1
|
Saffioti NA, Sousa EB, Marin M, Leal Denis MF, Ostuni MA, Herlax V, Schwarzbaum PJ, Pallarola D. Escherichia coli α-hemolysin induces red blood cell retention in a microfluidic spleen-like device. Biophys J 2025:S0006-3495(25)00137-7. [PMID: 40077968 DOI: 10.1016/j.bpj.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/20/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
α-hemolysin (HlyA) is a major exotoxin secreted by uropathogenic Escherichia coli (UPEC), known for its ability to lyse red blood cells (RBCs). Although its lytic effects are well characterized, the nonlytic alterations on RBCs, such as increased permeability to Ca2+, osmotic imbalance, and morphological alterations, remain less understood and may be critical in UPEC pathogenesis. This study investigates the impact of these nonlytic alterations on the rheology and mechanics of RBCs using two biomimetic microfluidic devices that model key aspects of RBCs' circulation. In the first device, which mimics the mechanical deformation of RBCs in narrow capillaries, HlyA sublytic concentrations were found to significantly impair RBC deformability. These changes were accompanied by an increase in cytosolic Ca2+ and volume expansion. In contrast, the nonacylated protoxin ProHlyA neither impaired the deformability of RBCs nor triggered changes in cytosolic Ca2+ or cell volume. The second device, which simulates the RBCs' filtration by the spleen's red pulp, revealed that HlyA, but not ProHlyA, increased RBCs' retention in small gaps resembling splenic fenestrations. The extent of RBCs' retention was partially mitigated by blocking purinergic signaling, indicating a contribution of the HlyA-induced volume increase in this process. Our results suggest that the increase in cytosolic Ca2+ elicited by HlyA impacts RBCs' circulation by decreasing RBCs' deformability and increasing spleen retention. However, this impairment of RBCs' performance can function as a defense mechanism to aid in the retention of HlyA-bound RBCs, removing them from circulation, and potentially preventing vascular hemolysis.
Collapse
Affiliation(s)
- Nicolás Andrés Saffioti
- Laboratorio de Biosensores Avanzados, Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina; Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Emilia Belén Sousa
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mickaël Marin
- Université Paris Cité, INSERM, EFS, BIGR U1134, 75015, Paris, France
| | - María Florencia Leal Denis
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Vanesa Herlax
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP) CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Pablo Julio Schwarzbaum
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diego Pallarola
- Laboratorio de Biosensores Avanzados, Instituto de Nanosistemas, Universidad Nacional de San Martín, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Goksel E, Ugurel E, Nader E, Boisson C, Muniansi I, Joly P, Renoux C, Gauthier A, Connes P, Yalcin O. A preliminary study of phosphodiesterases and adenylyl cyclase signaling pathway on red blood cell deformability of sickle cell patients. Front Physiol 2023; 14:1215835. [PMID: 37781231 PMCID: PMC10540448 DOI: 10.3389/fphys.2023.1215835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy characterized by chronic anemia, intravascular hemolysis, and the occurrence of vaso-occlusive crises due to the mechanical obstruction of the microcirculation by poorly deformable red blood cells (RBCs). RBC deformability is a key factor in the pathogenesis of SCD, and is affected by various factors. In this study, we investigated the effects of adenylyl cyclase (AC) signaling pathway modulation and different phosphodiesterase (PDE) modulatory molecules on the deformability and mechanical stress responses of RBC from SCD patients (HbSS genotype) by applying 5 Pa shear stress with an ektacytometer (LORRCA). We evaluated RBC deformability before and after the application of shear stress. AC stimulation with Forskolin had distinct effects on RBC deformability depending on the application of 5 Pa shear stress. RBC deformability was increased by Forskolin before shear stress application but decreased after 5 Pa shear stress. AC inhibition with SQ22536 and protein kinase A (PKA) inhibition with H89 increased RBC deformability before and after the shear stress application. Non-selective PDE inhibition with Pentoxifylline increased RBC deformability. However, modulation of the different PDE types had distinct effects on RBC deformability, with PDE1 inhibition by Vinpocetine increasing deformability while PDE4 inhibition by Rolipram decreased RBC deformability after the shear stress application. The effects of the drugs varied greatly between patients suggesting some could benefit from one drug while others not. Developing drugs targeting the AC signaling pathway could have clinical applications for SCD, but more researches with larger patient cohorts are needed to identify the differences in the responses of sickle RBCs.
Collapse
Affiliation(s)
- Evrim Goksel
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Koc University, Istanbul, Türkiye
- Graduate School of Health Sciences, Koc University, Istanbul, Türkiye
| | - Elif Ugurel
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Koc University, Istanbul, Türkiye
| | - Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Camille Boisson
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Ingrid Muniansi
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Philippe Joly
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Celine Renoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | | | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Ozlem Yalcin
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Koc University, Istanbul, Türkiye
| |
Collapse
|
3
|
Tuttobene MR, Schachter J, Álvarez CL, Saffioti NA, Leal Denis MF, Kessler H, García Véscovi E, Schwarzbaum PJ. ShlA toxin of Serratia induces P2Y2- and α5β1-dependent autophagy and bacterial clearance from host cells. J Biol Chem 2023; 299:105119. [PMID: 37527778 PMCID: PMC10474472 DOI: 10.1016/j.jbc.2023.105119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023] Open
Abstract
Serratia marcescens is an opportunistic human pathogen involved in antibiotic-resistant hospital acquired infections. Upon contact with the host epithelial cell and prior to internalization, Serratia induces an early autophagic response that is entirely dependent on the ShlA toxin. Once Serratia invades the eukaryotic cell and multiples inside an intracellular vacuole, ShlA expression also promotes an exocytic event that allows bacterial egress from the host cell without compromising its integrity. Several toxins, including ShlA, were shown to induce ATP efflux from eukaryotic cells. Here, we demonstrate that ShlA triggered a nonlytic release of ATP from Chinese hamster ovary (CHO) cells. Enzymatic removal of accumulated extracellular ATP (eATP) or pharmacological blockage of the eATP-P2Y2 purinergic receptor inhibited the ShlA-promoted autophagic response in CHO cells. Despite the intrinsic ecto-ATPase activity of CHO cells, the effective concentration and kinetic profile of eATP was consistent with the established affinity of the P2Y2 receptor and the known kinetics of autophagy induction. Moreover, eATP removal or P2Y2 receptor inhibition also suppressed the ShlA-induced exocytic expulsion of the bacteria from the host cell. Blocking α5β1 integrin highly inhibited ShlA-dependent autophagy, a result consistent with α5β1 transactivation by the P2Y2 receptor. In sum, eATP operates as the key signaling molecule that allows the eukaryotic cell to detect the challenge imposed by the contact with the ShlA toxin. Stimulation of P2Y2-dependent pathways evokes the activation of a defensive response to counteract cell damage and promotes the nonlytic clearance of the pathogen from the infected cell.
Collapse
Affiliation(s)
- Marisel R Tuttobene
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Julieta Schachter
- Facultad de Farmacia y Bioquímica, Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Cora L Álvarez
- Facultad de Farmacia y Bioquímica, Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Nicolás A Saffioti
- Facultad de Farmacia y Bioquímica, Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Nanosistemas, Universidad Nacional de General San Martín, Buenos Aires, Argentina
| | - M Florencia Leal Denis
- Facultad de Farmacia y Bioquímica, Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Horst Kessler
- Department Chemie, Institute for Advanced Study, Technical University Munich, Garching, Germany
| | - Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina.
| | - Pablo J Schwarzbaum
- Facultad de Farmacia y Bioquímica, Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Yurinskaya VE, Moshkov AV, Marakhova II, Vereninov AA. Unidirectional fluxes of monovalent ions in human erythrocytes compared with lymphoid U937 cells: Transient processes after stopping the sodium pump and in response to osmotic challenge. PLoS One 2023; 18:e0285185. [PMID: 37141334 PMCID: PMC10159352 DOI: 10.1371/journal.pone.0285185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/11/2023] [Indexed: 05/06/2023] Open
Abstract
Recently, we have developed software that allows, using a minimum of required experimental data, to find the characteristics of ion homeostasis and a list of all unidirectional fluxes of monovalent ions through the main pathways in the cell membrane both in a balanced state and during the transient processes. Our approach has been successfully validated in human proliferating lymphoid U937 cells during transient processes after stopping the Na/K pump by ouabain and for staurosporine-induced apoptosis. In present study, we used this approach to find the characteristics of ion homeostasis and the monovalent ion fluxes through the cell membrane of human erythrocytes in a resting state and during the transient processes after stopping the Na/K pump with ouabain and in response to osmotic challenge. Due to their physiological significance, erythrocytes remain the object of numerous studies, both experimental and computational methods. Calculations showed that, under physiological conditions, the K+ fluxes through electrodiffusion channels in the entire erythrocyte ion balance is small compared to the fluxes through the Na/K pump and cation-chloride cotransporters. The proposed computer program well predicts the dynamics of the erythrocyte ion balance disorders after stopping the Na/K pump with ouabain. In full accordance with predictions, transient processes in human erythrocytes are much slower than in proliferating cells such as lymphoid U937 cells. Comparison of real changes in the distribution of monovalent ions under osmotic challenge with the calculated ones indicates a change in the parameters of the ion transport pathways through the plasma membrane of erythrocytes in this case. The proposed approach may be useful in studying the mechanisms of various erythrocyte dysfunctions.
Collapse
Affiliation(s)
| | - Alexey V Moshkov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Irina I Marakhova
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Alexey A Vereninov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| |
Collapse
|
5
|
Alvarez CL, Chêne A, Semblat JP, Gamain B, Lapouméroulie C, Fader CM, Hattab C, Sévigny J, Denis MFL, Lauri N, Ostuni MA, Schwarzbaum PJ. Homeostasis of extracellular ATP in uninfected RBCs from a Plasmodium falciparum culture and derived microparticles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183980. [PMID: 35654147 DOI: 10.1016/j.bbamem.2022.183980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022]
Abstract
Plasmodium falciparum, a dangerous parasitic agent causing malaria, invades human red blood cells (RBCs), causing hemolysis and microvascular obstruction. These and other pathological processes of malaria patients are due to metabolic and structural changes occurring in uninfected RBCs. In addition, infection activates the production of microparticles (MPs). ATP and byproducts are important extracellular ligands modulating purinergic signaling within the intravascular space. Here, we analyzed the contribution of uninfected RBCs and MPs to the regulation of extracellular ATP (eATP) of RBCs, which depends on the balance between ATP release by specific transporters and eATP hydrolysis by ectonucleotidases. RBCs were cultured with P. falciparum for 24-48 h prior to experiments, from which uninfected RBCs and MPs were purified. On-line luminometry was used to quantify the kinetics of ATP release. Luminometry, colorimetry and radioactive methods were used to assess the rate of eATP hydrolysis by ectonucleotidases. Rates of ATP release and eATP hydrolysis were also evaluated in MPs. Uninfected RBCs challenged by different stimuli displayed a strong and transient activation of ATP release, together with an elevated rate of eATP hydrolysis. MPs contained ATP in their lumen, which was released upon vesicle rupture, and were able to hydrolyze eATP. Results suggest that uninfected RBCs and MPs can act as important determinants of eATP regulation of RBCs during malaria. The comparison of eATP homeostasis in infected RBCs, ui-RBCs, and MPs allowed us to speculate on the impact of P. falciparum infection on intravascular purinergic signaling and the control of the vascular caliber by RBCs.
Collapse
Affiliation(s)
- Cora L Alvarez
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Arnaud Chêne
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015 Paris, France
| | - Jean-Philippe Semblat
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015 Paris, France
| | - Benoît Gamain
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015 Paris, France
| | | | - Claudio M Fader
- Laboratorio de Fisiología y Fisiopatología del Glóbulo Rojo. Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina; Facultad de Odontología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claude Hattab
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015 Paris, France
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - María Florencia Leal Denis
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Natalia Lauri
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Mariano A Ostuni
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015 Paris, France
| | - Pablo J Schwarzbaum
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Cátedra de Química Analítica, Junín 956, C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
6
|
Interactive Dynamics of Cell Volume and Cell Death in Human Erythrocytes Exposed to α-Hemolysin from Escherichia coli. Int J Mol Sci 2022; 23:ijms23020872. [PMID: 35055067 PMCID: PMC8778525 DOI: 10.3390/ijms23020872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
α-hemolysin (HlyA) of E. coli binds irreversibly to human erythrocytes and induces cell swelling, ultimately leading to hemolysis. We characterized the mechanism involved in water transport induced by HlyA and analyzed how swelling and hemolysis might be coupled. Osmotic water permeability (Pf) was assessed by stopped-flow light scattering. Preincubation with HlyA strongly reduced Pf in control- and aquaporin 1-null red blood cells, although the relative Pf decrease was similar in both cell types. The dynamics of cell volume and hemolysis on RBCs was assessed by electrical impedance, light dispersion and hemoglobin release. Results show that HlyA induced erythrocyte swelling, which is enhanced by purinergic signaling, and is coupled to osmotic hemolysis. We propose a mathematical model of HlyA activity where the kinetics of cell volume and hemolysis in human erythrocytes depend on the flux of osmolytes across the membrane, and on the maximum volume that these cells can tolerate. Our results provide new insights for understanding signaling and cytotoxicity mediated by HlyA in erythrocytes.
Collapse
|
7
|
Schachter J, Alvarez CL, Bazzi Z, Faillace MP, Corradi G, Hattab C, Rinaldi DE, Gonzalez-Lebrero R, Molineris MP, Sévigny J, Ostuni MA, Schwarzbaum PJ. Extracellular ATP hydrolysis in Caco-2 human intestinal cell line. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183679. [PMID: 34216588 DOI: 10.1016/j.bbamem.2021.183679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Extracellular nucleotides and nucleosides activate signaling pathways that play major roles in the physiology and pathophysiology of the gastrointestinal tract. Ectonucleotidases hydrolyze extracellular nucleotides and thus regulate ligand exposure to purinergic receptors. In this study, we investigated the expression, localization and activities of ectonucleotidases using Caco-2 cells, a model of human intestinal epithelial cells. In addition, by studying ATP release and the rates of extracellular ATP (eATP) hydrolysis, we analyzed the contribution of these processes to the regulation of eATP in these cells. Results show that Caco-2 cells regulate the metabolism of eATP and by-products by ecto-nucleoside triphosphate diphosphohydrolase-1 and -2, a neutral ecto-phosphatase and ecto-5'-nucleotidase. All these ectoenzymes were kinetically characterized using intact cells, and their presence confirmed by denatured and native gels, western blot and cytoimmunofluorescence techniques. In addition, regulation of eATP was studied by monitoring the dynamic balance between intracellular ATP release and ectoATPase activity. Following mechanical and hypotonic stimuli, Caco-2 cells triggered a strong but transient release of intracellular ATP, with almost no energy cost, leading to a steep increase of eATP concentration, which was later reduced by ectoATPase activity. A data-driven algorithm allowed quantifying and predicting the rates of ATP release and ATP consumption contributing to the dynamic accumulation of ATP at the cell surface.
Collapse
Affiliation(s)
- J Schachter
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina.
| | - C L Alvarez
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Z Bazzi
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - M P Faillace
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO-Houssay), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - G Corradi
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - C Hattab
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France; Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France
| | - D E Rinaldi
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - R Gonzalez-Lebrero
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD Buenos Aires, Argentina
| | - M Pucci Molineris
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Av. 60 y Av. 120, La Plata, Argentina; Universidad Nacional de La Plata, Facultad de Ciencias Médicas, Av. 60 y Av. 120, La Plata, Argentina
| | - J Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - M A Ostuni
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France; Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France
| | - P J Schwarzbaum
- Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini", Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956, C1113AAD Buenos Aires, Argentina.
| |
Collapse
|
8
|
Mongalev NP, Rubtsova LY, Vakhnina NA, Shadrina VD, Chupakhin ON, Bojko ER. Effects of Succinate-Containing Preparation on Characteristics of Rat Erythrocytes in Exhaustive Swimming with a Load. Bull Exp Biol Med 2021; 170:706-709. [PMID: 33893946 DOI: 10.1007/s10517-021-05137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 11/29/2022]
Abstract
We studied the dynamics of the red blood cell composition of Wistar male rats at rest and when swimming with a load (4% body weight) before and after administration of a succinatecontaining preparation (meso-2,3-dimercaptosuccinic acid). In rats receiving the succinatecontaining preparation, a decrease in the number of red blood cells and an increase in their volume and absolute and relative number of reticulocytes were observed at rest in comparison with vivarium control. In rats exposed to exhaustive swimming after preliminary administration of the test preparation (12 h before the test), we observed a decrease in hematocrit and erythrocyte diameter in comparison with the corresponding parameters in rats not treated with the preparation; the level of hemoglobin did not change. The pattern of changes in the cellular composition of red blood in rats at rest and during swimming against the background of treatment with the succinate-containing preparation in comparison with vivarium control is considered as a result of its effect on physical exercise under conditions of stabilization of hemoglobin and hematocrit levels, activation of proliferative activity of red bone marrow, and an increase in time of swimming to exhaustion by 2.8 times.
Collapse
Affiliation(s)
- N P Mongalev
- Insititute of Physiology of Federal Research Centre Komi Research Center, Ural Division of the Russian Academy of Sciences, Syktyvkar, Russia.
| | - L Yu Rubtsova
- Insititute of Physiology of Federal Research Centre Komi Research Center, Ural Division of the Russian Academy of Sciences, Syktyvkar, Russia
| | - N A Vakhnina
- Insititute of Physiology of Federal Research Centre Komi Research Center, Ural Division of the Russian Academy of Sciences, Syktyvkar, Russia
| | - V D Shadrina
- Insititute of Physiology of Federal Research Centre Komi Research Center, Ural Division of the Russian Academy of Sciences, Syktyvkar, Russia
| | - O N Chupakhin
- I. Ya. Postovsky Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - E R Bojko
- Insititute of Physiology of Federal Research Centre Komi Research Center, Ural Division of the Russian Academy of Sciences, Syktyvkar, Russia
| |
Collapse
|
9
|
Shoshan-Barmatz V, Shteinfer-Kuzmine A, Verma A. VDAC1 at the Intersection of Cell Metabolism, Apoptosis, and Diseases. Biomolecules 2020; 10:E1485. [PMID: 33114780 PMCID: PMC7693975 DOI: 10.3390/biom10111485] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
The voltage-dependent anion channel 1 (VDAC1) protein, is an important regulator of mitochondrial function, and serves as a mitochondrial gatekeeper, with responsibility for cellular fate. In addition to control over energy sources and metabolism, the protein also regulates epigenomic elements and apoptosis via mediating the release of apoptotic proteins from the mitochondria. Apoptotic and pathological conditions, as well as certain viruses, induce cell death by inducing VDAC1 overexpression leading to oligomerization, and the formation of a large channel within the VDAC1 homo-oligomer. This then permits the release of pro-apoptotic proteins from the mitochondria and subsequent apoptosis. Mitochondrial DNA can also be released through this channel, which triggers type-Ι interferon responses. VDAC1 also participates in endoplasmic reticulum (ER)-mitochondria cross-talk, and in the regulation of autophagy, and inflammation. Its location in the outer mitochondrial membrane, makes VDAC1 ideally placed to interact with over 100 proteins, and to orchestrate the interaction of mitochondrial and cellular activities through a number of signaling pathways. Here, we provide insights into the multiple functions of VDAC1 and describe its involvement in several diseases, which demonstrate the potential of this protein as a druggable target in a wide variety of pathologies, including cancer.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (A.S.-K.); (A.V.)
| | | | | |
Collapse
|
10
|
Novozhilov AV, Mindukshev IV, Korf EA, Krivchenko AI, Goncharov NV. Ammonium Salts Promote Functional Adaptation of Rat Erythrocytes on the Model of Forced Swimming. Bull Exp Biol Med 2020; 168:444-448. [PMID: 32146621 DOI: 10.1007/s10517-020-04728-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 01/05/2023]
Abstract
Ammonium, an end-product of catabolism, in low doses can promote adaptation of metabolic pathways in erythrocytes under conditions of extreme physical exercise. We compared the effects of two ammonium salts, ammonium chloride and ammonium carbonate, in two doses on biochemical parameters of rat erythrocytes 1 day after extreme physical exercise in a 4-week cycle of forced swimming. Of 16 analyzed parameters, the maximum number of significant shifts from the control was revealed in the groups of rats receiving ammonium chloride in doses of 20 and 10 mg/kg, and the minimal number of differences was found in groups treated with ammonium carbonate in the same doses. The comparison of the levels of reduced glutathione and 2.3-bisphosphoglicerate and activities of 5'-nucleotidase and Ca2+- and Na/K-ATPases attested to more rigorous control of the mechanism of oxygen delivery to tissues by erythrocytes after administration of ammonium chloride in a dose of 20 mg/kg.
Collapse
Affiliation(s)
- A V Novozhilov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - I V Mindukshev
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - E A Korf
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A I Krivchenko
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - N V Goncharov
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
11
|
Filippin KJ, de Souza KFS, de Araujo Júnior RT, Torquato HFV, Dias DA, Parisotto EB, Ferreira AT, Paredes-Gamero EJ. Involvement of P2 receptors in hematopoiesis and hematopoietic disorders, and as pharmacological targets. Purinergic Signal 2020; 16:1-15. [PMID: 31863258 PMCID: PMC7166233 DOI: 10.1007/s11302-019-09684-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Several reports have shown the presence of P2 receptors in hematopoietic stem cells (HSCs). These receptors are activated by extracellular nucleotides released from different sources. In the hematopoietic niche, the release of purines and pyrimidines in the milieu by lytic and nonlytic mechanisms has been described. The expression of P2 receptors from HSCs until maturity is still intriguing scientists. Several reports have shown the participation of P2 receptors in events associated with modulation of the immune system, but their participation in other physiological processes is under investigation. The presence of P2 receptors in HSCs and their ability to modulate this population have awakened interest in exploring the involvement of P2 receptors in hematopoiesis and their participation in hematopoietic disorders. Among the P2 receptors, the receptor P2X7 is of particular interest, because of its different roles in hematopoietic cells (e.g., infection, inflammation, cell death and survival, leukemias and lymphomas), making the P2X7 receptor a promising pharmacological target. Additionally, the role of P2Y12 receptor in platelet activation has been well-documented and is the main example of the importance of the pharmacological modulation of P2 receptor activity. In this review, we focus on the role of P2 receptors in the hematopoietic system, addressing these receptors as potential pharmacological targets.
Collapse
Affiliation(s)
- Kelly Juliana Filippin
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Kamylla F S de Souza
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | | | - Heron Fernandes Vieira Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
- Universidade Braz Cubas, Av. Francisco Rodrigues Filho 1233, Mogi das Cruzes, SP, 08773-380, Brazil
| | - Dhébora Albuquerque Dias
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Eduardo Benedetti Parisotto
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Alice Teixeira Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, SP, 04023-062, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| | - Edgar J Paredes-Gamero
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil.
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| |
Collapse
|
12
|
Kosenko E, Tikhonova L, Alilova G, Urios A, Montoliu C. The Erythrocytic Hypothesis of Brain Energy Crisis in Sporadic Alzheimer Disease: Possible Consequences and Supporting Evidence. J Clin Med 2020; 9:jcm9010206. [PMID: 31940879 PMCID: PMC7019250 DOI: 10.3390/jcm9010206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease (AD) is a fatal form of dementia of unknown etiology. Although amyloid plaque accumulation in the brain has been the subject of intensive research in disease pathogenesis and anti-amyloid drug development; the continued failures of the clinical trials suggest that amyloids are not a key cause of AD and new approaches to AD investigation and treatment are needed. We propose a new hypothesis of AD development based on metabolic abnormalities in circulating red blood cells (RBCs) that slow down oxygen release from RBCs into brain tissue which in turn leads to hypoxia-induced brain energy crisis; loss of neurons; and progressive atrophy preceding cognitive dysfunction. This review summarizes current evidence for the erythrocytic hypothesis of AD development and provides new insights into the causes of neurodegeneration offering an innovative way to diagnose and treat this systemic disease.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia; (L.T.); (G.A.)
- Correspondence: or ; Tel.: +7-4967-73-91-68
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia; (L.T.); (G.A.)
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia; (L.T.); (G.A.)
| | - Amparo Urios
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain; (A.U.); (C.M.)
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain; (A.U.); (C.M.)
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
13
|
Dietary Fatty Acids Affect Red Blood Cell Membrane Composition and Red Blood Cell ATP Release in Dairy Cows. Int J Mol Sci 2019; 20:ijms20112769. [PMID: 31195708 PMCID: PMC6600345 DOI: 10.3390/ijms20112769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/29/2022] Open
Abstract
Diets of dairy cows are often based on maize silage (MS), delivering lower amounts of n-3 fatty acids (FA) compared to grass silage-based diets. The fatty acid composition of the cell membrane can affect the cell function. We evaluated the effects of an MS-based diet on bovine red blood cell (RBC) membrane FA composition and dietary effects on controlled ATP release of RBC. In trial 1, German Holstein cows were fed an MS-based total mixed ration for 24 weeks. The FA composition of RBC membranes from repeatedly taken blood samples was analysed in addition to the abundance of the RBC membrane protein flotillin-1, which is involved in, for example, cell signalling. In trial 2, four rumen fistulated MS-fed cows were abomasally infused in a 4 × 4 Latin square model with three successively increasing lipid dosages (coconut oil, linseed–safflower oil mix (EFA; rich in n-3 FA), Lutalin®, providing conjugated linoleic acids (CLA) or the combination of the supplements, EFA + CLA) for six weeks, followed by a three-week washout period. In trial 2, we analysed RBC ATP release, flotillin-1, and the membrane protein abundance of pannexin-1, which is involved in ATP release as the last part of a signalling cascade. In trial 1, the total amount of n-3 FA in RBC membranes decreased and the flotillin-1 abundance increased over time. In trial 2, the RBC n-3 FA amount was higher after the six-week infusion period of EFA or EFA + CLA. Furthermore, depending on the dosage of FA, the ATP release from RBC increased. The abundance of flotillin-1 and pannexin-1 was not affected in trial 2. It is concluded that changes of the membrane FA composition influence the RBC function, leading to altered ATP release from intact bovine RBC.
Collapse
|
14
|
Leal Denis MF, Lefevre SD, Alvarez CL, Lauri N, Enrique N, Rinaldi DE, Gonzalez-Lebrero R, Vecchio LE, Espelt MV, Stringa P, Muñoz-Garay C, Milesi V, Ostuni MA, Herlax V, Schwarzbaum PJ. Regulation of extracellular ATP of human erythrocytes treated with α-hemolysin. Effects of cell volume, morphology, rheology and hemolysis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:896-915. [PMID: 30726708 DOI: 10.1016/j.bbamcr.2019.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/10/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
Abstract
Alpha-hemolysin (HlyA) of uropathogenic strains of Escherichia coli irreversibly binds to human erythrocytes (RBCs) and triggers activation of ATP release and metabolic changes ultimately leading to hemolysis. We studied the regulation of extracellular ATP (ATPe) of RBCs exposed to HlyA. Luminometry was used to assess ATP release and ATPe hydrolysis, whereas changes in cell volume and morphology were determined by electrical impedance, ektacytometry and aggregometry. Exposure of RBCs to HlyA induced a strong increase of [ATPe] (3-36-fold) and hemolysis (1-44-fold), partially compensated by [ATPe] hydrolysis by ectoATPases and intracellular ATPases released by dead cells. Carbenoxolone, a pannexin 1 inhibitor, partially inhibited ATP release (43-67%). The un-acylated toxin ProHlyA and the deletion analog HlyA∆914-936 were unable to induce ATP release or hemolysis. For HlyA treated RBCs, a data driven mathematical model showed that simultaneous lytic and non-lytic release mainly governed ATPe kinetics, while ATPe hydrolysis became important after prolonged toxin exposure. HlyA induced a 1.5-fold swelling, while blocking this swelling reduced ATP release by 77%. Blocking ATPe activation of purinergic P2X receptors reduced swelling by 60-80%. HlyA-RBCs showed an acute 1.3-2.2-fold increase of Ca2+i, increased crenation and externalization of phosphatidylserine. Perfusion of HlyA-RBCs through adhesion platforms showed strong adhesion to activated HMEC cells, followed by rapid detachment. HlyA exposed RBCs exhibited increased sphericity under osmotic stress, reduced elongation under shear stress, and very low aggregation in viscous media. Overall results showed that HlyA-RBCs displayed activated ATP release, high but weak adhesivity, low deformability and aggregability and high sphericity.
Collapse
Affiliation(s)
- M F Leal Denis
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica, Cátedra de Química Química Analítica y Fisicoquímica, Junín 956 Buenos Aires, Argentina
| | - S D Lefevre
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.; Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France
| | - C L Alvarez
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Intendente Güiraldes 2160 Buenos Aires, Argentina
| | - N Lauri
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Superior, Junín 956 Buenos Aires, Argentina
| | - N Enrique
- Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Calle 47 y 115 La Plata, Argentina.; Universidad Nacional de la Plata, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Calle 47, Casco Urbano, La Plata, Argentina
| | - D E Rinaldi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956 Buenos Aires, Argentina
| | - R Gonzalez-Lebrero
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Cátedra de Química Biológica, Junín 956 Buenos Aires, Argentina
| | - L E Vecchio
- Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Calle 47 y 115 La Plata, Argentina.; Universidad Nacional de la Plata, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Calle 47, Casco Urbano, La Plata, Argentina
| | - M V Espelt
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Superior, Junín 956 Buenos Aires, Argentina
| | - P Stringa
- Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Calle 47 y 115 La Plata, Argentina.; Universidad Favaloro, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTyB), Av. Entre Ríos 495, Buenos Aires, Argentina.; Universidad Nacional de La Plata, Laboratorio de Trasplante de Órganos y Tejidos, Facultad de Ciencias, Calle 60 y 120, La Plata, Argentina
| | - C Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México (UNAM), Av. Universidad s/n, Cuernavaca, Mexico
| | - V Milesi
- Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Calle 47 y 115 La Plata, Argentina.; Universidad Nacional de la Plata, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Cátedra de Fisiología, Calle 47, Casco Urbano, La Plata, Argentina
| | - M A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.; Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France
| | - V Herlax
- Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Facultad de Ciencias Médicas, Av. 60 y Av. 120, La Plata, Argentina.; Universidad Nacional de La Plata, Facultad de Ciencias Médicas, Av. 60 y Av. 120, La Plata, Argentina
| | - P J Schwarzbaum
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisico-Química Biológicas (IQUIFIB) "Prof. Alejandro C. Paladini", Facultad de Farmacia y Bioquímica, Junín 956 Buenos Aires, Argentina.; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Superior, Junín 956 Buenos Aires, Argentina..
| |
Collapse
|
15
|
Lauri N, Bazzi Z, Alvarez CL, Leal Denis MF, Schachter J, Herlax V, Ostuni MA, Schwarzbaum PJ. ATPe Dynamics in Protozoan Parasites. Adapt or Perish. Genes (Basel) 2018; 10:E16. [PMID: 30591699 PMCID: PMC6356682 DOI: 10.3390/genes10010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 01/25/2023] Open
Abstract
In most animals, transient increases of extracellular ATP (ATPe) are used for physiological signaling or as a danger signal in pathological conditions. ATPe dynamics are controlled by ATP release from viable cells and cell lysis, ATPe degradation and interconversion by ecto-nucleotidases, and interaction of ATPe and byproducts with cell surface purinergic receptors and purine salvage mechanisms. Infection by protozoan parasites may alter at least one of the mechanisms controlling ATPe concentration. Protozoan parasites display their own set of proteins directly altering ATPe dynamics, or control the activity of host proteins. Parasite dependent activation of ATPe conduits of the host may promote infection and systemic responses that are beneficial or detrimental to the parasite. For instance, activation of organic solute permeability at the host membrane can support the elevated metabolism of the parasite. On the other hand ecto-nucleotidases of protozoan parasites, by promoting ATPe degradation and purine/pyrimidine salvage, may be involved in parasite growth, infectivity, and virulence. In this review, we will describe the complex dynamics of ATPe regulation in the context of protozoan parasite⁻host interactions. Particular focus will be given to features of parasite membrane proteins strongly controlling ATPe dynamics. This includes evolutionary, genetic and cellular mechanisms, as well as structural-functional relationships.
Collapse
Affiliation(s)
- Natalia Lauri
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Zaher Bazzi
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Cora L Alvarez
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Exact and Natural Sciences, Department of Biodiversity and Experimental Biology, University of Buenos Aires, Intendente Güiraldes, Buenos Aires 2160, Argentina.
| | - María F Leal Denis
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Chair of Analytical Chemistry and Physicochemistry, Faculty of Pharmacy and Biochemistry, Department of Analytical Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| | - Julieta Schachter
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
| | - Vanesa Herlax
- Biochemistry Research Institute of La Plata (INIBIOLP) "Prof. Dr. Rodolfo R. Brenner", Faculty of Medical Sciences, National University of La Plata, National Scientific and Technical Research Council, Av. 60 y Av. 120 La Plata, Argentina.
- National University of La Plata, Faculty of Medical Sciences, Av. 60 y Av. 120 La Plata, Argentina.
| | - Mariano A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Paris Diderot University, Sorbonne Paris Cité, University of La Réunion, University of Antilles, F-75015 Paris, France.
- National Institute of Blood Transfusion (INTS), Laboratory of Excellence GR-Ex, F-75015 Paris, France.
| | - Pablo J Schwarzbaum
- Institute of Biological Chemistry and Physicochemistry (IQUIFIB) "Prof. Alejandro C. Paladini", Faculty of Pharmacy and Biochemistry, University of Buenos Aires, National Scientific and Technical Research Council (CONICET), Junín 956 Buenos Aires, Argentina.
- Faculty of Pharmacy and Biochemistry, Department of Biological Chemistry, Chair of Biological Chemistry, University of Buenos Aires, Junín 956 Buenos Aires, Argentina.
| |
Collapse
|
16
|
Marginedas-Freixa I, Alvarez CL, Moras M, Hattab C, Bouyer G, Chene A, Lefevre SD, Le Van Kim C, Bihel F, Schwarzbaum PJ, Ostuni MA. Induction of ATP Release, PPIX Transport, and Cholesterol Uptake by Human Red Blood Cells Using a New Family of TSPO Ligands. Int J Mol Sci 2018; 19:ijms19103098. [PMID: 30308949 PMCID: PMC6213633 DOI: 10.3390/ijms19103098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 02/07/2023] Open
Abstract
Two main isoforms of the Translocator Protein (TSPO) have been identified. TSPO1 is ubiquitous and is mainly present at the outer mitochondrial membrane of most eukaryotic cells, whereas, TSPO2 is specific to the erythroid lineage, located at the plasma membrane, the nucleus, and the endoplasmic reticulum. The design of specific tools is necessary to determine the molecular associations and functions of TSPO, which remain controversial nowadays. We recently demonstrated that TSPO2 is involved in a supramolecular complex of the erythrocyte membrane, where micromolar doses of the classical TSPO ligands induce ATP release and zinc protoporphyrin (ZnPPIX) transport. In this work, three newly-designed ligands (NCS1016, NCS1018, and NCS1026) were assessed for their ability to modulate the functions of various erythrocyte's and compare them to the TSPO classical ligands. The three new ligands were effective in reducing intraerythrocytic Plasmodium growth, without compromising erythrocyte survival. While NCS1016 and NCS1018 were the most effective ligands in delaying sorbitol-induced hemolysis, NCS1016 induced the highest uptake of ZnPPIX and NCS1026 was the only ligand inhibiting the cholesterol uptake. Differential effects of ligands are probably due, not only, to ligand features, but also to the dynamic interaction of TSPO with various partners at the cell membrane. Further studies are necessary to fully understand the mechanisms of the TSPO's complex activation.
Collapse
Affiliation(s)
- Irene Marginedas-Freixa
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Cora L Alvarez
- Instituto de Química y Fisico-Química Biológicas "Prof. Alejandro C. Paladini", UBA, CONICET, Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina.
- Departamento de Biodiversidad y Biología Experimental, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina.
| | - Martina Moras
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Claude Hattab
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Guillaume Bouyer
- UMR 8227 LBI2M, Comparative Erythrocyte's Physiology, CNRS, Sorbonne Université, Laboratoire d'Excellence GR-Ex, F-29680 Roscoff, France.
| | - Arnaud Chene
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Sophie D Lefevre
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Caroline Le Van Kim
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| | - Frederic Bihel
- UMR7200, Laboratoire d'Innovation Thérapeutique, Faculty of Pharmacy, University of Strasbourg, CNRS, F-67400 Illkirch Graffenstaden, France.
| | - Pablo J Schwarzbaum
- Instituto de Química y Fisico-Química Biológicas "Prof. Alejandro C. Paladini", UBA, CONICET, Facultad de Farmacia y Bioquímica, Junín 956, C1113AAD Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina.
| | - Mariano A Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015 Paris, France.
- Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015 Paris, France.
| |
Collapse
|
17
|
Angelani CR, Carabias P, Cruz KM, Delfino JM, de Sautu M, Espelt MV, Ferreira-Gomes MS, Gómez GE, Mangialavori IC, Manzi M, Pignataro MF, Saffioti NA, Salvatierra Fréchou DM, Santos J, Schwarzbaum PJ. A metabolic control analysis approach to introduce the study of systems in biochemistry: the glycolytic pathway in the red blood cell. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 46:502-515. [PMID: 30281891 DOI: 10.1002/bmb.21139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Metabolic control analysis (MCA) is a promising approach in biochemistry aimed at understanding processes in a quantitative fashion. Here the contribution of enzymes and transporters to the control of a given pathway flux and metabolite concentrations is determined and expressed quantitatively by means of numerical coefficients. Metabolic flux can be influenced by a wide variety of modulators acting on one or more metabolic steps along the pathway. We describe a laboratory exercise to study metabolic regulation of human erythrocytes (RBCs). Within the framework of MCA, students use these cells to determine the sensitivity of the glycolytic flux to two inhibitors (iodoacetic acid: IA, and iodoacetamide: IAA) known to act on the enzyme glyceraldehyde-3-phosphate-dehydrogenase. Glycolytic flux was estimated by determining the concentration of extracellular lactate, the end product of RBC glycolysis. A low-cost colorimetric assay was implemented, that takes advantage of the straightforward quantification of the absorbance signal from the photographic image of the multi-well plate taken with a standard digital camera. Students estimate flux response coefficients for each inhibitor by fitting an empirical function to the experimental data, followed by analytical derivation of this function. IA and IAA exhibit qualitatively different patterns, which are thoroughly analyzed in terms of the physicochemical properties influencing their action on the target enzyme. IA causes highest glycolytic flux inhibition at lower concentration than IAA. This work illustrates the feasibility of using the MCA approach to study key variables of a simple metabolic system, in the context of an upper level biochemistry course. © 2018 International Union of Biochemistry and Molecular Biology, 46(5):502-515, 2018.
Collapse
Affiliation(s)
- Carla R Angelani
- Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Pablo Carabias
- Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Karen M Cruz
- Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina
| | - José M Delfino
- Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Marilina de Sautu
- Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina
| | - María V Espelt
- Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Mariela S Ferreira-Gomes
- Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Gabriela E Gómez
- Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Irene C Mangialavori
- Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Malena Manzi
- Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina
| | - María F Pignataro
- Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Nicolás A Saffioti
- Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Damiana M Salvatierra Fréchou
- Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Javier Santos
- Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Pablo J Schwarzbaum
- Departamento de Química Biológica and Institute of Biochemistry and Biophysics (IQUIFIB, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires. Junín 956, C1113AAD, Buenos Aires, Argentina
| |
Collapse
|
18
|
Marginedas-Freixa I, Alvarez CL, Moras M, Leal Denis MF, Hattab C, Halle F, Bihel F, Mouro-Chanteloup I, Lefevre SD, Le Van Kim C, Schwarzbaum PJ, Ostuni MA. Human erythrocytes release ATP by a novel pathway involving VDAC oligomerization independent of pannexin-1. Sci Rep 2018; 8:11384. [PMID: 30061676 PMCID: PMC6065367 DOI: 10.1038/s41598-018-29885-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that the translocase protein TSPO2 together with the voltage-dependent anion channel (VDAC) and adenine nucleotide transporter (ANT) were involved in a membrane transport complex in human red blood cells (RBCs). Because VDAC was proposed as a channel mediating ATP release in RBCs, we used TSPO ligands together with VDAC and ANT inhibitors to test this hypothesis. ATP release was activated by TSPO ligands, and blocked by inhibitors of VDAC and ANT, while it was insensitive to pannexin-1 blockers. TSPO ligand increased extracellular ATP (ATPe) concentration by 24–59% over the basal values, displaying an acute increase in [ATPe] to a maximal value, which remained constant thereafter. ATPe kinetics were compatible with VDAC mediating a fast but transient ATP efflux. ATP release was strongly inhibited by PKC and PKA inhibitors as well as by depleting intracellular cAMP or extracellular Ca2+, suggesting a mechanism involving protein kinases. TSPO ligands favoured VDAC polymerization yielding significantly higher densities of oligomeric bands than in unstimulated cells. Polymerization was partially inhibited by decreasing Ca2+ and cAMP contents. The present results show that TSPO ligands induce polymerization of VDAC, coupled to activation of ATP release by a supramolecular complex involving VDAC, TSPO2 and ANT.
Collapse
Affiliation(s)
- Irene Marginedas-Freixa
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
| | - Cora Lilia Alvarez
- Instituto de Química y Fisico-Química Biológicas "Prof. Alejandro C. Paladini", UBA, CONICET, Facultad de Farmacia y Bioquímica, Junín 956, Buenos Aires, Argentina.,Universidad de Buenos Aires. Facultad Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
| | - Martina Moras
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
| | - María Florencia Leal Denis
- Instituto de Química y Fisico-Química Biológicas "Prof. Alejandro C. Paladini", UBA, CONICET, Facultad de Farmacia y Bioquímica, Junín 956, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química Analítica, Buenos Aires, Argentina
| | - Claude Hattab
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
| | - François Halle
- UMR7200, Laboratoire d'Innovation Thérapeutique, Faculty of Pharmacy, University of Strasbourg, CNRS, 67400, Illkirch Graffenstaden, France
| | - Frédéric Bihel
- UMR7200, Laboratoire d'Innovation Thérapeutique, Faculty of Pharmacy, University of Strasbourg, CNRS, 67400, Illkirch Graffenstaden, France
| | - Isabelle Mouro-Chanteloup
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
| | - Sophie Denise Lefevre
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
| | - Caroline Le Van Kim
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
| | - Pablo Julio Schwarzbaum
- Instituto de Química y Fisico-Química Biológicas "Prof. Alejandro C. Paladini", UBA, CONICET, Facultad de Farmacia y Bioquímica, Junín 956, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica. Cátedra de Química Biológica Superior, Buenos Aires, Argentina
| | - Mariano Anibal Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015, Paris, France. .,Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015, Paris, France.
| |
Collapse
|
19
|
Dinarelli S, Longo G, Dietler G, Francioso A, Mosca L, Pannitteri G, Boumis G, Bellelli A, Girasole M. Erythrocyte's aging in microgravity highlights how environmental stimuli shape metabolism and morphology. Sci Rep 2018; 8:5277. [PMID: 29588453 PMCID: PMC5869709 DOI: 10.1038/s41598-018-22870-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/25/2018] [Indexed: 12/15/2022] Open
Abstract
The determination of the function of cells in zero-gravity conditions is a subject of interest in many different research fields. Due to their metabolic unicity, the characterization of the behaviour of erythrocytes maintained in prolonged microgravity conditions is of particular importance. Here, we used a 3D-clinostat to assess the microgravity-induced modifications of the structure and function of these cells, by investigating how they translate these peculiar mechanical stimuli into modifications, with potential clinical interest, of the biochemical pathways and the aging processes. We compared the erythrocyte's structural parameters and selected metabolic indicators that are characteristic of the aging in microgravity and standard static incubation conditions. The results suggest that, at first, human erythrocytes react to external stimuli by adapting their metabolic patterns and the rate of consumption of the cell resources. On longer timeframes, the cells translate even small differences in the environment mechanical solicitations into structural and morphologic features, leading to distinctive morphological patterns of aging.
Collapse
Affiliation(s)
- S Dinarelli
- Istituto di Struttura della Materia - CNR, Via fosso del cavaliere 100, 00133, Roma, Italy
| | - G Longo
- Istituto di Struttura della Materia - CNR, Via fosso del cavaliere 100, 00133, Roma, Italy.,LPMV-IPhys-EPFL, Route de la Sorge, Lausanne, Switzerland
| | - G Dietler
- LPMV-IPhys-EPFL, Route de la Sorge, Lausanne, Switzerland
| | - A Francioso
- Dipartimento di Scienze Biochimiche "A. Rossi-Fanelli" Universita "Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy
| | - L Mosca
- Dipartimento di Scienze Biochimiche "A. Rossi-Fanelli" Universita "Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy
| | - G Pannitteri
- Dipartimento di Scienze cardiovascolari, respiratorie, nefrologiche, anestesiologiche e geriatriche Università "Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy
| | - G Boumis
- Dipartimento di Scienze Biochimiche "A. Rossi-Fanelli" Universita "Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy
| | - A Bellelli
- Dipartimento di Scienze Biochimiche "A. Rossi-Fanelli" Universita "Sapienza", Piazzale A. Moro 5, 00185, Roma, Italy
| | - M Girasole
- Istituto di Struttura della Materia - CNR, Via fosso del cavaliere 100, 00133, Roma, Italy.
| |
Collapse
|
20
|
Xu J, Chen L, Li L. Pannexin hemichannels: A novel promising therapy target for oxidative stress related diseases. J Cell Physiol 2017; 233:2075-2090. [PMID: 28295275 DOI: 10.1002/jcp.25906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022]
Abstract
Pannexins, which contain three subtypes: pannexin-1, -2, and -3, are vertebrate glycoproteins that form non-junctional plasma membrane intracellular hemichannels via oligomerization. Oxidative stress refers to an imbalance of the generation and elimination of reactive oxygen species (ROS). Studies have shown that elevated ROS levels are pivotal in the development of a variety of diseases. Recent studies indicate that the occurrence of these oxidative stress related diseases is associated with pannexin hemichannels. It is also reported that pannexins regulate the production of ROS which in turn may increase the opening of pannexin hemichannels. In this paper, we review recent researches about the important role of pannexin hemichannels in oxidative stress related diseases. Thus, pannexin hemichannels, novel therapeutic targets, hold promise in managing oxidative stress related diseases such as the tumor, inflammatory bowel diseases (IBD), pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), cardiovascular disease, insulin resistance (IR), and neural degeneration diseases.
Collapse
Affiliation(s)
- Jin Xu
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Linxi Chen
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Lanfang Li
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| |
Collapse
|
21
|
Dynamic regulation of extracellular ATP in Escherichia coli. Biochem J 2017; 474:1395-1416. [PMID: 28246335 DOI: 10.1042/bcj20160879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 12/13/2022]
Abstract
We studied the kinetics of extracellular ATP (ATPe) in Escherichia coli and their outer membrane vesicles (OMVs) stimulated with amphipatic peptides melittin (MEL) and mastoparan 7 (MST7). Real-time luminometry was used to measure ATPe kinetics, ATP release, and ATPase activity. The latter was also determined by following [32P]Pi released from [γ-32P]ATP. E. coli was studied alone, co-incubated with Caco-2 cells, or in rat jejunum segments. In E. coli, the addition of [γ-32P]ATP led to the uptake and subsequent hydrolysis of ATPe. Exposure to peptides caused an acute 3-fold (MST7) and 7-fold (MEL) increase in [ATPe]. In OMVs, ATPase activity increased linearly with [ATPe] (0.1-1 µM). Exposure to MST7 and MEL enhanced ATP release by 3-7 fold, with similar kinetics to that of bacteria. In Caco-2 cells, the addition of ATP to the apical domain led to a steep [ATPe] increase to a maximum, with subsequent ATPase activity. The addition of bacterial suspensions led to a 6-7 fold increase in [ATPe], followed by an acute decrease. In perfused jejunum segments, exposure to E. coli increased luminal ATP 2 fold. ATPe regulation of E. coli depends on the balance between ATPase activity and ATP release. This balance can be altered by OMVs, which display their own capacity to regulate ATPe. E. coli can activate ATP release from Caco-2 cells and intestinal segments, a response which in vivo might lead to intestinal release of ATP from the gut lumen.
Collapse
|
22
|
|