1
|
Huang L, Sui L, Yao Y, Ma Y, Zhou J, Zhang B, Liu Z, Zheng Y. Enhancing D-pantothenate production in Escherichia coli through multiplex combinatorial strategies. Bioprocess Biosyst Eng 2025; 48:247-260. [PMID: 39560716 DOI: 10.1007/s00449-024-03105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
D-pantothenate, universally acknowledged as vitamin B5, has garnered considerable interest owing to its crucial functionality in the feed, pharmaceutical, and cosmeceutical sectors. Development of microbial strains for D-pantothenate hyperproducer has emerged as a prominent research direction in recent years. Herein, we converted an engineered Escherichia coli with low yield to a plasmid-free hyperproducer of D-pantothenate using multiplex combinatorial strategies. First, an initial strain was obtained through prolonging the cell lifespan. To promote the accumulation of D-pantothenic acid, the supply of cofactors was adaptively enhanced. Additionally, the heterologous gene panE from Pseudomonas aeruginosa, which encodes ketopantoate reductase (EC 1.1.1.169) catalyzing the synthesis of d-pantoate from α-ketopantoate, was screened and integrated into the chromosome. Subsequently, a strategy of acetate recycling and NOG pathway reconstruction were introduced and successfully to improve the D-pantothenate titer to 5.48 g/L. Additionally, we screened the regulatory factors and optimized its second codon to further increase the DPA yield of the engineered strains to 6.02 g/L in shake flask. The final engineered strain DS6 could efficiently produce 72.40 g/L D-pantothenate, which is 3.18-fold higher than the original strain. This study proposed a novel multiplex combination strategy for developing microbial cell factory of D-pantothenate, which was beneficial for the advancement of efficient D-pantothenate production.
Collapse
Affiliation(s)
- Lianggang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Landuo Sui
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yuan Yao
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yixuan Ma
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Junping Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Bo Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhiqiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yuguo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
2
|
Yin L, Zhou Y, Ding N, Fang Y. Recent Advances in Metabolic Engineering for the Biosynthesis of Phosphoenol Pyruvate-Oxaloacetate-Pyruvate-Derived Amino Acids. Molecules 2024; 29:2893. [PMID: 38930958 PMCID: PMC11206799 DOI: 10.3390/molecules29122893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The phosphoenol pyruvate-oxaloacetate-pyruvate-derived amino acids (POP-AAs) comprise native intermediates in cellular metabolism, within which the phosphoenol pyruvate-oxaloacetate-pyruvate (POP) node is the switch point among the major metabolic pathways existing in most living organisms. POP-AAs have widespread applications in the nutrition, food, and pharmaceutical industries. These amino acids have been predominantly produced in Escherichia coli and Corynebacterium glutamicum through microbial fermentation. With the rapid increase in market requirements, along with the global food shortage situation, the industrial production capacity of these two bacteria has encountered two bottlenecks: low product conversion efficiency and high cost of raw materials. Aiming to push forward the update and upgrade of engineered strains with higher yield and productivity, this paper presents a comprehensive summarization of the fundamental strategy of metabolic engineering techniques around phosphoenol pyruvate-oxaloacetate-pyruvate node for POP-AA production, including L-tryptophan, L-tyrosine, L-phenylalanine, L-valine, L-lysine, L-threonine, and L-isoleucine. Novel heterologous routes and regulation methods regarding the carbon flux redistribution in the POP node and the formation of amino acids should be taken into consideration to improve POP-AA production to approach maximum theoretical values. Furthermore, an outlook for future strategies of low-cost feedstock and energy utilization for developing amino acid overproducers is proposed.
Collapse
Affiliation(s)
- Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanan Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Nana Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yu Fang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; (L.Y.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
3
|
Rajpurohit H, Eiteman MA. Citrate synthase variants improve yield of acetyl-CoA derived 3-hydroxybutyrate in Escherichia coli. Microb Cell Fact 2024; 23:173. [PMID: 38867236 PMCID: PMC11167817 DOI: 10.1186/s12934-024-02444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The microbial chiral product (R)-3-hydroxybutyrate (3-HB) is a gateway to several industrial and medical compounds. Acetyl-CoA is the key precursor for 3-HB, and several native pathways compete with 3-HB production. The principal competing pathway in wild-type Escherichia coli for acetyl-CoA is mediated by citrate synthase (coded by gltA), which directs over 60% of the acetyl-CoA into the tricarboxylic acid cycle. Eliminating citrate synthase activity (deletion of gltA) prevents growth on glucose as the sole carbon source. In this study, an alternative approach is used to generate an increased yield of 3-HB: citrate synthase activity is reduced but not eliminated by targeted substitutions in the chromosomally expressed enzyme. RESULTS Five E. coli GltA variants were examined for 3-HB production via heterologous overexpression of a thiolase (phaA) and NADPH-dependent acetoacetyl-CoA reductase (phaB) from Cupriavidus necator. In shake flask studies, four variants showed nearly 5-fold greater 3-HB yield compared to the wild-type, although pyruvate accumulated. Overexpression of either native thioesterases TesB or YciA eliminated pyruvate formation, but diverted acetyl-CoA towards acetate formation. Overexpression of pantothenate kinase similarly decreased pyruvate formation but did not improve 3-HB yield. Controlled batch studies at the 1.25 L scale demonstrated that the GltA[A267T] variant produced the greatest 3-HB titer of 4.9 g/L with a yield of 0.17 g/g. In a phosphate-starved repeated batch process, E. coli ldhA poxB pta-ackA gltA::gltA[A267T] generated 15.9 g/L 3-HB (effective concentration of 21.3 g/L with dilution) with yield of 0.16 g/g from glucose as the sole carbon source. CONCLUSIONS This study demonstrates that GltA variants offer a means to affect the generation of acetyl-CoA derived products. This approach should benefit a wide range of acetyl-CoA derived biochemical products in E. coli and other microbes. Enhancing substrate affinity of the introduced pathway genes like thiolase towards acetyl-CoA will likely further increase the flux towards 3-HB while reducing pyruvate and acetate accumulation.
Collapse
Affiliation(s)
| | - Mark A Eiteman
- School of Chemical, Materials and Biomedical Engineering, Athens, GA, USA.
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Zheng J, Zuo G, Zhou Z, Shi Z, Guo H, Sun Z, Feng Y. Indole inhibited the expression of csrA gene in Escherichia coli. J GEN APPL MICROBIOL 2024; 69:239-248. [PMID: 37423745 DOI: 10.2323/jgam.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Indole is a very important signal molecule which plays multiple regulatory roles in many physiological and biochemical processes of bacteria, but up to now, the reasons for its wide range of functions have not been revealed. In this study, we found that indole inhibits the motility, promotes glycogen accumulation and enhances starvation resistance of Escherichia coli. However, the regulatory effects of indole became insignificant while the global csrA gene was mutated. To reveal the regulatory relationship between indole and csrA, we studied the effects of indole on the transcription level of csrA, flhDC, glgCAP and cstA, and also the sensing of the promoters of the genes on indole. It was found that indole inhibited the transcription of csrA, and only the promoter of the csrA gene can sense indole. Namely, indole indirectly regulated the translation level of FlhDC, GlgCAP and CstA. These data indicates that indole regulation is related with the regulation of CsrA, which may throw light on the regulation mechanism research of indole.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life Science, Beijing Institute of Technology
- School of Life Science, Langfang Normal University
| | - Guocai Zuo
- School of Life Science, Langfang Normal University
| | - Zhiguo Zhou
- School of Life Science, Langfang Normal University
| | - Zhenxia Shi
- School of Life Science, Langfang Normal University
| | - Huiying Guo
- School of Life Science, Langfang Normal University
| | - Zemin Sun
- School of Life Science, Beijing Institute of Technology
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology
| |
Collapse
|
5
|
Ren X, Wei Y, Zhao H, Shao J, Zeng F, Wang Z, Li L. A comprehensive review and comparison of L-tryptophan biosynthesis in Saccharomyces cerevisiae and Escherichia coli. Front Bioeng Biotechnol 2023; 11:1261832. [PMID: 38116200 PMCID: PMC10729320 DOI: 10.3389/fbioe.2023.1261832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
L-tryptophan and its derivatives are widely used in the chemical, pharmaceutical, food, and feed industries. Microbial fermentation is the most commonly used method to produce L-tryptophan, which calls for an effective cell factory. The mechanism of L-tryptophan biosynthesis in Escherichia coli, the widely used producer of L-tryptophan, is well understood. Saccharomyces cerevisiae also plays a significant role in the industrial production of biochemicals. Because of its robustness and safety, S. cerevisiae is favored for producing pharmaceuticals and food-grade biochemicals. However, the biosynthesis of L-tryptophan in S. cerevisiae has been rarely summarized. The synthetic pathways and engineering strategies of L-tryptophan in E. coli and S. cerevisiae have been reviewed and compared in this review. Furthermore, the information presented in this review pertains to the existing understanding of how L-tryptophan affects S. cerevisiae's stress fitness, which could aid in developing a novel plan to produce more resilient industrial yeast and E. coli cell factories.
Collapse
Affiliation(s)
- Xinru Ren
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Yue Wei
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Honglu Zhao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Juanjuan Shao
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China
| | - Zhen Wang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Baoding, China
| | - Li Li
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| |
Collapse
|
6
|
Liu L, Tang S, Liu T, Zhang Z, Wang X, Bilal M, Liu S, Luo H, Zhao Y, Duan X. Transcriptomic analysis approach towards an improved tolerance of Escherichia coli to gallic acid stress. Arch Microbiol 2023; 205:372. [PMID: 37934297 DOI: 10.1007/s00203-023-03708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/01/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
As a natural green additive, gallic acid has been widely used in food production. However, it can inhibit the physiological metabolism of Escherichia coli, which severely limits the ability and efficiency of gallic acid production. To explore the adaptation mechanism of E. coli under gallic acid stress and further explore the target of genetic modification, the effects of gallic acid stress on the fermentation characteristics of E. coli W3110 ATCC (82057) were investigated by cell biomass and cell morphometry. Moreover, transcriptome analysis was used to analyze the gene transcription level of E. coli W3110 ATCC (82057) to explore effects of gallic acid stress on important essential physiological processes. The results showed that under high concentration of gallic acid, the biomass of E. coli W3110 ATCC (82057) decreased significantly and the cells showed irregular morphology. Transcriptome analysis showed that E. coli W3110 ATCC (82057) improved its adaptive capacity through three strategies. First, genes of bamD, ompC, and ompF encoding outer membrane protein BamD, OmpC, and OmpC were decreased 5-, 31.1- and 8.1-fold, respectively, under gallic acid stress compared to the control, leading to the reduction of gallic acid absorption. Moreover, genes (mdtA, mdtB, mdtC, mdtD, mdtE, and mdtF) related to MdtABC multidrug efflux system and multidrug efflux pump MdtEF were up-regulated by1.0-53.0 folds, respectively, and genes (aaeA, aaeB, and aaeX) related to AaeAB efflux system were up-regulated by 8.0-13.3 folds, respectively, which contributed to the excretion of gallic acid. In addition, genes of acid fitness island also were up-regulated by different degrees under the stress of an acidic environment to maintain the stability of the intracellular environment. In conclusion, E. coli W3110 ATCC (82057) would enhance its tolerance to gallic acid by reducing absorption, increasing excretion, and maintaining intracellular environment stability. This study provides research ideas for the construction of engineered strains with high gallic acid yield.
Collapse
Affiliation(s)
- Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Shijie Tang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Tingting Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Zihao Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Xuefeng Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Shuai Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| |
Collapse
|
7
|
Sgro M, Ray J, Foster E, Mychasiuk R. Making migraine easier to stomach: the role of the gut-brain-immune axis in headache disorders. Eur J Neurol 2023; 30:3605-3621. [PMID: 37329292 DOI: 10.1111/ene.15934] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND PURPOSE Headache disorders place a significant burden on the healthcare system, being the leading cause of disability in those under 50 years. Novel studies have interrogated the relationship between headache disorders and gastrointestinal dysfunction, suggesting a link between the gut-brain-immune (GBI) axis and headache pathogenesis. Although the exact mechanisms driving the complex relationship between the GBI axis and headache disorders remain unclear, there is a growing appreciation that a healthy and diverse microbiome is necessary for optimal brain health. METHODS A literature search was performed through multiple reputable databases in search of Q1 journals within the field of headache disorders and gut microbiome research and were critically and appropriately evaluated to investigate and explore the following; the role of the GBI axis in dietary triggers of headache disorders and the evidence indicating that diet can be used to alleviate headache severity and frequency. The relationship between the GBI axis and post-traumatic headache is then synthesized. Finally, the scarcity of literature regarding paediatric headache disorders and the role that the GBI axis plays in mediating the relationship between sex hormones and headache disorders are highlighted. CONCLUSIONS There is potential for novel therapeutic targets for headache disorders if understanding of the GBI axis in their aetiology, pathogenesis and recovery is increased.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jason Ray
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Austin Health, Melbourne, Victoria, Australia
| | - Emma Foster
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Tang M, Pan X, Yang T, You J, Zhu R, Yang T, Zhang X, Xu M, Rao Z. Multidimensional engineering of Escherichia coli for efficient synthesis of L-tryptophan. BIORESOURCE TECHNOLOGY 2023; 386:129475. [PMID: 37451510 DOI: 10.1016/j.biortech.2023.129475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Development of microbial cell factory for L-tryptophan (L-trp) production has received widespread attention but still requires extensive efforts due to weak metabolic flux distribution and low yield. Here, the riboswitch-based high-throughput screening (HTS) platform was established to construct a powerful L-trp-producing chassis cell. To facilitate L-trp biosynthesis, gene expression was regulated by promoter and N-terminal coding sequences (NCS) engineering. Modules of degradation, transport and by-product synthesis related to L-trp production were also fine-tuned. Next, a novel transcription factor YihL was excavated to negatively regulate L-trp biosynthesis. Self-regulated promoter-mediated dynamic regulation of branch pathways was performed and cofactor supply was improved for further L-trp biosynthesis. Finally, without extra addition, the yield of strain Trp30 reached 42.5 g/L and 0.178 g/g glucose after 48 h of cultivation in 5-L bioreactor. Overall, strategies described here worked up a promising method combining HTS and multidimensional regulation for developing cell factories for products in interest.
Collapse
Affiliation(s)
- Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Tianjin Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Rongshuai Zhu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
9
|
Mechanistic Insight into Phenolic Compounds Toxicity and State-of-the-art Strategies for Enhancing the Tolerance of Escherichia coli to Phenolic Compounds. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Liu L, Ma X, Bilal M, Wei L, Tang S, Luo H, Zhao Y, Wang Z, Duan X. Toxicity and inhibition mechanism of gallic acid on physiology and fermentation performance of Escherichia coli. BIORESOUR BIOPROCESS 2022; 9:76. [PMID: 38647760 PMCID: PMC10992115 DOI: 10.1186/s40643-022-00564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/10/2022] [Indexed: 11/10/2022] Open
Abstract
Gallic acid is a natural phenolic acid that has a stress inhibition effect on Escherichia coli. This study by integrates fermentation characteristics and transcriptional analyses to elucidate the physiological mechanism of E. coli 3110 response to gallic acid. Compared with the control (without stress), the cell growth was severely retarded, and irregular cell morphology appeared in the case of high levels of gallic acid stress. The glucose consumption of E. coli was reduced successively with the increase of gallic acid content in the fermentation medium. After 20 h of gallic acid stress, cofactor levels (ATP, NAD+ and NADH) of E. coli 3110 were similarly decreased, indicating a more potent inhibitory effect of gallic acid on E. coli. The transcriptional analysis revealed that gallic acid altered the gene expression profiles related to five notable differentially regulated pathways. The genes related to the two-component system were up-regulated, while the genes associated with ABC-transporter, energy metabolism, carbon metabolism, and fatty acid biosynthesis were down-regulated. This is the first report to comprehensively assess the toxicity of gallic acid on E. coli. This study has implications for the efficient production of phenolic compounds by E. coli and provides new ideas for the study of microbial tolerance to environmental stress and the identification of associated tolerance targets.
Collapse
Affiliation(s)
- Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Xiaolong Ma
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Linlin Wei
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Shijie Tang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| |
Collapse
|
11
|
Zhan Y, Qiao J, Chen S, Dong X, Wu Y, Wang Z, Wang X. Metabolic Engineering for Overproduction of Colanic Acid in Escherichia coli Mutant with Short Lipopolysaccharide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8351-8364. [PMID: 35773212 DOI: 10.1021/acs.jafc.2c03053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Colanic acid is a major exopolysaccharide existing in most Enterobacteriaceae when exposed to an extreme environment. Colanic acid possesses excellent physical properties and biological activities, which makes it a candidate in the food and healthcare market. Previous strategies for colanic acid overproduction in E. coli mainly focus on removing the negative regulator on colanic acid biosynthesis or overexpressing the rcsA gene to up-regulate the cps operon. In this study, modifications in metabolic pathways were implemented in E. coli mutant strains with shortened lipopolysaccharides to improve colanic acid production. First, ackA was deleted to remove the byproduct acetate and the effect of accumulated acetyl-phosphate on colanic acid production was investigated. Second, 11 genes responsible for O-antigen synthesis were deleted to reduce its competition for glucose-1-phosphate and UDP-galactose with colanic acid production. Third, uppS was overexpressed to supply lipid carriers for synthesizing a colanic acid repeat unit. Colanic acid production in the final engineered strain WZM008/pTrcS reached 11.68 g/L in a 2.0 L bioreactor, 3.54 times the colanic acid production by the WQM001 strain. The results provide insights for further engineering E. coli to maximize CA production.
Collapse
Affiliation(s)
- Yi Zhan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jun Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shanshan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaofei Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuanming Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Liu S, Xu JZ, Zhang WG. Advances and prospects in metabolic engineering of Escherichia coli for L-tryptophan production. World J Microbiol Biotechnol 2022; 38:22. [PMID: 34989926 DOI: 10.1007/s11274-021-03212-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
As an important raw material for pharmaceutical, food and feed industry, highly efficient production of L-tryptophan by Escherichia coli has attracted a considerable attention. However, there are complicated and multiple layers of regulation networks in L-tryptophan biosynthetic pathway and thus have difficulty to rewrite the biosynthetic pathway for producing L-tryptophan with high efficiency in E. coli. This review summarizes the biosynthetic pathway of L-tryptophan and highlights the main regulatory mechanisms in E. coli. In addition, we discussed the latest metabolic engineering strategies achieved in E. coli to reconstruct the L-tryptophan biosynthetic pathway. Moreover, we also review a few strategies that can be used in E. coli to improve robustness and streamline of L-tryptophan high-producing strains. Lastly, we also propose the potential strategies to further increase L-tryptophan production by systematic metabolic engineering and synthetic biology techniques.
Collapse
Affiliation(s)
- Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| |
Collapse
|
13
|
Liu L, Bilal M, Luo H, Iqbal HMN. Impact of Transcriptional Regulation by Crp, FruR, FlhD, and TyrR on L-tryptophan Biosynthesis in Escherichia coli. APPL BIOCHEM MICRO+ 2021; 57:319-326. [DOI: 10.1134/s0003683821030091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/08/2020] [Accepted: 12/22/2020] [Indexed: 02/05/2023]
|
14
|
Souza Silverio M, Perez Calegari R, Ferreira Lima Leite GM, Maciel Lewandowski Meira Prado L, Chaves Martins B, Alberto da Silva E, Piotrovski Neto J, Gomig A, Sampaio Baptista A. VINASSE FROM THE BRAZILIAN LIGNOCELLULOSIC ETHANOL PROCESS: CHEMICAL COMPOSITION AND POTENTIAL FOR BIOPROCESSES. REVISTA BRASILEIRA DE ENGENHARIA DE BIOSSISTEMAS 2021. [DOI: 10.18011/bioeng2021v15n1p42-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Brazil is the second-largest producer of ethanol and the alcoholic fermentation wastes have become a concern for both environmental and economic reasons. Recently, the Brazilian industry has implemented the second generation (2G) process to attend the growing for biofuel. In this study, we aimed to investigate whether the 2G vinasse faces the same environmental challenges that first generation (1G) vinasses do, meaning vinasses from ethanol processes using sugarcane juice and/or molasses. Thus, vinasse was obtained from one of the recently-started 2G ethanol facilities in São Paulo State and then chemically characterized. Considering glycerol, mannitol, residual sugars, and organic acids concentrations altogether, it was determined that 2G vinasse had a total carbon source of 23,050 mg L-1 (compared to 4,800 mg L-1 in 1G vinasse). Magnesium, calcium, potassium, and others salts were determined as well. Based on its chemical composition, vinasses could be considered as nutrient sources for other bioprocesses. Finally, we brought some perspectives into bioprocesses with nutritional requirements that might be fully or partially provided by vinasses, leading to the production of bioenergy or bioproducts.
Collapse
Affiliation(s)
- Manuella Souza Silverio
- University of São Paulo. College of Agriculture, Agroindustry, Food and Nutrition, Piracicaba, SP, Brazil
| | - Rubens Perez Calegari
- University of São Paulo. Center of Nuclear Energy in Agriculture, Piracicaba, SP, Brazil
| | | | | | - Bianca Chaves Martins
- University of São Paulo. College of Agriculture, Agroindustry, Food and Nutrition, Piracicaba, SP, Brazil
| | - Eric Alberto da Silva
- University of São Paulo. College of Agriculture, Agroindustry, Food and Nutrition, Piracicaba, SP, Brazil
| | | | | | - Antonio Sampaio Baptista
- University of São Paulo. College of Agriculture, Agroindustry, Food and Nutrition, Piracicaba, SP, Brazil
| |
Collapse
|
15
|
Kutscha R, Pflügl S. Microbial Upgrading of Acetate into Value-Added Products-Examining Microbial Diversity, Bioenergetic Constraints and Metabolic Engineering Approaches. Int J Mol Sci 2020; 21:ijms21228777. [PMID: 33233586 PMCID: PMC7699770 DOI: 10.3390/ijms21228777] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 01/20/2023] Open
Abstract
Ecological concerns have recently led to the increasing trend to upgrade carbon contained in waste streams into valuable chemicals. One of these components is acetate. Its microbial upgrading is possible in various species, with Escherichia coli being the best-studied. Several chemicals derived from acetate have already been successfully produced in E. coli on a laboratory scale, including acetone, itaconic acid, mevalonate, and tyrosine. As acetate is a carbon source with a low energy content compared to glucose or glycerol, energy- and redox-balancing plays an important role in acetate-based growth and production. In addition to the energetic challenges, acetate has an inhibitory effect on microorganisms, reducing growth rates, and limiting product concentrations. Moreover, extensive metabolic engineering is necessary to obtain a broad range of acetate-based products. In this review, we illustrate some of the necessary energetic considerations to establish robust production processes by presenting calculations of maximum theoretical product and carbon yields. Moreover, different strategies to deal with energetic and metabolic challenges are presented. Finally, we summarize ways to alleviate acetate toxicity and give an overview of process engineering measures that enable sustainable acetate-based production of value-added chemicals.
Collapse
|
16
|
Li Z, Ding D, Wang H, Liu L, Fang H, Chen T, Zhang D. Engineering Escherichia coli to improve tryptophan production via genetic manipulation of precursor and cofactor pathways. Synth Syst Biotechnol 2020; 5:200-205. [PMID: 32671235 PMCID: PMC7334480 DOI: 10.1016/j.synbio.2020.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/01/2023] Open
Abstract
Optimizing the supply of biosynthetic precursors and cofactors is usually an effective metabolic strategy to improve the production of target compounds. Here, the combination of optimizing precursor synthesis and balancing cofactor metabolism was adopted to improve tryptophan production in Escherichia coli. First, glutamine synthesis was improved by expressing heterologous glutamine synthetase from Bacillus subtilis and Bacillus megaterium in the engineered Escherichia coli strain KW001, resulting in the best candidate strain TS-1. Then icd and gdhA were overexpressed in TS-1, which led to the accumulation of 1.060 g/L tryptophan. Subsequently, one more copy of prs was introduced on the chromosome to increase the flux of 5-phospho-α-d-ribose 1-diphosphate followed by the expression of mutated serA and thrA to increase the precursor supply of serine, resulting in the accumulation of 1.380 g/L tryptophan. Finally, to maintain cofactor balance, sthA and pntAB, encoding transhydrogenase, were overexpressed. With sufficient amounts of precursors and balanced cofactors, the engineered strain could produce 1.710 g/L tryptophan after 48 h of shake-flask fermentation, which was 2.76-times higher than the titer of the parent strain. Taken together, our results demonstrate that the combination of optimizing precursor supply and regulating cofactor metabolism is an effective approach for high-level production of tryptophan. Similar strategies could be applied to the production of other amino acids or related derivatives.
Collapse
Affiliation(s)
- Zhu Li
- Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Dongqin Ding
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiying Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Linxia Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Dawei Zhang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Du L, Zhang Z, Xu Q, Chen N. Central metabolic pathway modification to improve L-tryptophan production in Escherichia coli. Bioengineered 2019; 10:59-70. [PMID: 30866700 PMCID: PMC6527064 DOI: 10.1080/21655979.2019.1592417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 11/07/2022] Open
Abstract
Tryptophan, an aromatic amino acid, has been widely used in food industry because it participates in the regulation of protein synthesis and metabolic network in vivo. In this study, we obtained a strain named TRP03 by enhancing the tryptophan synthesis pathway, which could accumulate tryptophan at approximately 35 g/L in a 5 L bioreactor. We then modified the central metabolic pathway of TRP03, to increase the supply of the precursor phosphoenolpyruvate (PEP), the genes related to PEP were modified. Furthermore, citric acid transport system and TCA were upregulated to effectively increase cell growth. We observed that strain TRP07 that could accumulate tryptophan at approximately 49 g/L with a yield of 0.186 g tryptophan/g glucose in a 5 L bioreactor. By-products such as glutamate and acetic acid were reduced to 0.8 g/L and 2.2 g/L, respectively.
Collapse
Affiliation(s)
- Lihong Du
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhen Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qingyang Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
18
|
Holmes B, Paddock MB, VanderGheynst JS, Higgins BT. Algal photosynthetic aeration increases the capacity of bacteria to degrade organics in wastewater. Biotechnol Bioeng 2019; 117:62-72. [DOI: 10.1002/bit.27172] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Bryan Holmes
- Biosystems Engineering Auburn University Auburn Alabama
| | | | - Jean S. VanderGheynst
- Biological and Agricultural Engineering, UC Davis Davis California
- Bioengineering University of Massachusetts Dartmouth Dartmouth Massachusetts
| | | |
Collapse
|
19
|
Shimizu K, Matsuoka Y. Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation. Biotechnol Adv 2019; 37:107441. [PMID: 31472206 DOI: 10.1016/j.biotechadv.2019.107441] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/04/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
The micro-aerophilic organisms and aerobes as well as yeast and higher organisms have evolved to gain energy through respiration (via oxidative phosphorylation), thereby enabling them to grow much faster than anaerobes. However, during respiration, reactive oxygen species (ROSs) are inherently (inevitably) generated, and threaten the cell's survival. Therefore, living organisms (or cells) must furnish the potent defense systems to keep such ROSs at harmless level, where the cofactor balance plays crucial roles. Namely, NADH is the source of energy generation (catabolism) in the respiratory chain reactions, through which ROSs are generated, while NADPH plays important roles not only for the cell synthesis (anabolism) but also for detoxifying ROSs. Therefore, the cell must rebalance the redox ratio by modulating the fluxes of the central carbon metabolism (CCM) by regulating the multi-level regulation machinery upon genetic perturbations and the change in the growth conditions. Here, we discuss about how aerobes accomplish such cofactor homeostasis against redox perturbations. In particular, we consider how single-gene mutants (including pgi, pfk, zwf, gnd and pyk mutants) modulate their metabolisms in relation to cofactor rebalance (and also by adaptive laboratory evolution). We also discuss about how the overproduction of NADPH (by the pathway gene mutation) can be utilized for the efficient production of useful value-added chemicals such as medicinal compounds, polyhydroxyalkanoates, and amino acids, all of which require NADPH in their synthetic pathways. We then discuss about the metabolic responses against oxidative stress, where αketoacids play important roles not only for the coordination between catabolism and anabolism, but also for detoxifying ROSs by non-enzymatic reactions, as well as for reducing the production of ROSs by repressing the activities of the TCA cycle and respiration (via carbon catabolite repression). Thus, we discuss about the mechanisms (basic strategies) that modulate the metabolism from respiration to respiro-fermentative metabolism causing overflow, based on the role of Pyk activity, affecting the NADPH production at the oxidative pentose phosphate (PP) pathway, and the roles of αketoacids for the change in the source of energy generation from the oxidative phosphorylation to the substrate level phosphorylation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio university, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|
20
|
Liu L, Bilal M, Luo H, Zhao Y, Iqbal HMN. Metabolic Engineering and Fermentation Process Strategies for L-Tryptophan Production by Escherichia coli. Processes (Basel) 2019; 7:213. [DOI: 10.3390/pr7040213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
L-tryptophan is an essential aromatic amino acid that has been widely used in medicine, food, and animal feed. Microbial biosynthesis of L-tryptophan through metabolic engineering approaches represents a sustainable, cost-effective, and environmentally friendly route compared to chemical synthesis. In particular, metabolic pathway engineering allows enhanced product titers by inactivating/blocking the competing pathways, increasing the intracellular level of essential precursors, and overexpressing rate-limiting enzymatic steps. Based on the route of the L-tryptophan biosynthesis pathway, this review presents a systematic and detailed summary of the contemporary metabolic engineering approaches employed for L-tryptophan production. In addition to the engineering of the L-tryptophan biosynthesis pathway, the metabolic engineering modification of carbon source uptake, by-product formation, key regulatory factors, and the polyhydroxybutyrate biosynthesis pathway in L-tryptophan biosynthesis are discussed. Moreover, fermentation bioprocess optimization strategies used for L-tryptophan overproduction are also delineated. Towards the end, the review is wrapped up with the concluding remarks, and future strategies are outlined for the development of a high L-tryptophan production strain.
Collapse
Affiliation(s)
- Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Campus Monterrey, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico
| |
Collapse
|
21
|
Metabolic engineering for improving l-tryptophan production in Escherichia coli. ACTA ACUST UNITED AC 2019; 46:55-65. [DOI: 10.1007/s10295-018-2106-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/03/2018] [Indexed: 11/26/2022]
Abstract
Abstract
l-Tryptophan is an important aromatic amino acid that is used widely in the food, chemical, and pharmaceutical industries. Compared with the traditional synthetic methods, production of l-tryptophan by microbes is environmentally friendly and has low production costs, and feed stocks are renewable. With the development of metabolic engineering, highly efficient production of l-tryptophan in Escherichia coli has been achieved by eliminating negative regulation factors, improving the intracellular level of precursors, engineering of transport systems and overexpression of rate-limiting enzymes. However, challenges remain for l-tryptophan biosynthesis to be cost-competitive. In this review, successful and applicable strategies derived from metabolic engineering for increasing l-tryptophan accumulation in E. coli are summarized. In addition, perspectives for further efficient production of l-tryptophan are discussed.
Collapse
|
22
|
Tröndle J, Trachtmann N, Sprenger GA, Weuster-Botz D. Fed-batch production ofl-tryptophan from glycerol using recombinantEscherichia coli. Biotechnol Bioeng 2018; 115:2881-2892. [DOI: 10.1002/bit.26834] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/27/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Julia Tröndle
- Institute of Biochemical Engineering, Department of Mechanical Engineering Technical University of Munich; Garching Germany
| | - Natalia Trachtmann
- Institute of Microbiology, Center of Biochemical Engineering, University of Stuttgart; Stuttgart Germany
| | - Georg A. Sprenger
- Institute of Microbiology, Center of Biochemical Engineering, University of Stuttgart; Stuttgart Germany
| | - Dirk Weuster-Botz
- Institute of Biochemical Engineering, Department of Mechanical Engineering Technical University of Munich; Garching Germany
| |
Collapse
|
23
|
Chen L, Chen M, Ma C, Zeng AP. Discovery of feed-forward regulation in L-tryptophan biosynthesis and its use in metabolic engineering of E. coli for efficient tryptophan bioproduction. Metab Eng 2018; 47:434-444. [DOI: 10.1016/j.ymben.2018.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 10/17/2022]
|
24
|
Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production. ACTA ACUST UNITED AC 2018; 45:357-367. [DOI: 10.1007/s10295-018-2020-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 02/04/2018] [Indexed: 01/24/2023]
Abstract
Abstract
l-tryptophan (l-trp) is a precursor of various bioactive components and has great pharmaceutical interest. However, due to the requirement of several precursors and complex regulation of the pathways involved, the development of an efficient l-trp production strain is challenging. In this study, Escherichia coli (E. coli) strain KW001 was designed to overexpress the l-trp operator sequences (trpEDCBA) and 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (aroGfbr). To further improve the production of l-trp, pyruvate kinase (pykF) and the phosphotransferase system HPr (ptsH) were deleted after inactivation of repression (trpR) and attenuation (attenuator) to produce strain KW006. To overcome the relatively slow growth and to increase the transport rate of glucose, strain KW018 was generated by combinatorial regulation of glucokinase (galP) and galactose permease (glk) expression. To reduce the production of acetic acid, strain KW023 was created by repressive regulation of phosphate acetyltransferase (pta) expression. In conclusion, strain KW023 efficiently produced 39.7 g/L of l-trp with a conversion rate of 16.7% and a productivity of 1.6 g/L/h in a 5 L fed-batch fermentation system.
Collapse
|
25
|
Jing K, Tang Y, Yao C, del Rio-Chanona EA, Ling X, Zhang D. Overproduction of L-tryptophan via simultaneous feed of glucose and anthranilic acid from recombinantEscherichia coliW3110: Kinetic modeling and process scale-up. Biotechnol Bioeng 2017; 115:371-381. [DOI: 10.1002/bit.26398] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/04/2017] [Accepted: 08/02/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Keju Jing
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen China
- The Key Lab for Synthetic Biotechnology of Xiamen City; Xiamen University; Xiamen China
| | - Yuanwei Tang
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen China
| | - Chuanyi Yao
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen China
| | - Ehecatl A. del Rio-Chanona
- Centre for Process Systems Engineering; Imperial College London, South Kensington Campus; London UK
- Department of Chemical Engineering and Biotechnology; University of Cambridge; Cambridge UK
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen China
| | - Dongda Zhang
- Centre for Process Systems Engineering; Imperial College London, South Kensington Campus; London UK
| |
Collapse
|
26
|
Liu L, Chen S, Wu J. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli. J Ind Microbiol Biotechnol 2017; 44:1385-1395. [PMID: 28726163 DOI: 10.1007/s10295-017-1959-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/09/2017] [Indexed: 11/27/2022]
Abstract
Escherichia coli FB-04(pta1), a recombinant L-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (L-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key L-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)ΔpykF, showed a slightly higher L-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, L-tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)ΔpykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)ΔpykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)ΔpykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g-1 during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China. .,School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|