1
|
Xu H, Cheng J, Leng Q, Cao R, Su W, Sun L, Xue F, Han Y, Wu R. Characterization of acetolactate synthase genes and resistance mechanisms of multiple herbicide resistant Lolium multiflorum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109324. [PMID: 39612826 DOI: 10.1016/j.plaphy.2024.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Combining imidazolinone-tolerant wheat with imazamox presents an effective solution to combat weed resistance. However, Lolium multiflorum, a troublesome resistant weed infesting wheat fields, may have developed resistance to imazamox, and the potential resistance mechanisms are intriguing. In this study, we explored the susceptibility of L. multiflorum to imazamox and investigated the resistance mechanisms, including the contribution of the target enzyme acetolactate synthase (ALS) to resistance and the presence of non-target-site resistance (NTSR). Eight L. multiflorum populations suspected of being resistant to imazamox were collected, and six populations exhibited resistance, ranging from 2.45-fold to 16.32-fold. The LmALS1 gene from susceptible population D3 plants and multiple copies of the LmALS gene (LmALS1, LmALS2, LmALS2α, LmALS3, LmALS3α, LmALS3β) from resistant populations D5 and D8 plants were separately amplified. Two mutations (Pro/Gln197 to Thr, Trp574 to Leu) were found in LmALS1 in the resistant populations. Compared to D3, LmALS1 was overexpressed in D5 but not in D8. The presence of LmALS1 mutants (LmALS1-Thr197 and LmALS1- Leu574), along with LmALS2, LmALS3, and their subunits, contribute to the resistance phenotype by increasing bonding energies, weakening hydrogen bonds, or decreasing protein binding pocket volumes and surface area. Additionally, D5 and D8 populations exhibited multiple resistance (>40-fold) to three other ALS inhibitors: pyroxsulam, flucarbazone-sodium, and mesosulfuron-methyl. Pre-treatment with malathion and 4-chloro-7-nitrobenzoxadiazole (cytochrome P450 monooxygenase and glutathione S-transferase inhibitors respectively) reversed the resistance of the D8 population and partially reversed the resistance of the D5 population to imazamox. This study characterizes ALS genes and extends our knowledge into the ALS resistance mechanisms involved in L. multiflorum. It also deepens our understanding of the complex diversification resistance mechanisms, thereby facilitating advances in weed resistance management strategies in wheat fields.
Collapse
Affiliation(s)
- Hongle Xu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Zhengzhou, 450002, China
| | - Jingping Cheng
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Zhengzhou, 450002, China
| | - Qiuli Leng
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Zhengzhou, 450002, China
| | - Ran Cao
- Agricultural Technology Extension&Plant Protection and Quarantine Station in Yicheng, Zhumadian, 463000, China
| | - Wangcang Su
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Zhengzhou, 450002, China
| | - Lanlan Sun
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Zhengzhou, 450002, China
| | - Fei Xue
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Zhengzhou, 450002, China
| | - Yun Han
- Zhumadian Agricultural Engineering Vocational College, Zhumadian, 463003, China
| | - Renhai Wu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China; Key Laboratory of Integrated Pest Management on Crops in Southern Region of North China, Zhengzhou, 450002, China.
| |
Collapse
|
2
|
Reutemann AV, Honfi AI, Karunarathne P, Eckers F, Hojsgaard DH, Martínez EJ. Comparative analysis of molecular and morphological diversity in two diploid Paspalum species (Poaceae) with contrasting mating systems. PLANT REPRODUCTION 2024; 37:15-32. [PMID: 37566236 DOI: 10.1007/s00497-023-00478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023]
Abstract
KEY MESSAGE Interspecific comparison of two Paspalum species has demonstrated that mating systems (selfing and outcrossing) contribute to variation (genetically and morphologically) within species through similar but mutually exclusive processes. Mating systems play a key role in the genetic dynamics of populations. Studies show that populations of selfing plants have less genetic diversity than outcrossing plants. Yet, many such studies have ignored morphological diversity. Here, we compared the morphological and molecular diversity patterns in populations of two phylogenetically-related sexual diploids that differ in their mating system: self-sterile Paspalum indecorum and self-fertile P. pumilum. We assessed the morphological variation using 16 morpho-phenological characters and the molecular diversity using three combinations of AFLPs. We compared the morphological and molecular diversity within and among populations in each mating system. Contrary to expectations, selfers showed higher morphological variation within populations, mainly in vegetative and phenological traits, compared to outcrossers. The high morphological variation within populations of selfers led to a low differentiation among populations. At molecular level, selfing populations showed lower levels of genotypic and genetic diversity than outcrossing populations. As expected, selfers showed higher population structure than outcrossers (PhiST = 0.301 and PhiST = 0.108, respectively). Increased homozygous combinations for the same trait/locus enhance morphological variation and reduce molecular variation within populations in selfing P. pumilum. Thus, selfing outcomes are opposite when comparing morphological and molecular variation in P. pumilum. Meanwhile, pollen flow in obligate outcrossing populations of P. indecorum increases within-population molecular variation, but tends to homogenize phenotypes within-population. Pollen flow in obligate outcrossers tends to merge geographically closer populations; but isolation by distance can lead to a weak differentiation among distant populations of P. indecorum.
Collapse
Affiliation(s)
- A Verena Reutemann
- Instituto de Botánica del Nordeste (IBONE-CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), 3400, Corrientes, Argentina
| | - Ana I Honfi
- Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (PEFyGV, IBS-UNaM-CONICET), 3300, Posadas, Argentina
| | - Piyal Karunarathne
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-Von-Haller Institute for Plant Sciences, University of Goettingen, 37073, Goettingen, Germany
- Institute for Population Genetics, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Fabiana Eckers
- Programa de Estudios Florísticos y Genética Vegetal, Instituto de Biología Subtropical (PEFyGV, IBS-UNaM-CONICET), 3300, Posadas, Argentina
| | - Diego H Hojsgaard
- Taxonomy and Evolutionary Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Eric J Martínez
- Instituto de Botánica del Nordeste (IBONE-CONICET-UNNE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste (FCA-UNNE), 3400, Corrientes, Argentina.
| |
Collapse
|
3
|
Butcher CL, Rubin BY, Anderson SL, Lewis JD. Long-Distance Pollen Dispersal in Urban Green Roof and Ground-Level Habitats. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.790464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Long-distance pollen dispersal is critical for gene flow in plant populations, yet pollen dispersal patterns in urban habitats such as green roofs have not been extensively studied. Pollen dispersal patterns typically are assessed either by fitting non-linear models to the relationship between the degree of pollen dispersal and distance to the pollen source (i.e., curve fitting), or by fitting probability density functions (PDFs) to pollen dispersal probability histograms (i.e., PDF fitting). Studies using curve fitting typically report exponential decay patterns in pollen dispersal. However, PDF fitting typically produces more fat-tailed distributions, suggesting the exponential decay may not be the best fitting model. Because the two approaches may yield conflicting results, we used both approaches to examine pollen dispersal patterns in the wind-pollinated Amaranthus tuberculatus and the insect-pollinated Solanum lycopersicum at two green roof and two ground-level sites in the New York (NY, United States) metropolitan area. For the curve fitting analyses, the exponential decay and inverse power curves provided good fits to pollen dispersal patterns across both green roof and ground-level sites for both species. Similar patterns were observed with the PDF fitting analyses, where the exponential or inverse Gaussian were the top PDF at most sites for both species. While the curve fitting results are consistent with other studies, the results differ from most studies using PDF fitting, where long-distance pollen dispersal is more common than we observed. These results highlight the need for further research to compare curve and PDF fitting for predicting pollen dispersal patterns. And, critically, while long-distance pollen dispersal may be an important component of overall pollen dispersal for A. tuberculatus and S. lycopersicum in both urban green roof and ground-level sites, our results suggest it potentially may occur to a lesser extent compared with plants in less-urban areas.
Collapse
|
4
|
Qu X, Liu C, Zhuang J, Qiang S. Pollen-mediated flow of herbicide resistance genes in Beckmannia syzigachne. PEST MANAGEMENT SCIENCE 2022; 78:2121-2128. [PMID: 35174615 DOI: 10.1002/ps.6837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Beckmannia syzigachne (Steud.) Fernald has evolved herbicide resistance due to the long-term sole use of herbicides and has become a dominant weed in wheat fields in the middle and lower reaches of the Yangtze River in China. In addition to the selection pressure imposed by herbicides, pollen-mediated gene flow (PMGF) has been reported to cause the spread of herbicide resistance between populations within a certain range in some farmland weeds. It is not clear whether the same is true for the self-pollinated grass weed B. syzigachne. RESULTS In this study, we confirmed and quantified the level of PMGF in B. syzigachne through concentric circle planting and herbicide resistance tests. Results show that when the B. syzigachne pollen donor was close to the recipient (0.5 m), the average gene flow was 0.66%. Gene flow was detected as far as 10 m (the farthest distance studied) and decreased exponentially with increasing distance, which could be described by a double exponential decay model. Temperature also affected gene flow, whilst the average level of gene flow in all directions of wind was similar and wind speed caused insignificant difference in gene flow. CONCLUSION The results of this study confirmed that PMGF can occur between B. syzigachne populations in adjacent fields. Although the level of resistance spreading by pollen was low, especially across long distance, the results were relevant for smallholding farms, which is the dominant form of agricultural operation in China. It is therefore important to take proactive measures and integrate chemical and ecological weed control methods to prevent the spread of resistant B. syzigachne via both seeds and pollens. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiang Qu
- Weeds Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Chun Liu
- Herbicide Bioscience, Syngenta, Jealott's Hill International Research Centre, Bracknell, UK
| | - Jiawen Zhuang
- Weeds Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Sheng Qiang
- Weeds Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
A Trp574Leu Target-Site Mutation Confers Imazamox Resistance in Multiple Herbicide-Resistant Wild Poinsettia Populations from Brazil. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10081057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wild poinsettia (Euphorbia heterophylla L.) is an important weed species in southern Brazil, especially due to the evolution of multiple herbicide resistance (e.g., acetolactate synthase (ALS)- inhibitors, protoporphyrinogen oxidase inhibitors, and glyphosate). The mechanism of resistance to imazamox was investigated in two wild poinsettia populations (R1 and R2) from southern Brazil and compared to a known susceptible (S) population. Imazamox dose-response experiments revealed high levels of resistance: 45-fold and 224.5-fold based on dry biomass reduction, for R1 and R2, respectively. Extremely high concentrations of imazamox (20,000 µM) were not sufficient to provide 50% inhibition of ALS enzyme activity (I50) for R1 or R2. Hence, resistance levels were estimated to be greater than 123-fold for both populations based on in vitro ALS assays. The ALS gene from all R1 and R2 plants had a Trp574Leu mutation. A genotyping assay was developed to discriminate resistant and susceptible alleles based on the Trp574Leu mutation.
Collapse
|
6
|
Brunharo CACG, Takano HK, Mallory-Smith CA, Dayan FE, Hanson BD. Role of Glutamine Synthetase Isogenes and Herbicide Metabolism in the Mechanism of Resistance to Glufosinate in Lolium perenne L. spp. multiflorum Biotypes from Oregon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8431-8440. [PMID: 31067047 DOI: 10.1021/acs.jafc.9b01392] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Glufosinate-resistant Lolium perenne L. spp. multiflorum biotypes from Oregon exhibited resistance levels up to 2.8-fold the field rate. One resistant biotype (MG) had an amino acid substitution in glutamine synthetase 2 (GS2), whereas the other (OR) exhibited the wild-type genotype. We hypothesized that the amino acid substitution in GS2 is involved in the resistance mechanism in MG and that non-target site resistance mechanisms are present in OR. OR metabolized glufosinate faster than the other two biotypes, with >75% of the herbicide metabolized in comparison to 50% in MG and the susceptible biotype. A mutation in GS2 co-segregating with resistance in MG did not reduce the enzyme activity, with results further supported by our enzyme homology models. This research supports the conclusion that a metabolism mechanism of glufosinate resistance is present in OR and that glufosinate resistance in MG is not due to an altered target site.
Collapse
Affiliation(s)
- Caio A C G Brunharo
- Department of Crop and Soil Science , Oregon State University , 3050 Southwest Campus Way , Crop Sciences Building Corvallis , Oregon 97331 , United States
| | - Hudson K Takano
- Department of Bioagricultural Sciences and Pest Management , Colorado State University , 1777 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Carol A Mallory-Smith
- Department of Crop and Soil Science , Oregon State University , 3050 Southwest Campus Way , Crop Sciences Building Corvallis , Oregon 97331 , United States
| | - Franck E Dayan
- Department of Bioagricultural Sciences and Pest Management , Colorado State University , 1777 Campus Delivery , Fort Collins , Colorado 80523 , United States
| | - Bradley D Hanson
- Department of Plant Science , University of California, Davis , One Shields Avenue , MS-4, Davis , California 95616 , United States
| |
Collapse
|
7
|
Ganie ZA, Jhala AJ. Modeling pollen-mediated gene flow from glyphosate-resistant to -susceptible giant ragweed (Ambrosia trifida L.) under field conditions. Sci Rep 2017; 7:17067. [PMID: 29213093 PMCID: PMC5719015 DOI: 10.1038/s41598-017-16737-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
A field experiment was conducted to quantify pollen mediated gene flow (PMGF) from glyphosate-resistant (GR) to glyphosate-susceptible (GS) giant ragweed under simulated field conditions using glyphosate resistance as a selective marker. Field experiments were conducted in a concentric design with the GR giant ragweed pollen source planted in the center and GS giant ragweed pollen receptors surrounding the center in eight directional blocks at specified distances (between 0.1 and 35 m in cardinal and ordinal directions; and additional 50 m for ordinal directions). Seeds of GS giant ragweed were harvested from the pollen receptor blocks and a total of 100,938 giant ragweed plants were screened with glyphosate applied at 2,520 g ae ha-1 and 16,813 plants confirmed resistant. The frequency of PMGF was fit to a double exponential decay model selected by information-theoretic criteria. The highest frequency of gene flow (0.43 to 0.60) was observed at ≤0.5 m from the pollen source and reduced rapidly with increasing distances; however, gene flow (0.03 to 0.04) was detected up to 50 m. The correlation between PMGF and wind parameters was inconsistent in magnitude, direction, and years.
Collapse
Affiliation(s)
- Zahoor A Ganie
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68583, Nebraska, USA
| | - Amit J Jhala
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68583, Nebraska, USA.
| |
Collapse
|
8
|
Brunharo CACG, Hanson BD. Vacuolar Sequestration of Paraquat Is Involved in the Resistance Mechanism in Lolium perenne L. spp. multiflorum. FRONTIERS IN PLANT SCIENCE 2017; 8:1485. [PMID: 28890724 PMCID: PMC5575147 DOI: 10.3389/fpls.2017.01485] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/10/2017] [Indexed: 05/11/2023]
Abstract
Lolium perenne L. spp. multiflorum (Lam.) Husnot (LOLMU) is a winter annual weed, common to row crops, orchards and roadsides. Glyphosate-resistant populations of LOLMU are widespread in California. In many situations, growers have switched to paraquat or other postemergence herbicides to manage glyphosate-resistant LOLMU populations. Recently, poor control of LOLMU with paraquat was reported in a prune orchard in California where paraquat has been used several times. We hypothesize that the low efficacy observed is due to the selection of a paraquat-resistant biotype of LOLMU. Greenhouse dose-response experiments conducted with a susceptible (S) and the putative paraquat-resistant biotype (PRHC) confirmed paraquat resistance in PRHC. Herbicide absorption studies indicated that paraquat is absorbed faster in S than PRHC, although the maximum absorption estimates were similar for the two biotypes. Conversely, translocation of 14C-paraquat under light-manipulated conditions was restricted to the treated leaf of PRHC, whereas herbicide translocation out of the treated leaf was nearly 20 times greater in S. To determine whether paraquat was active within the plant cells, the photosynthetic performance was assessed after paraquat application using the parameter maximum quantum yield of photosystem II (Fv/Fm). Paraquat reaches the chloroplasts of PRHC, since there was a transitory inhibition of photosynthetic activity in PRHC leaves. However, PRHC Fv/Fm recovered to initial levels by 48 h after paraquat treatment. No paraquat metabolites were found, indicating that resistance is not due to paraquat degradation. LOLMU leaf segments were exposed to paraquat following pretreatments with inhibitors of plasma membrane- and tonoplast-localized transporter systems to selectively block paraquat intracellular movement. Subsequent evaluation of membrane integrity indicated that pre-exposure to putrescine resulted in the resistant biotype responding to paraquat similarly to S. These results strongly indicate that vacuolar sequestration is involved in the resistance to paraquat in this population of LOLMU.
Collapse
|