1
|
Fredenburgh JC, Weitz JI. Exosite crosstalk in thrombin. J Thromb Haemost 2025; 23:1160-1168. [PMID: 39842513 DOI: 10.1016/j.jtha.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
Thrombin is the central mediator of hemostasis, where it converts fibrinogen to fibrin, activates upstream factors to promote coagulation, activates factor XIII and thrombin-activatable fibrinolysis inhibitor to stabilize fibrin, mediates anticoagulation, and modulates cellular activity via cell surface receptors. Thus, regulation of thrombin activity is essential to the hemostatic balance. Thrombin is regulated by positively charged surface domains that surround the active site. These exosites bind substrates, inhibitors, cofactors, and receptors, which coordinate to direct thrombin to the appropriate location and modulate catalytic activity. Thus, the exosites are essential to the activity and regulation of thrombin. In addition to acting as binding sites, the exosites modulate the active site allosterically. Furthermore, the exosites impact each other, whereby the binding of ligands to one exosite impacts the function of the opposing exosite. Given the integral role that exosites play in the regulation of thrombin, they are attractive targets for the regulation of thrombin and for the development of new anticoagulants.
Collapse
Affiliation(s)
- James C Fredenburgh
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada.
| | - Jeffrey I Weitz
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Lindahl TL, Kumar AP, Hallström T, Al-Hashimi A, du Rietz A, Arlaman E, Uvdal K, Macwan AS. Dabigatran Attenuates the Binding of Thrombin to Platelets-A Novel Mechanism of Action. Thromb Haemost 2024. [PMID: 39586831 DOI: 10.1055/a-2483-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
BACKGROUND Thrombin is a multifunctional regulatory enzyme of the haemostasis and has both pro- and anticoagulant roles. It has, therefore, been a main target for drug discovery over many decades. Thrombin is a serine protease and possesses two positively charged regions called exosites, through which it is known to bind to many substrates. Dabigatran is a thrombin inhibitor and is widely used as an oral anticoagulant for the antithrombotic treatment of atrial fibrillation and venous thromboembolism. The mechanism by which dabigatran inhibits thrombin is the blockage of the active site, however, its effect on thrombin binding to its substrates has not been studied thoroughly and is thus poorly understood. MATERIAL AND METHODS The effect of dabigatran on thrombin binding to platelets was evaluated by flow cytometry using fluorescently labelled thrombin and washed platelets. Further, to confirm the results we utilized modern techniques for biomolecular binding studies, microscale thermophoresis (MST) and surface plasmon resonance (SPR), which validated the results. RESULTS Dabigatran inhibited thrombin binding to platelets as analysed by flow cytometry. The inhibition was dose dependent with IC50 of 118 nM which was slightly lower than for inhibition of platelet activation and is close to the clinically relevant plasma concentration of dabigatran. MST and SPR also confirmed inhibitory effect of dabigatran on thrombin binding to platelets. CONCLUSION Apart from blocking the active site, dabigatran also inhibits thrombin binding to platelets. Since thrombin has numerous functions beyond the cardiovascular system, this finding may have important implications.
Collapse
Affiliation(s)
- Tomas L Lindahl
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Aishwarya Prasanna Kumar
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Ahmed Al-Hashimi
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna du Rietz
- Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Elena Arlaman
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Kajsa Uvdal
- Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Ankit S Macwan
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
3
|
Kelley MA, Leiderman K. Mathematical modeling to understand the role of bivalent thrombin-fibrin binding during polymerization. PLoS Comput Biol 2022; 18:e1010414. [PMID: 36107837 PMCID: PMC9477365 DOI: 10.1371/journal.pcbi.1010414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022] Open
Abstract
Thrombin is an enzyme produced during blood coagulation that is crucial to the formation of a stable clot. Thrombin cleaves soluble fibrinogen into fibrin, which polymerizes and forms an insoluble, stabilizing gel around the growing clot. A small fraction of circulating fibrinogen is the variant γA/γ′, which has been associated with high-affinity thrombin binding and implicated as a risk factor for myocardial infarctions, deep vein thrombosis, and coronary artery disease. Thrombin is also known to be strongly sequestered by polymerized fibrin for extended periods of time in a way that is partially regulated by γA/γ′. However, the role of γA/γ′-thrombin interactions during fibrin polymerization is not fully understood. Here, we present a mathematical model of fibrin polymerization that considered the interactions between thrombin, fibrinogen, and fibrin, including those with γA/γ′. In our model, bivalent thrombin-fibrin binding greatly increased thrombin residency times and allowed for thrombin-trapping during fibrin polymerization. Results from the model showed that early in fibrin polymerization, γ′ binding to thrombin served to localize the thrombin to the fibrin(ogen), which effectively enhanced the enzymatic conversion of fibrinogen to fibrin. When all the fibrin was fully generated, however, the fibrin-thrombin binding persisted but the effect of fibrin on thrombin switched quickly to serve as a sink, essentially removing all free thrombin from the system. This dual role for γ′-thrombin binding during polymerization led to a paradoxical decrease in trapped thrombin as the amount of γ′ was increased. The model highlighted biochemical and biophysical roles for fibrin-thrombin interactions during polymerization and agreed well with experimental observations.
Collapse
Affiliation(s)
- Michael A. Kelley
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado, United States of America
| | - Karin Leiderman
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado, United States of America
- * E-mail:
| |
Collapse
|
4
|
Dólleman SC, Agten SM, Spronk HMH, Hackeng TM, Bos MHA, Versteeg HH, van Zonneveld AJ, de Boer HC. Thrombin in complex with dabigatran can still interact with PAR-1 via exosite-I and instigate loss of vascular integrity. J Thromb Haemost 2022; 20:996-1007. [PMID: 35037739 PMCID: PMC9306515 DOI: 10.1111/jth.15642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) can lead to the loss of microvascular integrity thereby enhancing AF progression. Mechanistically, the pro-coagulant state that drives the risk of stroke in patients with AF may also play a causal role in microvascular loss. Direct oral anticoagulants (DOACs), the preferred anticoagulants for AF, can target factors upstream (factor Xa [FXa]) or downstream (thrombin) in the coagulation cascade and mediate differential vascular effects through interaction with protease-activated receptors (PARs). OBJECTIVE To investigate the potential effect of different DOACs on vascular integrity. METHODS To model the impact of DOACs on vascular integrity, we utilized platelet-free plasma in thrombin generation assays and endothelial barrier assays under identical experimental conditions. These multifactorial systems provide all coagulation factors and their respective natural inhibitors in physiological ratios in combination with the pro-coagulant endothelial surface on which coagulation is initiated. Furthermore, the system provides pro- and anti-barrier factors and monitoring both assays simultaneously permits coupling of thrombin kinetics to endothelial barrier dynamics. RESULTS We provide evidence that the anti-FXa DOAC rivaroxaban and the anti-thrombin DOAC dabigatran are efficient in blocking their target proteases. However, while rivaroxaban could preserve endothelial barrier function, dabigatran failed to protect endothelial integrity over time, which could be prevented in the presence of a custom-made peptide that blocks thrombin's exosite-I. CONCLUSIONS Proteolytically inactive thrombin in complex with dabigatran evokes loss of barrier function that can be prevented by a protease-activated receptor-1 mimicking peptide blocking thrombin's exosite-I.
Collapse
Affiliation(s)
- Sophie C. Dólleman
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeidenthe Netherlands
| | - Stijn M. Agten
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Henri M. H. Spronk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Tilman M. Hackeng
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Mettine H. A. Bos
- Division of Thrombosis and HemostasisLeiden University Medical CenterLeidenthe Netherlands
| | - Henri H. Versteeg
- Division of Thrombosis and HemostasisLeiden University Medical CenterLeidenthe Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeidenthe Netherlands
| | - Hetty C. de Boer
- Department of Internal Medicine (Nephrology)Einthoven Laboratory for Vascular and Regenerative MedicineLeidenthe Netherlands
| |
Collapse
|
5
|
Screening of the Promising Direct Thrombin Inhibitors from Haematophagous Organisms. Part I: Recombinant Analogues and Their Antithrombotic Activity In Vitro. Biomedicines 2021; 10:biomedicines10010011. [PMID: 35052692 PMCID: PMC8772750 DOI: 10.3390/biomedicines10010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 12/02/2022] Open
Abstract
The success in treatment of venous thromboembolism and acute coronary syndromes using direct thrombin inhibitors has stimulated research aimed at finding a new anticoagulant from haematophagous organisms. This study deals with the comparison between hirudin-1 from Hirudomedicinalis(desirudin), being the first-known and most well-studied natural anticoagulant, along with recombinant analogs of haemadin from the leech Haemadipsa sylvestris, variegin from the tick Amblyomma variegatum, and anophelin from Anopheles albimanus. These polypeptides were chosen due to their high specificity and affinity for thrombin, as well as their distinctive inhibitory mechanisms. We have developed a universal scheme for the biotechnological production of these recombinant peptides as pharmaceutical substances. The anticoagulant activities of these peptides were compared using the thrombin amidolytic activity assay and prolongation of coagulation time (thrombin time, prothrombin time, and activated partial thromboplastin time) in mouse and human plasma. The preliminary results obtained suggest haemadin as the closest analog of recombinant hirudin-1, the active substance of the medicinal product Iprivask (Aventis Pharmaceuticals, USA) for the prevention of deep venous thrombosis in patients undergoing elective hip or knee replacement surgery. In contrast, variegin can be regarded as a natural analog of bivalirudin (Angiomax, The Medicines Company), a synthetic hirudin-1 derivative certified for the treatment of patients undergoing percutaneous coronary intervention and of patients with unstable angina pectoris after percutaneous transluminal coronary angioplasty.
Collapse
|
6
|
Lenart-Migdalska A, Drabik L, Kaźnica-Wiatr M, Tomkiewicz-Pająk L, Podolec P, Olszowska M. Flow Cytometric Assessment of Endothelial and Platelet Microparticles in Patients With Atrial Fibrillation Treated With Dabigatran. Clin Appl Thromb Hemost 2021; 26:1076029620972467. [PMID: 33237804 PMCID: PMC7787695 DOI: 10.1177/1076029620972467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The prothrombotic state in patients with atrial fibrillation (AF) is related to
endothelial injury, the activation of platelets and the coagulation cascade. We
evaluated the levels of platelet- (CD42b) and endothelial-derived (CD144)
microparticles in the plasma patients with non-valvular AF treated with
dabigatran at the time of expected minimum and maximum drug plasma
concentrations. Following that, we determined the peak dabigatran plasma
concentration (cpeak ). CD42b increased after taking dabigatran
(median [IQR] 36.7 [29.4-53.3] vs. 45.6 [32.3-59.5] cells/µL; p = 0.025). The
concentration of dabigatran correlated negatively with the post-dabigatran
change in CD42b (ΔCD42b, r = -0.47, p = 0.021). In the multivariate model, the
independent predictors of ΔCD42b were: cpeak (HR -0.55; with a 95%
confidence interval, CI [-0.93, -0.16]; p = 0.007), coronary artery disease
(CAD) (HR -0.41; 95% CI [-0.79, -0.02]; p = 0.037) and peripheral artery disease
(PAD) (HR 0.42; 95% CI [0.07, 0.74]; p = 0.019). CD144 did not increase after
dabigatran administration. These data suggest that low concentrations of
dabigatran may be associated with platelet activation. PAD and CAD have distinct
effects on CD42b levels during dabigatran treatment.
Collapse
Affiliation(s)
- Aleksandra Lenart-Migdalska
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, John Paul II Hospital, Cracow, Poland
| | - Leszek Drabik
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, John Paul II Hospital, Cracow, Poland.,Department of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Magdalena Kaźnica-Wiatr
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, John Paul II Hospital, Cracow, Poland
| | - Lidia Tomkiewicz-Pająk
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, John Paul II Hospital, Cracow, Poland
| | - Piotr Podolec
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, John Paul II Hospital, Cracow, Poland
| | - Maria Olszowska
- Department of Cardiac and Vascular Diseases, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, John Paul II Hospital, Cracow, Poland
| |
Collapse
|
7
|
Gadi I, Fatima S, Elwakiel A, Nazir S, Al-Dabet MM, Rana R, Bock F, Manhoran J, Gupta D, Biemann R, Nieswand B, Braun-Dullaeus R, Besler C, Scholz M, Geffers R, Griffin JH, Esmon CT, Kohli S, Isermann B, Shahzad K. Different DOACs Control Inflammation in Cardiac Ischemia-Reperfusion Differently. Circ Res 2021; 128:513-529. [PMID: 33353373 PMCID: PMC8293866 DOI: 10.1161/circresaha.120.317219] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE While thrombin is the key protease in thrombus formation, other coagulation proteases, such as fXa (factor Xa) or aPC (activated protein C), independently modulate intracellular signaling via partially distinct receptors. OBJECTIVES To study the differential effects of fXa or fIIa (factor IIa) inhibition on gene expression and inflammation in myocardial ischemia-reperfusion injury. METHODS AND RESULTS Mice were treated with a direct fIIa inhibitor (fIIai) or direct fXa inhibitor (fXai) at doses that induced comparable anticoagulant effects ex vivo and in vivo (tail-bleeding assay and FeCl3-induced thrombosis). Myocardial ischemia-reperfusion injury was induced via left anterior descending ligation. We determined infarct size and in vivo aPC generation, analyzed gene expression by RNA sequencing, and performed immunoblotting and ELISA. The signaling-only 3K3A-aPC variant and inhibitory antibodies that blocked all or only the anticoagulant function of aPC were used to determine the role of aPC. Doses of fIIai and fXai that induced comparable anticoagulant effects resulted in a comparable reduction in infarct size. However, unbiased gene expression analyses revealed marked differences, including pathways related to sterile inflammation and inflammasome regulation. fXai but not fIIai inhibited sterile inflammation by reducing the expression of proinflammatory cytokines (IL [interleukin]-1β, IL-6, and TNFα [tumor necrosis factor alpha]), as well as NF-κB (nuclear factor kappa B) and inflammasome activation. This anti-inflammatory effect was associated with reduced myocardial fibrosis 28 days post-myocardial ischemia-reperfusion injury. Mechanistically, in vivo aPC generation was higher with fXai than with fIIai. Inhibition of the anticoagulant and signaling properties of aPC abolished the anti-inflammatory effect associated with fXai, while inhibiting only the anticoagulant function of aPC had no effect. Combining 3K3A-aPC with fIIai reduced the inflammatory response, mimicking the fXai-associated effect. CONCLUSIONS We showed that specific inhibition of coagulation via direct oral anticoagulants had differential effects on gene expression and inflammation, despite comparable anticoagulant effects and infarct sizes. Targeting individual coagulation proteases induces specific cellular responses unrelated to their anticoagulant effect.
Collapse
Affiliation(s)
- Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Sumra Nazir
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Moh’d Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
- Medical Laboratories, Faculty of Health Sciences, American University of Madaba (AUM), Amman 11821, Jordan
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Fabian Bock
- Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jaykumar Manhoran
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Ronald Biemann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Bernhard Nieswand
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Centre, University of Würzburg, Germany
| | | | - Christian Besler
- Cardiology, Leipzig-Heart Center, University of Leipzig, Germany
| | - Markus Scholz
- Institute of Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany
| | - Robert Geffers
- RG Genome Analytics, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - John H. Griffin
- Molecular Medicine, The Scripps Research Institute, La Jolla, CA, US 92037, United States
| | - Charles T. Esmon
- Laboratory of Coagulation Biology, Oklahoma Medical Research Foundation, 73104 Oklahoma City, United States
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig
| |
Collapse
|
8
|
Kelley M, Leiderman K. A Mathematical Model of Bivalent Binding Suggests Physical Trapping of Thrombin within Fibrin Fibers. Biophys J 2019; 117:1442-1455. [PMID: 31586524 DOI: 10.1016/j.bpj.2019.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/14/2019] [Accepted: 09/06/2019] [Indexed: 01/21/2023] Open
Abstract
Thrombin is an enzyme that plays many important roles in the blood clotting process; it activates platelets, cleaves coagulation proteins within feedback loops, and cleaves fibrinogen into fibrin, which polymerizes into fibers to form a stabilizing gel matrix in and around growing clots. Thrombin also binds to the formed fibrin matrix, but this interaction is not well understood. Thrombin-fibrin binding is often described as two independent, single-step binding events, one high-affinity and one low-affinity. However, kinetic schemes describing these single-step binding events do not explain experimentally-observed residency times of fibrin-bound thrombin. In this work, we study a bivalent, sequential-step binding scheme as an alternative to the high-affinity event and, in addition to the low-affinity one. We developed mathematical models for the single- and sequential-step schemes consisting of reaction-diffusion equations to compare to each other and to experimental data. We then used Bayesian inference, in the form of Markov chain Monte Carlo, to learn model parameter distributions from previously published experimental data. For the model to best fit the data, we made an additional assumption that thrombin was irreversibly sequestered; we hypothesized that this could be due to thrombin becoming physically trapped within fibrin fibers as they formed. We further estimated that ∼30% of thrombin in the experiments to which we compare our model output became physically trapped. The notion of physically trapped thrombin may provide new insights into conflicting observations regarding the speed of fibrinolysis. Finally, we show that our new model can be used to further probe scenarios dealing with thrombin allostery.
Collapse
Affiliation(s)
- Michael Kelley
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado
| | - Karin Leiderman
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado.
| |
Collapse
|
9
|
Dong X, Gu R, Zhu X, Gan H, Liu J, Jin J, Meng Z, Dou G. Evaluating prodrug characteristics of a novel anticoagulant fusion protein neorudin, a prodrug targeting release of hirudin variant 2-Lys47 at the thrombosis site, by means of in vitro pharmacokinetics. Eur J Pharm Sci 2018; 121:166-177. [PMID: 29802897 DOI: 10.1016/j.ejps.2018.05.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 11/27/2022]
Abstract
Recombinant neorudin (EPR-hirudin, EH), a low-bleeding anticoagulant fusion protein, is an inactive prodrug designed to be converted to the active metabolite, hirudin variant 2-Lys47 (HV2), locally at the thrombus site by FXa and/or FXIa, following activation of the coagulation system. Our aim was to evaluate the prodrug characteristics of EH by comparing the biotransformation of EH and HV2 in biological matrices, including rat blood, liver, and kidney homogenates, demonstrating the cleavage of EH to HV2 by FXa and FXIa, and comparing the conversion of EH to HV2 between fresh whole blood and whole-blood clot homogenate, using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS). Both EH and HV2 were stable in blood and unstable in the liver and kidney homogenates. Eight EH metabolites and eight HV2 metabolites identified as N-terminal fragments were found in the liver and kidney. C-terminal proteolysis is therefore the major metabolic pathway, with serine/cysteine carboxypeptidases and metallocarboxypeptidases being responsible for the degradation of EH and HV2 in the liver and kidney, respectively. EH was cleaved to release HV2 by FXIa. Higher levels of HV2 were produced from EH in the whole-blood clot homogenate, in which the coagulation system was activated compared with those in fresh whole blood. In conclusion, the metabolism of EH and HV2 shares the same cleavage pattern, and EH is transformed into HV2 when the coagulation system is activated, where FXIa is a specific enzyme. Our in vitro study revealed the anticipated prodrug characteristics of EH newly designed as an inactive prodrug of hirudin.
Collapse
Affiliation(s)
- Xiaona Dong
- State Key Laboratory of Drug Metabolism and Pharmacokinetics, Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, China
| | - Ruolan Gu
- State Key Laboratory of Drug Metabolism and Pharmacokinetics, Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, China
| | - Xiaoxia Zhu
- State Key Laboratory of Drug Metabolism and Pharmacokinetics, Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, China
| | - Hui Gan
- State Key Laboratory of Drug Metabolism and Pharmacokinetics, Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, China
| | | | - Jide Jin
- Laboratory of Experimental Hematology, Beijing Institute of Radiation Medicine, China
| | - Zhiyun Meng
- State Key Laboratory of Drug Metabolism and Pharmacokinetics, Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, China.
| | - Guifang Dou
- State Key Laboratory of Drug Metabolism and Pharmacokinetics, Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, China.
| |
Collapse
|
10
|
Abdel Aziz MH, Desai UR. Novel heparin mimetics reveal cooperativity between exosite 2 and sodium-binding site of thrombin. Thromb Res 2018; 165:61-67. [PMID: 29573721 DOI: 10.1016/j.thromres.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Thrombin is a primary target of most anticoagulants. Yet, thrombin's dual and opposing role in pro- as well as anti- coagulant processes imposes considerable challenges in discovering finely tuned regulators that maintain homeostasis, rather than disproportionately changing the equilibrium to one side. In this connection, we have been studying exosite 2-mediated allosteric modulation of thrombin activity using synthetic agents called low molecular weight lignins (LMWLs). Although the aromatic scaffold of LMWLs is completely different from the polysaccharidic scaffold of heparin, the presence of multiple negatively charged groups on both ligands induces binding to exosite 2 of thrombin. This work characterizes the nature of interactions between LMWLs and thrombin to understand the energetic cooperativity between exosite 2 and active site of thrombin. MATERIALS AND METHODS The thermodynamics of thrombin-LMWL complexes was studied using spectrofluorimetric titrations as a function of ionic strength and temperature of the buffer. The contributions of enthalpy and entropy to binding were evaluated using classic thermodynamic equations. Label-free surface plasmon resonance was used to assess the role of sodium ion in LMWL binding to thrombin at a fixed ionic strength. RESULTS AND CONCLUSIONS Exosite 2-induced conformational change in thrombin's active site is strongly dependent on the structure of the ligand, which has consequences with respect to regulation of thrombin. The ionic and non-ionic contributions to binding affinity and the thermodynamic signature were highly ligand specific. Interestingly, LMWLs display preference for the sodium-bound form of thrombin, which supports the existence of an energetic coupling between exosite 2 and sodium-binding site of thrombin.
Collapse
Affiliation(s)
- May H Abdel Aziz
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States.
| |
Collapse
|
11
|
Zhang L, Yang J, Zheng X, Fan Q, Zhang Z. Influences of argatroban on five fibrinogen assays. Int J Lab Hematol 2017; 39:641-644. [PMID: 28766891 DOI: 10.1111/ijlh.12719] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022]
Affiliation(s)
- L. Zhang
- Department of Pathology and Clinical Laboratory (DPCL); Wuhan Asia Heart Hospital (WAHH); Wuhan China
| | - J. Yang
- Department of Pathology and Clinical Laboratory (DPCL); Wuhan Asia Heart Hospital (WAHH); Wuhan China
| | - X. Zheng
- Department of Pathology and Clinical Laboratory (DPCL); Wuhan Asia Heart Hospital (WAHH); Wuhan China
| | - Q. Fan
- Department of Pathology and Clinical Laboratory (DPCL); Wuhan Asia Heart Hospital (WAHH); Wuhan China
| | - Z. Zhang
- Department of Pathology and Clinical Laboratory (DPCL); Wuhan Asia Heart Hospital (WAHH); Wuhan China
| |
Collapse
|
12
|
Chen K, Stafford AR, Wu C, Yeh CH, Kim PY, Fredenburgh JC, Weitz JI. Exosite 2-Directed Ligands Attenuate Protein C Activation by the Thrombin–Thrombomodulin Complex. Biochemistry 2017; 56:3119-3128. [DOI: 10.1021/acs.biochem.7b00250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kai Chen
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Alan R. Stafford
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Chengliang Wu
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Calvin H. Yeh
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Paul Y. Kim
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - James C. Fredenburgh
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I. Weitz
- Department of Medicine, ‡Department of Biochemistry
and Biomedical Sciences, and §Thrombosis and
Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|