1
|
Cámara-Domínguez A, Stuart-Aguiar AM, Fuentes-Canto NHA, Cervera-Rosado A, Azotla-Vilchis CN, Márquez-Quiroz LDC, Vargas-Méndez R, Contreras-Capetillo SN. 15q24 Duplication: A Case Report of Neurodevelopmental Delay. Clin Pediatr (Phila) 2025; 64:764-770. [PMID: 39573983 DOI: 10.1177/00099228241296235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2025]
Abstract
Chromosomal rearrangements are structural anomalies that affect chromosomal architecture and can impact gene expression, genomic imprinting, or even generate de novo gene fusions, as seen in hematological chromosomal aberrations. Chromosomal rearrangements can be associated with syndromes causing neurodevelopmental delay, autism spectrum disorder, and variable dysmorphic features. This article presents the clinical and molecular characteristics of a 2-year-old male child with neurodevelopmental delay who was diagnosed with a chromosomal rearrangement due to a 15q24 duplication (dup15q24). The 15q24 locus presents controversy between the phenotype associated with duplication and deletion, thus posing a challenge in differential diagnosis for both. The phenotypes of autism spectrum disorder and pediatric patients with language delay should be evaluated by a multidisciplinary team comprising genetics, pediatrics, and pediatric neurology to shorten the diagnostic odyssey for patients with rare diseases and to impact the quality of life of the patient and their family.
Collapse
Affiliation(s)
| | | | | | | | | | - Luz Del Carmen Márquez-Quiroz
- Molecular Biology and Massive Sequencing Laboratory, Genos Médica, Centro Especializado en Genética, Mexico City, Mexico
| | | | - Silvina Noemí Contreras-Capetillo
- Pediatrics Department, Hospital General Dr. Agustín O'Horán, Secretaría de Salud de Yucatán, Mérida, Mexico
- Genetics Laboratory, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Mexico
| |
Collapse
|
2
|
Hickman AR, Selee B, Pauly R, Husain B, Hang Y, Feltus FA. Discovery of eQTL Alleles Associated with Autism Spectrum Disorder: A Case-Control Study. J Autism Dev Disord 2023; 53:3595-3612. [PMID: 35739433 PMCID: PMC10465380 DOI: 10.1007/s10803-022-05631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/27/2022]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by challenges in social communication as well as repetitive or restrictive behaviors. Many genetic associations with ASD have been identified, but most associations occur in a fraction of the ASD population. Here, we searched for eQTL-associated DNA variants with significantly different allele distributions between ASD-affected and control. Thirty significant DNA variants associated with 174 tissue-specific eQTLs from ASD individuals in the SPARK project were identified. Several significant variants fell within brain-specific regulatory regions or had been associated with a significant change in gene expression in the brain. These eQTLs are a new class of biomarkers that could control the myriad of brain and non-brain phenotypic traits seen in ASD-affected individuals.
Collapse
Affiliation(s)
- Allison R. Hickman
- Genetics and Biochemistry Department, Clemson University, Clemson, SC 29634 USA
| | - Bradley Selee
- Electrical and Computer Engineering Department, Clemson University, Clemson, SC 29634 USA
| | - Rini Pauly
- Biomedical Data Science & Informatics Program, Clemson University, Clemson, SC 29634 USA
| | - Benafsh Husain
- Biomedical Data Science & Informatics Program, Clemson University, Clemson, SC 29634 USA
| | - Yuqing Hang
- Genetics and Biochemistry Department, Clemson University, Clemson, SC 29634 USA
| | - Frank Alex Feltus
- Genetics and Biochemistry Department, Clemson University, Clemson, SC 29634 USA
- Electrical and Computer Engineering Department, Clemson University, Clemson, SC 29634 USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646 USA
- Biosystems Research Complex, 302C, 105 Collings St, Clemson, SC 29634 USA
| |
Collapse
|
3
|
Maia N, Potelle S, Yildirim H, Duvet S, Akula SK, Schulz C, Wiame E, Gheldof A, O'Kane K, Lai A, Sermon K, Proisy M, Loget P, Attié-Bitach T, Quelin C, Fortuna AM, Soares AR, de Brouwer APM, Van Schaftingen E, Nassogne MC, Walsh CA, Stouffs K, Jorge P, Jansen AC, Foulquier F. Impaired catabolism of free oligosaccharides due to MAN2C1 variants causes a neurodevelopmental disorder. Am J Hum Genet 2022; 109:345-360. [PMID: 35045343 PMCID: PMC8874227 DOI: 10.1016/j.ajhg.2021.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/10/2021] [Indexed: 01/16/2023] Open
Abstract
Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.
Collapse
Affiliation(s)
- Nuno Maia
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine and Laboratory for Integrative and Translational Research in Population Health, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Sven Potelle
- Laboratory of Physiological Chemistry, de Duve Institute, 1200 Brussels, Belgium; WELBIO, 1200 Brussels, Belgium
| | - Hamide Yildirim
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Sandrine Duvet
- Univ. Lille, CNRS, UMR 8576-UGSF-Unit. de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Shyam K Akula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Celine Schulz
- Univ. Lille, CNRS, UMR 8576-UGSF-Unit. de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Elsa Wiame
- Laboratory of Physiological Chemistry, de Duve Institute, 1200 Brussels, Belgium; WELBIO, 1200 Brussels, Belgium
| | - Alexander Gheldof
- Centre for Medical Genetics, UZ Brussel, 1090 Brussels, Belgium; Reproduction and Genetics Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Katherine O'Kane
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Abbe Lai
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Karen Sermon
- Reproduction and Genetics Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Maïa Proisy
- CHU Brest, Radiology Department, Brest University, 29609 Brest Cedex, France
| | - Philippe Loget
- Department of Pathology, Rennes University Hospital, 35000 Rennes, France
| | - Tania Attié-Bitach
- APHP, Embryofœtopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Universitaire Necker-Enfants Malades, 75015 Paris, France; Université de Paris, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Chloé Quelin
- Clinical Genetics Department, Rennes University Hospital, 35000 Rennes, France
| | - Ana Maria Fortuna
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine and Laboratory for Integrative and Translational Research in Population Health, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Ana Rita Soares
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal
| | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6500 Nijmegen, the Netherlands
| | - Emile Van Schaftingen
- Laboratory of Physiological Chemistry, de Duve Institute, 1200 Brussels, Belgium; WELBIO, 1200 Brussels, Belgium
| | - Marie-Cécile Nassogne
- Department of Pediatric Neurology, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium; Institute Of NeuroScience, Clinical Neuroscience, UCLouvain, 1200 Brussels, Belgium
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Katrien Stouffs
- Centre for Medical Genetics, UZ Brussel, 1090 Brussels, Belgium; Reproduction and Genetics Research Group, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Paula Jorge
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário do Porto, 4050-466 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine and Laboratory for Integrative and Translational Research in Population Health, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Anna C Jansen
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, 1090 Brussels, Belgium.
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576-UGSF-Unit. de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France.
| |
Collapse
|