of one Czech family with biochemical and molecular genetic findings. Hyperuricemia was defined as serum uric acid (SUA) concentrations 420 μmol/L for men or 360 μmol/L for women and children under 15 years on two measurements, performed at least four weeks apart. The proband was a 12-year-old girl of Roma ethnicity, whose SUA concentrations were 397–405 µmol/L. Sequencing analyses focusing on the coding region of ABCG2 identified two rare mutations—c.393G>T (p.M131I) and c.706C>T (p.R236X). Segregation analysis revealed a plausible link between these mutations and hyperuricemia and the gout phenotype in family relatives. Functional studies revealed that p.M131I and p.R236X were functionally deficient and null, respectively. Our findings illustrate why genetic factors affecting ABCG2 function should be routinely considered in clinical practice as part of a hyperuricemia/gout diagnosis, especially in pediatric-onset patients with a strong family history.
Collapse
|
10
|
Saito H, Toyoda Y, Hirata H, Ota-Kontani A, Tsuchiya Y, Takada T, Suzuki H. Soy Isoflavone Genistein Inhibits an Axillary Osmidrosis Risk Factor ABCC11: In Vitro Screening and Fractional Approach for ABCC11-Inhibitory Activities in Plant Extracts and Dietary Flavonoids. Nutrients 2020; 12:E2452. [PMID: 32824087 PMCID: PMC7468911 DOI: 10.3390/nu12082452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Axillary osmidrosis (AO) is a common chronic skin condition characterized by unpleasant body odors emanating from the armpits, and its aetiology is not fully understood. AO can seriously impair the psychosocial well-being of the affected individuals; however, no causal therapy has been established for it other than surgical treatment. Recent studies have revealed that human ATP-binding cassette transporter C11 (ABCC11) is an AO risk factor when it is expressed in the axillary apocrine glands-the sources of the offensive odors. Hence, identifying safe ways to inhibit ABCC11 may offer a breakthrough in treating AO. We herein screened for ABCC11-inhibitory activities in 34 natural products derived from plants cultivated for human consumption using an in vitro assay system to measure the ABCC11-mediated transport of radiolabeled dehydroepiandrosterone sulfate (DHEA-S-an ABCC11 substrate). The water extract of soybean (Glycine max) was found to exhibit the strongest transport inhibition. From this extract, via a fractionation approach, we successfully isolated and identified genistein, a soy isoflavone, as a novel ABCC11 inhibitor with a half-maximal inhibitory concentration value of 61.5 μM. Furthermore, we examined the effects of other dietary flavonoids on the ABCC11-mediated DHEA-S transport to uncover the effects of these phytochemicals on ABCC11 function. While further human studies are needed, our findings here about the natural compounds will help develop a non-surgical therapy for AO.
Collapse
Affiliation(s)
- Hiroki Saito
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| | - Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| | - Hiroshi Hirata
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
| | - Ami Ota-Kontani
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
| | - Youichi Tsuchiya
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| |
Collapse
|
11
|
Toyoda Y, Takada T, Saito H, Hirata H, Ota-Kontani A, Kobayashi N, Tsuchiya Y, Suzuki H. Inhibitory effect of Citrus flavonoids on the in vitro transport activity of human urate transporter 1 (URAT1/SLC22A12), a renal re-absorber of urate. NPJ Sci Food 2020; 4:3. [PMID: 32047858 PMCID: PMC7002704 DOI: 10.1038/s41538-020-0063-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/13/2020] [Indexed: 02/02/2023] Open
Abstract
As hyperuricemia is a cause of urate-related diseases such as gout, the anti-hyperuricemic and/or uricosuric activity of food ingredients is receiving increased attention. Here, we examined the inhibitory activities of seven Citrus flavonoids against URAT1, a renal transporter involved in urate re-uptake from urine. We found that naringenin and nobiletin strongly inhibited URAT1, and may therefore serve as an anti-hyperuricemic food ingredient that can reduce the risk of urate-related diseases.
Collapse
Affiliation(s)
- Yu Toyoda
- 1Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Tappei Takada
- 1Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Hiroki Saito
- 1Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan.,2Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD., 10 Okatome, Yaizu, Shizuoka, 425-0013 Japan
| | - Hiroshi Hirata
- 2Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD., 10 Okatome, Yaizu, Shizuoka, 425-0013 Japan
| | - Ami Ota-Kontani
- 2Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD., 10 Okatome, Yaizu, Shizuoka, 425-0013 Japan
| | - Naoyuki Kobayashi
- 2Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD., 10 Okatome, Yaizu, Shizuoka, 425-0013 Japan
| | - Youichi Tsuchiya
- 2Frontier Laboratories for Value Creation, SAPPORO HOLDINGS LTD., 10 Okatome, Yaizu, Shizuoka, 425-0013 Japan
| | - Hiroshi Suzuki
- 1Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
12
|
Toyoda Y, Takada T, Umezawa M, Tomura F, Yamanashi Y, Takeda K, Suzuki H. Identification of hepatic NPC1L1 as an NAFLD risk factor evidenced by ezetimibe-mediated steatosis prevention and recovery. FASEB Bioadv 2019; 1:283-295. [PMID: 32123832 PMCID: PMC6996404 DOI: 10.1096/fba.2018-00044] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a serious global public health concern. Nevertheless, there are no specific medications for treating the associated abnormal accumulation of hepatic lipids such as cholesterol and triglycerides. While seminal findings suggest a link between hepatic cholesterol accumulation and NAFLD progression, the molecular bases of these associations are not well understood. Here, we experimentally demonstrate that hepatic Niemann-Pick C1-Like 1 (NPC1L1), a cholesterol re-absorber from bile to the liver, can cause steatosis, an early stage of NAFLD using genetically engineered L1-Tg mice characterized by hepatic expression of NPC1L1 under the control of ApoE promoter. Contrary to wild-type mice that have little expression of hepatic Npc1l1, the livers of L1-Tg mice fed a high-fat diet became steatotic within only a few weeks. Moreover, hepatic NPC1L1-mediated steatosis was not only prevented, but completely rescued, by orally administered ezetimibe, a well-used lipid-lowering drug on the global market, even under high-fat diet feedings. These results indicate that hepatic NPC1L1 is an NAFLD-exacerbating factor amendable to therapeutic intervention and would extend our understanding of the vital role of cholesterol uptake from bile in the development of NAFLD. Furthermore, administration of a TLR4 inhibitor also prevented the hepatic NPC1L1-mediated steatosis formation, suggesting a latent link between physiological roles of hepatic NPC1L1 and regulation of innate immune system. Our results revealed that hepatic NPC1L1 is a novel NAFLD risk factor contributing to steatosis formation that is rescued by ezetimibe; additionally, our findings uncover feasible opportunities for repositioning drugs to treat NAFLD in the near future.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of PharmacyThe University of Tokyo HospitalTokyoJapan
| | - Tappei Takada
- Department of PharmacyThe University of Tokyo HospitalTokyoJapan
| | - Masakazu Umezawa
- Research Institute for Science and TechnologyOrganization for Research Advancement, Tokyo University of ScienceChibaJapan
| | - Fumiya Tomura
- Department of PharmacyThe University of Tokyo HospitalTokyoJapan
| | | | - Ken Takeda
- Research Institute for Science and TechnologyOrganization for Research Advancement, Tokyo University of ScienceChibaJapan
- Present address:
Faculty of Pharmaceutical SciencesSanyo‐Onoda City UniversityYamaguchiJapan
| | - Hiroshi Suzuki
- Department of PharmacyThe University of Tokyo HospitalTokyoJapan
| |
Collapse
|
13
|
Toyoda Y, Mančíková A, Krylov V, Morimoto K, Pavelcová K, Bohatá J, Pavelka K, Pavlíková M, Suzuki H, Matsuo H, Takada T, Stiburkova B. Functional Characterization of Clinically-Relevant Rare Variants in ABCG2 Identified in a Gout and Hyperuricemia Cohort. Cells 2019; 8:E363. [PMID: 31003562 PMCID: PMC6523779 DOI: 10.3390/cells8040363] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
ATP-binding cassette subfamily G member 2 (ABCG2) is a physiologically important urate transporter. Accumulating evidence demonstrates that congenital dysfunction of ABCG2 is an important genetic risk factor in gout and hyperuricemia; recent studies suggest the clinical significance of both common and rare variants of ABCG2. However, the effects of rare variants of ABCG2 on the risk of such diseases are not fully understood. Here, using a cohort of 250 Czech individuals of European descent (68 primary hyperuricemia patients and 182 primary gout patients), we examined exonic non-synonymous variants of ABCG2. Based on the results of direct sequencing and database information, we experimentally characterized nine rare variants of ABCG2: R147W (rs372192400), T153M (rs753759474), F373C (rs752626614), T421A (rs199854112), T434M (rs769734146), S476P (not annotated), S572R (rs200894058), D620N (rs34783571), and a three-base deletion K360del (rs750972998). Functional analyses of these rare variants revealed a deficiency in the plasma membrane localization of R147W and S572R, lower levels of cellular proteins of T153M and F373C, and null urate uptake function of T434M and S476P. Accordingly, we newly identified six rare variants of ABCG2 that showed lower or null function. Our findings contribute to deepening the understanding of ABCG2-related gout/hyperuricemia risk and the biochemical characteristics of the ABCG2 protein.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan.
| | - Andrea Mančíková
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic.
| | - Vladimír Krylov
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague 2, Czech Republic.
| | - Keito Morimoto
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan.
| | | | - Jana Bohatá
- Institute of Rheumatology, 128 50 Prague 2, Czech Republic.
| | - Karel Pavelka
- Institute of Rheumatology, 128 50 Prague 2, Czech Republic.
| | - Markéta Pavlíková
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, 121 16 Prague 2, Czech Republic.
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan.
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Saitama 359-8513, Japan.
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo 113-8655, Japan.
| | - Blanka Stiburkova
- Institute of Rheumatology, 128 50 Prague 2, Czech Republic.
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague 2, Czech Republic.
| |
Collapse
|
14
|
Endo C, Johnson TA, Morino R, Nakazono K, Kamitsuji S, Akita M, Kawajiri M, Yamasaki T, Kami A, Hoshi Y, Tada A, Ishikawa K, Hine M, Kobayashi M, Kurume N, Tsunemi Y, Kamatani N, Kawashima M. Genome-wide association study in Japanese females identifies fifteen novel skin-related trait associations. Sci Rep 2018; 8:8974. [PMID: 29895819 PMCID: PMC5997657 DOI: 10.1038/s41598-018-27145-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Skin trait variation impacts quality-of-life, especially for females from the viewpoint of beauty. To investigate genetic variation related to these traits, we conducted a GWAS of various skin phenotypes in 11,311 Japanese women and identified associations for age-spots, freckles, double eyelids, straight/curly hair, eyebrow thickness, hairiness, and sweating. In silico annotation with RoadMap Epigenomics epigenetic state maps and colocalization analysis of GWAS and GTEx Project eQTL signals provided information about tissue specificity, candidate causal variants, and functional target genes. Novel signals for skin-spot traits neighboured AKAP1/MSI2 (rs17833789; P = 2.2 × 10-9), BNC2 (rs10810635; P = 2.1 × 10-22), HSPA12A (rs12259842; P = 7.1 × 10-11), PPARGC1B (rs251468; P = 1.3 × 10-21), and RAB11FIP2 (rs10444039; P = 5.6 × 10-21). HSPA12A SNPs were the only protein-coding gene eQTLs identified across skin-spot loci. Double edged eyelid analysis identified that a signal around EMX2 (rs12570134; P = 8.2 × 10-15) was also associated with expression of EMX2 and the antisense-RNA gene EMX2OS in brain putamen basal ganglia tissue. A known hair morphology signal in EDAR was associated with both eyebrow thickness (rs3827760; P = 1.7 × 10-9) and straight/curly hair (rs260643; P = 1.6 × 10-103). Excessive hairiness signals' top SNPs were also eQTLs for TBX15 (rs984225; P = 1.6 × 10-8), BCL2 (rs7226979; P = 7.3 × 10-11), and GCC2 and LIMS1 (rs6542772; P = 2.2 × 10-9). For excessive sweating, top variants in two signals in chr2:28.82-29.05 Mb (rs56089836; P = 1.7 × 10-11) were eQTLs for either PPP1CB or PLB1, while a top chr16:48.26-48.45 Mb locus SNP was a known ABCC11 missense variant (rs6500380; P = 6.8 × 10-10). In total, we identified twelve loci containing sixteen association signals, of which fifteen were novel. These findings will help dermatologic researchers better understand the genetic underpinnings of skin-related phenotypic variation in human populations.
Collapse
Affiliation(s)
- Chihiro Endo
- Department of Dermatology, School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | | | - Ryoko Morino
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | | | | | | | - Tatsuya Yamasaki
- Life Science Group, Healthcare Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Azusa Kami
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Yuria Hoshi
- Life Science Group, Healthcare Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Asami Tada
- EverGene Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | | | - Maaya Hine
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Miki Kobayashi
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Nami Kurume
- LunaLuna Division, Department of Healthcare Business, MTI Ltd., Shinjuku-ku, Tokyo, 163-1435, Japan
| | - Yuichiro Tsunemi
- Department of Dermatology, School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| | | | - Makoto Kawashima
- Department of Dermatology, School of Medicine, Tokyo Women's Medical University, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
15
|
Spontaneous Production of Glutathione-Conjugated Forms of 1,2-Dichloropropane: Comparative Study on Metabolic Activation Processes of Dihaloalkanes Associated with Occupational Cholangiocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9736836. [PMID: 28555163 PMCID: PMC5438856 DOI: 10.1155/2017/9736836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 12/18/2022]
Abstract
Recently, epidemiological studies revealed a positive relationship between an outbreak of occupational cholangiocarcinoma and exposure to organic solvents containing 1,2-dichloropropane (1,2-DCP). In 1,2-DCP-administered animal models, we previously found biliary excretion of potentially oncogenic metabolites consisting of glutathione- (GSH-) conjugated forms of 1,2-DCP (GS-DCPs); however, the GS-DCP production pathway remains unknown. To enhance the understanding of 1,2-DCP-related risks to human health, we examined the reactivity of GSH with 1,2-DCP in vitro and compared it to that with dichloromethane (DCM), the other putative substance responsible for occupational cholangiocarcinoma. Our results showed that 1,2-DCP was spontaneously conjugated with GSH, whereas this spontaneous reaction was hardly detected between DCM and GSH. Further analysis revealed that glutathione S-transferase theta 1 (GSTT1) exhibited less effect on the 1,2-DCP reaction as compared with that observed for DCM. Although GSTT1-mediated bioactivation of dihaloalkanes could be a plausible explanation for the production of reactive metabolites related to carcinogenesis based on previous studies, this catalytic pathway might not mainly contribute to 1,2-DCP-related occupational cholangiocarcinoma. Considering the higher catalytic activity of GSTT1 on DCM as compared with that on 1,2-DCP, our findings suggested differences in the activation processes associated with 1,2-DCP and DCM metabolism.
Collapse
|
16
|
Toyoda Y, Takada T, Gomi T, Nakagawa H, Ishikawa T, Suzuki H. Clinical and Molecular Evidence of ABCC11 Protein Expression in Axillary Apocrine Glands of Patients with Axillary Osmidrosis. Int J Mol Sci 2017; 18:ijms18020417. [PMID: 28212277 PMCID: PMC5343951 DOI: 10.3390/ijms18020417] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/18/2017] [Accepted: 02/13/2017] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence suggests that the risk of axillary osmidrosis is governed by a non-synonymous single nucleotide polymorphism (SNP) 538G>A in human ATP-binding cassette C11 (ABCC11) gene. However, little data are available for the expression of ABCC11 protein in human axillary apocrine glands that produce apocrine sweat—a source of odor from the armpits. To determine the effect of the non-synonymous SNP ABCC11 538G>A (G180R) on the ABCC11 in vivo, we generated transiently ABCC11-expressing transgenic mice with adenovirus vector, and examined the protein levels of each ABCC11 in the mice with immunoblotting using an anti-ABCC11 antibody we have generated in the present study. Furthermore, we examined the expression of ABCC11 protein in human axillary apocrine glands extracted from axillary osmidrosis patients carrying each ABCC11 genotype: 538GG, GA, and AA. Analyses of transiently ABCC11-expressing transgenic mice showed that ABCC11 538G>A diminishes the ABCC11 protein levels in vivo. Consistently, ABCC11 protein was detected in the human axillary apocrine glands of the 538GG homozygote or 538GA heterozygote, not in the 538AA homozygote. These findings would contribute to a better understanding of the molecular basis of axillary osmidrosis.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Tsuneaki Gomi
- Gomi Clinic, 1-10-12, Hyakunin-cho, Shinjyuku-ku, Tokyo 169-0073, Japan.
| | - Hiroshi Nakagawa
- Department of Applied Biological Chemistry, Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan.
| | - Toshihisa Ishikawa
- RIKEN Center for Life Science Technology, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
17
|
Miyata H, Takada T, Toyoda Y, Matsuo H, Ichida K, Suzuki H. Identification of Febuxostat as a New Strong ABCG2 Inhibitor: Potential Applications and Risks in Clinical Situations. Front Pharmacol 2016; 7:518. [PMID: 28082903 PMCID: PMC5187494 DOI: 10.3389/fphar.2016.00518] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/14/2016] [Indexed: 01/01/2023] Open
Abstract
ATP-binding cassette transporter G2 (ABCG2) is a plasma membrane protein that regulates the pharmacokinetics of a variety of drugs and serum uric acid (SUA) levels in humans. Despite the pharmacological and physiological importance of this transporter, there is no clinically available drug that modulates ABCG2 function. Therefore, to identify such drugs, we investigated the effect of drugs that affect SUA levels on ABCG2 function. This strategy was based on the hypothesis that the changes of SUA levels might caused by interaction with ABCG2 since it is a physiologically important urate transporter. The results of the in vitro screening showed that 10 of 25 drugs investigated strongly inhibited the urate transport activity of ABCG2. Moreover, febuxostat was revealed to be the most promising candidate of all the potential ABCG2 inhibitors based on its potent inhibition at clinical concentrations; the half-maximal inhibitory concentration of febuxostat was lower than its maximum plasma unbound concentrations reported. Indeed, our in vivo study demonstrated that orally administered febuxostat inhibited the intestinal Abcg2 and, thereby, increased the intestinal absorption of an ABCG2 substrate sulfasalazine in wild-type mice, but not in Abcg2 knockout mice. These results suggest that febuxostat might inhibit human ABCG2 at a clinical dose. Furthermore, the results of this study lead to a proposed new application of febuxostat for enhancing the bioavailability of ABCG2 substrate drugs, named febuxostat-boosted therapy, and also imply the potential risk of adverse effects by drug-drug interactions that could occur between febuxostat and ABCG2 substrate drugs.
Collapse
Affiliation(s)
- Hiroshi Miyata
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo Tokyo, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo Tokyo, Japan
| | - Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo Tokyo, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College Tokorozawa, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo Tokyo, Japan
| |
Collapse
|