1
|
Tsai T, Vyas PD, Crowell LL, Tran M, Ward DW, Qin Y, Castro A, Adams TNG. Electrical signature of heterogeneous human mesenchymal stem cells. Electrophoresis 2024; 45:1562-1573. [PMID: 38738344 DOI: 10.1002/elps.202300202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Human mesenchymal stem cells (hMSCs) have gained traction in transplantation therapy due to their immunomodulatory, paracrine, immune-evasive, and multipotent differentiation potential. The inherent heterogeneity of hMSCs poses a challenge for therapeutic treatments and necessitates the identification of robust biomarkers to ensure reproducibility in both in vivo and in vitro experiments. In this study, we utilized dielectrophoresis (DEP), a label-free electrokinetic phenomenon, to investigate the heterogeneity of hMSCs derived from bone marrow (BM) and adipose tissue (AD). The electrical properties of BM-hMSCs were compared to homogeneous mouse fibroblasts (NIH-3T3), human fibroblasts (WS1), and human embryonic kidney cells (HEK-293). The DEP profile of BM-hMSCs differed most from HEK-293 cells. We compared the DEP profiles of BM-hMSCs and AD-hMSCs and found that they have similar membrane capacitances, differing cytoplasm conductivity, and transient slopes. Inducing both populations to differentiate into adipocyte and osteoblast cells revealed that they behave differently in response to differentiation-inducing cytokines. Histology and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analyses of the differentiation-related genes revealed differences in heterogeneity between BM-hMSCs and AD-hMSCs. The differentiation profiles correlate well with the DEP profiles developed and indicate differences in the heterogeneity of BM-hMSCs and AD-hMSCs. Our results demonstrate that using DEP, membrane capacitance, cytoplasm conductivity, and transient slope can uniquely characterize the inherent heterogeneity of hMSCs to guide robust and reproducible stem cell transplantation therapies.
Collapse
Affiliation(s)
- Tunglin Tsai
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, USA
| | - Prema D Vyas
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
| | - Lexi L Crowell
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, USA
| | - Mary Tran
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, USA
| | - Destiney W Ward
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
| | - Yufan Qin
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
| | - Angie Castro
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
| | - Tayloria N G Adams
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, USA
| |
Collapse
|
2
|
Mansor MA, Ahmad MR, Petrů M, Rahimian Koloor SS. An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:371-383. [PMID: 37548425 DOI: 10.1080/21691401.2023.2239274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Electrical characteristics of living cells have been proven to reveal important details about their internal structure, charge distribution and composition changes in the cell membrane, as well as the extracellular context. An impedance flow cytometry is a common approach to determine the electrical properties of a cell, having the advantage of label-free and high throughput. However, the current techniques are complex and costly for the fabrication process. For that reason, we introduce an integrated dual microneedle-microchannel for single-cell detection and electrical properties extraction. The dual microneedles utilized a commercially available tungsten needle coated with parylene. When a single cell flows through the parallel-facing electrode configuration of the dual microneedle, the electrical impedance at multiple frequencies is measured. The impedance measurement demonstrated the differential of normal red blood cells (RBCs) with three different sizes of microbeads at low and high frequencies, 100 kHz and 2 MHz, respectively. An electrical equivalent circuit model (ECM) was used to determine the unique membrane capacitance of individual cells. The proposed technique demonstrated that the specific membrane capacitance of an RBC is 9.42 mF/m-2, with the regression coefficients, ρ at 0.9895. As a result, this device may potentially be used in developing countries for low-cost single-cell screening and detection.
Collapse
Affiliation(s)
- Muhammad Asraf Mansor
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Mohd Ridzuan Ahmad
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Michal Petrů
- Faculty of Mechanical Engineering, Technical University of Liberec, Liberec, Czech Republic
| | - Seyed Saeid Rahimian Koloor
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| |
Collapse
|
3
|
Habibey R, Rojo Arias JE, Striebel J, Busskamp V. Microfluidics for Neuronal Cell and Circuit Engineering. Chem Rev 2022; 122:14842-14880. [PMID: 36070858 PMCID: PMC9523714 DOI: 10.1021/acs.chemrev.2c00212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 02/07/2023]
Abstract
The widespread adoption of microfluidic devices among the neuroscience and neurobiology communities has enabled addressing a broad range of questions at the molecular, cellular, circuit, and system levels. Here, we review biomedical engineering approaches that harness the power of microfluidics for bottom-up generation of neuronal cell types and for the assembly and analysis of neural circuits. Microfluidics-based approaches are instrumental to generate the knowledge necessary for the derivation of diverse neuronal cell types from human pluripotent stem cells, as they enable the isolation and subsequent examination of individual neurons of interest. Moreover, microfluidic devices allow to engineer neural circuits with specific orientations and directionality by providing control over neuronal cell polarity and permitting the isolation of axons in individual microchannels. Similarly, the use of microfluidic chips enables the construction not only of 2D but also of 3D brain, retinal, and peripheral nervous system model circuits. Such brain-on-a-chip and organoid-on-a-chip technologies are promising platforms for studying these organs as they closely recapitulate some aspects of in vivo biological processes. Microfluidic 3D neuronal models, together with 2D in vitro systems, are widely used in many applications ranging from drug development and toxicology studies to neurological disease modeling and personalized medicine. Altogether, microfluidics provide researchers with powerful systems that complement and partially replace animal models.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Jesús Eduardo Rojo Arias
- Wellcome—MRC
Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge
Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Johannes Striebel
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Volker Busskamp
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| |
Collapse
|
4
|
Wang M, Zhang J, Tan H, Chen D, Lei Y, Li Y, Wang J, Chen J. Inherent Single-Cell Bioelectrical Parameters of Thousands of Neutrophils, Eosinophils and Basophils Derived from Impedance Flow Cytometry. Cytometry A 2022; 101:639-647. [PMID: 35419939 DOI: 10.1002/cyto.a.24559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 11/08/2022]
Abstract
Single-cell bioelectrical properties are commonly used for blood cell phenotyping in a label-free manner. However, previously reported inherent single-cell bioelectrical parameters (e.g., diameter Dc , specific membrane capacitance Csm and cytoplasmic conductivity σcy ) of neutrophils, eosinophils and basophils were obtained from only tens of individual cells with limited statistical significance. In this study, granulocytes were separated into neutrophils, eosinophils and basophils based on fluorescent flow cytometry, which were further aspirated through a constriction-microchannel impedance flow cytometry for electrical property characterization. Based on this microfluidic impedance flow cytometry, single-cell values of Dc , Csm and σcy were measured as 10.25 ± 0.66 μm, 2.17 ± 0.30 μF/cm2 , and 0.37 ± 0.05 S/m for neutrophils (ncell = 9 442); 9.73 ± 0.51 μm, 2.07 ± 0.19 μF/cm2 , and 0.30 ± 0.04 S/m for eosinophils (ncell = 2 982); 9.75 ± 0.49 μm, 2.06 ± 0.17 μF/cm2 , and 0.31 ± 0.04 S/m for basophils (ncell = 5 377). Based on these inherent single-cell bioelectrical parameters, neural pattern recognition was conducted, producing classification rates of 80.8% (neutrophil vs. eosinophil), 77.7% (neutrophil vs. basophil) and 59.3% (neutrophil vs. basophil). These results indicate that as inherent single-cell bioelectrical parameters, Dc , Csm and σcy can be used to classify neutrophils from eosinophils or basophils to some extent while they cannot be used to effectively distinguish eosinophils from basophils.
Collapse
Affiliation(s)
- Minruihong Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jie Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China
| | - Huiwen Tan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ying Lei
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China
| | - Yueying Li
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
5
|
Tan H, Wang M, Zhang Y, Huang X, Chen D, Li Y, Wu MH, Wang K, Wang J, Chen J. Inherent Bioelectrical Parameters of Hundreds of Thousands of Single Leukocytes Based on Impedance Flow Cytometry. Cytometry A 2022; 101:630-638. [PMID: 35150049 DOI: 10.1002/cyto.a.24544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 11/11/2022]
Abstract
As label-free biomarkers, bioelectrical properties of single cells have been widely used in hematology analyzers for 3-part differential of leukocytes, in which, however, instrument dependent bioelectrical parameters (e.g., DC/AC impedance values) rather than inherent bioelectrical parameters (e.g., diameter Dc , specific membrane capacitance Csm and cytoplasmic conductivity σcy ) were used, leading to poor comparisons among different instruments. In order to address this issue, this study collected inherent bioelectrical parameters from hundreds of thousands of white blood cells based on a home-developed impedance flow cytometry with corresponding 3-part differential of leukocytes realized. More specifically, leukocytes were separated into three major subtypes of granulocytes, monocytes and lymphocytes based on density gradient centrifugation. Then these separated cells were aspirated through a constriction-microchannel based impedance flow cytometry where inherent bioelectrical parameters of Dc , Csm and σcy were quantified as 9.8 ± 0.7 μm, 2.06 ± 0.26 μF/cm2 , and 0.34 ± 0.05 S/m for granulocytes (ncell = 134 829); 10.4 ± 1.0 μm, 2.45 ± 0.48 μF/cm2 , and 0.42 ± 0.08 S/m for monocytes (ncell = 40 226); 8.0 ± 0.5 μm, 2.23 ± 0.34 μF/cm2 , and 0.35 ± 0.08 S/m for lymphocytes (ncell = 129 193). Based on these inherent bioelectrical parameters, neural pattern recognition was conducted, producing a high "classification accuracy" of 93.5% in classifying these three subtypes of leukocytes. These results indicate that as inherent bioelectrical parameters, Dc , Csm and σcy can be used to electrically phenotype white blood cells in a label-free manner.
Collapse
Affiliation(s)
- Huiwen Tan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Minruihong Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xukun Huang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yueying Li
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China
| | - Min-Hsien Wu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Ke Wang
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, People's Republic of China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
6
|
Zhang Z, Huang X, Liu K, Lan T, Wang Z, Zhu Z. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis. BIOSENSORS 2021; 11:470. [PMID: 34821686 PMCID: PMC8615761 DOI: 10.3390/bios11110470] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 05/10/2023]
Abstract
Cellular heterogeneity is of significance in cell-based assays for life science, biomedicine and clinical diagnostics. Electrical impedance sensing technology has become a powerful tool, allowing for rapid, non-invasive, and label-free acquisition of electrical parameters of single cells. These electrical parameters, i.e., equivalent cell resistance, membrane capacitance and cytoplasm conductivity, are closely related to cellular biophysical properties and dynamic activities, such as size, morphology, membrane intactness, growth state, and proliferation. This review summarizes basic principles, analytical models and design concepts of single-cell impedance sensing devices, including impedance flow cytometry (IFC) to detect flow-through single cells and electrical impedance spectroscopy (EIS) to monitor immobilized single cells. Then, recent advances of both electrical impedance sensing systems applied in cell recognition, cell counting, viability detection, phenotypic assay, cell screening, and other cell detection are presented. Finally, prospects of impedance sensing technology in single-cell analysis are discussed.
Collapse
Affiliation(s)
- Zhao Zhang
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| | - Xiaowen Huang
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Department of Orthopedics, Nanjing 210029, China;
| | - Ke Liu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| | - Tiancong Lan
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| | - Zixin Wang
- School of Electronics and Information Technology, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou 510275, China;
| | - Zhen Zhu
- Key Laboratory of MEMS of Ministry of Education, Southeast University, Sipailou 2, Nanjing 210018, China; (Z.Z.); (K.L.); (T.L.)
| |
Collapse
|
7
|
Jiang M, Wang X, Zhao X, Teng Y, Chen J, Wang J, Yue W. Classification of tumor subtypes leveraging constriction-channel based impedance flow cytometry and optical imaging. Cytometry A 2021; 99:1114-1122. [PMID: 33909347 DOI: 10.1002/cyto.a.24358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/29/2021] [Indexed: 11/06/2022]
Abstract
As label-free biomarkers, electrical properties of single cells have been widely used for cell-type classification and cell-status evaluation. However, as intrinsic bioelectrical markers, previously reported membrane capacitance and cytoplasmic resistance (e.g., specific membrane capacitance Cspecific membrane and cytoplasmic conductivity σcytoplasm ) of tumor subtypes were derived from tens of single cells, lacking statistical significance due to low cell numbers. In this study, tumor subtypes were constructed based on phenotype (treatment with 4-methylumbelliferone) or genotype (knockdown of ROCK1) modifications and then aspirated through a constriction-channel based impedance flow cytometry to characterize single-cell Cspecific membrane and σcytoplasm . Thousands of single tumor cells with phenotype modifications were measured, resulting in significant differences in 1.64 ± 0.43 μF/cm2 vs. 1.55 ± 0.47 μF/cm2 of Cspecific membrane and 0.96 ± 0.37 S/m vs. 1.24 ± 0.47 S/m of σcytoplasm for 95C cells (792 cells of 95C-control vs. 1529 cells of 95C-pheno-mod); 2.56 ± 0.88 μF/cm2 vs. 2.33 ± 0.56 μF/cm2 of Cspecific membrane and 0.83 ± 0.18 S/m vs. 0.93 ± 0.25 S/m of σcytoplasm for H1299 cells (962 cells of H1299-control vs. 637 cells of H1299-pheno-mod). Furthermore, thousands of single tumor cells with genotype modifications were measured, resulting in significant differences in 3.82 ± 0.92 vs. 3.18 ± 0.47 μF/cm2 of Cspecific membrane and 0.47 ± 0.05 vs. 0.52 ± 0.05 S/m of σcytoplasm (1100 cells of A549-control vs. 1100 cells of A549-geno-mod). These results indicate that as intrinsic bioelectrical markers, specific membrane capacitance and cytoplasmic conductivity can be used to classify tumor subtypes.
Collapse
Affiliation(s)
- Mei Jiang
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Wang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xiaoting Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Yu Teng
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Giduthuri AT, Theodossiou SK, Schiele NR, Srivastava SK. Dielectrophoretic Characterization of Tenogenically Differentiating Mesenchymal Stem Cells. BIOSENSORS 2021; 11:50. [PMID: 33669223 PMCID: PMC7919818 DOI: 10.3390/bios11020050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Tendons are collagenous musculoskeletal tissues that connect muscles to bones and transfer the forces necessary for movement. Tendons are susceptible to injury and heal poorly, with long-term loss of function. Mesenchymal stem cell (MSC)-based therapies are a promising approach for treating tendon injuries but are challenged by the difficulties of controlling stem cell fate and of generating homogenous populations of stem cells optimized for tenogenesis (differentiation toward tendon). To address this issue, we aim to explore methods that can be used to identify and ultimately separate tenogenically differentiated MSCs from non-tenogenically differentiated MSCs. In this study, baseline and tenogenically differentiating murine MSCs were characterized for dielectric properties (conductivity and permittivity) of their outer membrane and cytoplasm using a dielectrophoretic (DEP) crossover technique. Experimental results showed that unique dielectric properties distinguished tenogenically differentiating MSCs from controls after three days of tenogenic induction. A single shell model was used to quantify the dielectric properties and determine membrane and cytoplasm conductivity and permittivity. Together, cell responses at the crossover frequency, cell morphology, and shell models showed that changes potentially indicative of early tenogenesis could be detected in the dielectric properties of MSCs as early as three days into differentiation. Differences in dielectric properties with tenogenesis indicate that the DEP-based label-free separation of tenogenically differentiating cells is possible and avoids the complications of current label-dependent flow cytometry-based separation techniques. Overall, this work illustrates the potential of DEP to generate homogeneous populations of differentiated stem cells for applications in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
| | | | | | - Soumya K. Srivastava
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, ID 83844-1021, USA; (A.T.G.); (S.K.T.); (N.R.S.)
| |
Collapse
|
9
|
Honrado C, Michel N, Moore JH, Salahi A, Porterfield V, McConnell MJ, Swami NS. Label-Free Quantification of Cell Cycle Synchronicity of Human Neural Progenitor Cells Based on Electrophysiology Phenotypes. ACS Sens 2021; 6:156-165. [PMID: 33325234 DOI: 10.1021/acssensors.0c02022] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ability to coax human-induced pluripotent stem cells (hiPSCs) into human neural progenitor cells (hNPCs) can lead to novel drug discovery and transplant therapy platforms for neurological diseases. Since hNPCs can form organoids that mimic brain development, there is emerging interest in their label-free characterization for controlling cell composition to optimize organoid formation in three-dimensional (3D) cultures. However, this requires the ability to quantify hNPCs in heterogeneous samples with subpopulations of similar phenotype. Using high-throughput (>6000 cells per condition), single-cell impedance cytometry, we present the utilization of electrophysiology for quantification of hNPC subpopulations that are altered in cell cycle synchronicity by camptothecin (CPT) exposure. Electrophysiology phenotypes are determined from impedance magnitude and phase metrics for distinguishing each cell cycle phase, as validated by flow cytometry, for a wide range of subpopulation proportions. Using multishell dielectric models for each cell cycle phase, electrophysiology alterations with CPT dose could be predicted. This label-free detection strategy can prevent loss of cell viability to speed the optimization of cellular compositions for organoid development.
Collapse
Affiliation(s)
- Carlos Honrado
- Electrical & Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Nadine Michel
- Biochemistry & Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22904, United States
| | - John H. Moore
- Electrical & Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Armita Salahi
- Electrical & Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Veronica Porterfield
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Michael J. McConnell
- Biochemistry & Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Nathan S. Swami
- Electrical & Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
10
|
Jiao Y, Liu YW, Chen WG, Liu J. Neuroregeneration and functional recovery after stroke: advancing neural stem cell therapy toward clinical application. Neural Regen Res 2021; 16:80-92. [PMID: 32788451 PMCID: PMC7818886 DOI: 10.4103/1673-5374.286955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stroke is a main cause of death and disability worldwide. The ability of the brain to self-repair in the acute and chronic phases after stroke is minimal; however, promising stem cell-based interventions are emerging that may give substantial and possibly complete recovery of brain function after stroke. Many animal models and clinical trials have demonstrated that neural stem cells (NSCs) in the central nervous system can orchestrate neurological repair through nerve regeneration, neuron polarization, axon pruning, neurite outgrowth, repair of myelin, and remodeling of the microenvironment and brain networks. Compared with other types of stem cells, NSCs have unique advantages in cell replacement, paracrine action, inflammatory regulation and neuroprotection. Our review summarizes NSC origins, characteristics, therapeutic mechanisms and repair processes, then highlights current research findings and clinical evidence for NSC therapy. These results may be helpful to inform the direction of future stroke research and to guide clinical decision-making.
Collapse
Affiliation(s)
- Yang Jiao
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Yu-Wan Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Wei-Gong Chen
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University; Dalian Innovation Institute of Stem Cells and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
11
|
Giduthuri AT, Theodossiou SK, Schiele NR, Srivastava SK. Dielectrophoresis as a tool for electrophysiological characterization of stem cells. BIOPHYSICS REVIEWS 2020; 1:011304. [PMID: 38505626 PMCID: PMC10903368 DOI: 10.1063/5.0025056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/20/2020] [Indexed: 03/21/2024]
Abstract
Dielectrophoresis (DEP), a nonlinear electrokinetic technique caused by Maxwell-Wagner interfacial polarization of neutral particles in an electrolyte solution, is a powerful cell manipulation method used widely for various applications such as enrichment, trapping, and sorting of heterogeneous cell populations. While conventional cell characterization and sorting methods require tagging or labeling of cells, DEP has the potential to manipulate cells in a label-free way. Due to its unique ability to characterize and sort cells without the need of labeling, there is renewed interest in using DEP for stem cell research and regenerative medicine. Stem cells have the potential to differentiate into various lineages, but achieving homogeneous cell phenotypes from an initially heterogeneous cell population is a challenge. Using DEP to efficiently and affordably identify, sort, and enrich either undifferentiated or differentiated stem cell populations in a label-free way would advance their potential uses for applications in tissue engineering and regenerative medicine. This review summarizes recent, significant research findings regarding the electrophysiological characterization of stem cells, with a focus on cellular dielectric properties, i.e., permittivity and conductivity, and on studies that have obtained these measurements using techniques that preserve cell viability, such as crossover frequency. Potential applications for DEP in regenerative medicine are also discussed. Overall, DEP is a promising technique and, when used to characterize, sort, and enrich stem cells, will advance stem cell-based regenerative therapies.
Collapse
Affiliation(s)
- Anthony T. Giduthuri
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| | - Sophia K. Theodossiou
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| | - Nathan R. Schiele
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| | - Soumya K. Srivastava
- Department of Chemical & Biological Engineering, University of Idaho, Moscow, Idaho 83844, USA
| |
Collapse
|
12
|
Galpayage Dona KNU, Du E, Wei J. An impedimetric assay for the identification of abnormal mitochondrial dynamics in living cells. Electrophoresis 2020; 42:163-170. [PMID: 33169407 DOI: 10.1002/elps.202000125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/16/2023]
Abstract
Mitochondrial dynamics (fission and fusion) plays an important role in cell functions. Disruption in mitochondrial dynamics has been associated with diseases such as neurobiological disorders and cardiovascular diseases. Analysis of mitochondrial fission/fusion has been mostly achieved through direct visualization of the fission/fusion events in live-cell imaging of fluorescently labeled mitochondria. In this study, we demonstrated a label-free, non-invasive Electrical Impedance Spectroscopy (EIS) approach to analyze mitochondrial dynamics in a genetically modified human neuroblastoma SH-SY5Y cell line with no huntingtin protein expression. Huntingtin protein has been shown to regulate mitochondria dynamics. We performed EIS studies on normal SH-SY5Y cells and two independent clones of huntingtin-null cells. The impedance data was used to determine the suspension conductivity and further cytoplasmic conductivity and relate to the abnormal mitochondrial dynamics. For instance, the cytoplasm conductivity value was increased by 11% from huntingtin-null cells to normal cells. Results of this study demonstrated that EIS is sensitive to characterize the abnormal mitochondrial dynamics that can be difficult to quantify by the conventional microscopic method.
Collapse
Affiliation(s)
| | - E Du
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida, USA
| | - Jianning Wei
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
13
|
Mahesh K, Varma M, Sen P. Double-peak signal features in microfluidic impedance flow cytometry enable sensitive measurement of cell membrane capacitance. LAB ON A CHIP 2020; 20:4296-4309. [PMID: 33094786 DOI: 10.1039/d0lc00744g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The probing of individual cells at specific frequency regimes in a microfluidic impedance flow cytometer led to the observation of unusual "double peak" features in the reactive component of the resulting signal. The phenomenon was restricted to the lower frequencies (400-800 kHz) of the β-dispersion regime and its occurrence was facilitated by the co-planar microelectrode geometry in the device. To understand the reasons for this anomalous behaviour, the system was modelled using COMSOL. The simulated model agreed well with experimental observations and provided insight into the origins of this signal profile and the effect of various parameters on its behaviour. One of the most significant observations of this study was the high sensitivity of the features in the "double peak" profile to changes in cell membrane capacitance (CMC), compared to conventional "single peaks" of reactive impedance. This was consequently exploited to accurately distinguish populations of normal and glutaraldehyde treated erythrocytes based on variations in their CMC, indicating a drastic decrease in the CMC of treated cells. Additionally, we demonstrate the applicability of using this double peak effect to identify cell populations within a mixture of PBMCs. This study is an improvement over conventional approaches of measuring CMC via impedance flow cytometry by enabling the measurement of both cell size and cell membrane properties at a single frequency rather than using multiple frequencies. Using a single frequency significantly simplifies the system and reduces the associated costs. Additionally, this technique enables the measurement of CMC at relatively low frequencies.
Collapse
Affiliation(s)
- Karthik Mahesh
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science (IISc), Bangalore 560012, India.
| | - Manoj Varma
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science (IISc), Bangalore 560012, India. and Robert Bosch Centre for Cyber Physical Systems (RBCCPS), Indian Institute of Science (IISc), Bangalore 560012, India
| | - Prosenjit Sen
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science (IISc), Bangalore 560012, India.
| |
Collapse
|
14
|
Improved micro-impedance spectroscopy to determine cell barrier properties. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The goal of this study was to determine whether the Tethapod system, which was designed to determine the impedance properties of lipid bilayers, could be used for cell culture in order to utilise micro-impedance spectroscopy to examine further biological applications. To that purpose we have used normal epithelial cells from kidney (RPTEC) and a kidney cancer cell model (786-O). We demonstrate that the Tethapod system is compatible with the culture of 10,000 cells seeded to grow on a small area gold measurement electrode for several days without affecting the cell viability. Furthermore, the range of frequencies for EIS measurements were tuned to examine easily the characteristics of the cell monolayer. We demonstrate significant differences in the paracellular resistance pathway between normal and cancer kidney epithelial cells. Thus, we conclude that this device has advantages for the study of cultured cells that include (i) the configuration of measurement and reference electrodes across a microfluidic channel, and (ii) the small surface area of 6 parallel measurement electrodes (2.1 mm2) integrated in a microfluidic system. These characteristics might improve micro-impedance spectroscopy measurement techniques to provide a simple tool for further studies in the field of the patho-physiology of biological barriers.
Collapse
|
15
|
Zheng T, Zhang Z, Zhu R. Flexible Trapping and Manipulation of Single Cells on a Chip by Modulating Phases and Amplitudes of Electrical Signals Applied onto Microelectrodes. Anal Chem 2019; 91:4479-4487. [DOI: 10.1021/acs.analchem.8b05228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tianyang Zheng
- State Key Laboratory of Precision Measurement
Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Zhizhong Zhang
- State Key Laboratory of Precision Measurement
Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Rong Zhu
- State Key Laboratory of Precision Measurement
Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Wang K, Chang CC, Chiu TK, Zhao X, Chen D, Chou WP, Zhao Y, Wang HM, Wang J, Wu MH, Chen J. Membrane capacitance of thousands of single white blood cells. J R Soc Interface 2018; 14:rsif.2017.0717. [PMID: 29212758 DOI: 10.1098/rsif.2017.0717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022] Open
Abstract
As label-free biomarkers, the electrical properties of single cells are widely used for cell type classification and cellular status evaluation. However, as intrinsic cellular electrical markers, previously reported membrane capacitances (e.g. specific membrane capacitance Cspec and total membrane capacitance Cmem) of white blood cells were derived from tens of single cells, lacking statistical significance due to low cell numbers. In this study, white blood cells were first separated into granulocytes and lymphocytes by density gradient centrifugation and were then aspirated through a microfluidic constriction channel to characterize both Cspec and Cmem Thousands of granulocytes (ncell = 3327) and lymphocytes (ncell = 3302) from 10 healthy blood donors were characterized, resulting in Cspec values of 1.95 ± 0.22 µF cm-2 versus 2.39 ± 0.39 µF cm-2 and Cmem values of 6.81 ± 1.09 pF versus 4.63 ± 0.57 pF. Statistically significant differences between granulocytes and lymphocytes were located for both Cspec and Cmem In addition, neural network-based pattern recognition was used to classify white blood cells, producing successful classification rates of 78.1% for Cspec and 91.3% for Cmem, respectively. These results indicate that as intrinsic bioelectrical markers, membrane capacitances may contribute to the classification of white blood cells.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chun-Chieh Chang
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Tzu-Keng Chiu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Xiaoting Zhao
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wen-Pin Chou
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan, Republic of China
| | - Yang Zhao
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hung-Ming Wang
- Division of Haematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan, Republic of China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China .,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Min-Hsien Wu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan, Republic of China .,Division of Haematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan, Republic of China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China .,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
17
|
Elwan AM, Salama AA, Sayed AM, Ghoneim AM, Elsaied AA, Ibrahim FA, Elnasharty MMM. Biophysical and biochemical roles of Moringa oleifera leaves as radioprotector. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 140:142-149. [PMID: 29885346 DOI: 10.1016/j.pbiomolbio.2018.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/27/2018] [Accepted: 06/05/2018] [Indexed: 02/06/2023]
Abstract
It has been found that medicinal plants have chemical and/or therapeutic effects on different diseases related to oxidative damage. This work investigates the use of ethanolic Moringa oleifera leaves extract; as a protective and/or therapeutic agent against damage induced by high acute dose of ionizing radiation. Also, this study aims to explore the associations of electrical properties (relaxation time and DC conductivity of bone marrow) with biochemical markers (SOD, CAT and GSH) to detect and prognosticate radiation effects. Biophysical and biochemical data revealed that Moringa extract can improve the electrical properties of bone marrow and the antioxidants levels in the blood. They also showed that the feeding of Moringa leaves extract post irradiation is preferred to recover rapidly and continuously from radiation effects.
Collapse
Affiliation(s)
- Azhar M Elwan
- Biochemistry Dept, National Research Centre (NRC), 33 El Bohouth St., Dokki, 12622, Giza, Egypt.
| | - Aida A Salama
- Physics Dept, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Abdelbaset M Sayed
- Biochemistry Dept, National Research Centre (NRC), 33 El Bohouth St., Dokki, 12622, Giza, Egypt
| | - Ahmed M Ghoneim
- Microwave Physics& Dielectrics Dept, National Research Centre (NRC), 33 El Bohouth St., Dokki, 12622, Giza, Egypt
| | - Aziza A Elsaied
- Physics Dept, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fatma A Ibrahim
- Biochemistry Dept, National Research Centre (NRC), 33 El Bohouth St., Dokki, 12622, Giza, Egypt
| | - Mohamed M M Elnasharty
- Microwave Physics& Dielectrics Dept, National Research Centre (NRC), 33 El Bohouth St., Dokki, 12622, Giza, Egypt
| |
Collapse
|
18
|
Xavier M, de Andrés MC, Spencer D, Oreffo ROC, Morgan H. Size and dielectric properties of skeletal stem cells change critically after enrichment and expansion from human bone marrow: consequences for microfluidic cell sorting. J R Soc Interface 2018; 14:rsif.2017.0233. [PMID: 28835540 PMCID: PMC5582119 DOI: 10.1098/rsif.2017.0233] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/27/2017] [Indexed: 12/14/2022] Open
Abstract
The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact.
Collapse
Affiliation(s)
- Miguel Xavier
- Faculty of Physical Sciences and Engineering, and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.,Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Southampton General Hospital, Tremona Road, SO16 6YD Southampton, UK
| | - María C de Andrés
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Southampton General Hospital, Tremona Road, SO16 6YD Southampton, UK
| | - Daniel Spencer
- Faculty of Physical Sciences and Engineering, and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Southampton General Hospital, Tremona Road, SO16 6YD Southampton, UK
| | - Hywel Morgan
- Faculty of Physical Sciences and Engineering, and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
19
|
|
20
|
Grein TA, Loewe D, Dieken H, Salzig D, Weidner T, Czermak P. High titer oncolytic measles virus production process by integration of dielectric spectroscopy as online monitoring system. Biotechnol Bioeng 2018; 115:1186-1194. [DOI: 10.1002/bit.26538] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/30/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Tanja A. Grein
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
| | - Daniel Loewe
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
| | - Hauke Dieken
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
| | - Tobias Weidner
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering Pharmaceutical Technology; University of Applied Sciences Mittelhessen; Giessen Germany
- Faculty of Biology and Chemistry; Justus Liebig University; Giessen Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME); Project group Bioresources; Giessen Germany
| |
Collapse
|
21
|
|