1
|
Trivedi J, Desai A, Saha P, Ajgaonkar S, Nabar S, Momin M, Muzumdar I, Nair S. Current Insights into Signature MicroRNA Networks and Signal Transduction in Osteosarcoma. CURRENT PHARMACOLOGY REPORTS 2024; 10:159-206. [DOI: 10.1007/s40495-024-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 01/06/2025]
|
2
|
Pathania AS. Crosstalk between Noncoding RNAs and the Epigenetics Machinery in Pediatric Tumors and Their Microenvironment. Cancers (Basel) 2023; 15:2833. [PMID: 37345170 DOI: 10.3390/cancers15102833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
According to the World Health Organization, every year, an estimated 400,000+ new cancer cases affect children under the age of 20 worldwide. Unlike adult cancers, pediatric cancers develop very early in life due to alterations in signaling pathways that regulate embryonic development, and environmental factors do not contribute much to cancer development. The highly organized complex microenvironment controlled by synchronized gene expression patterns plays an essential role in the embryonic stages of development. Dysregulated development can lead to tumor initiation and growth. The low mutational burden in pediatric tumors suggests the predominant role of epigenetic changes in driving the cancer phenotype. However, one more upstream layer of regulation driven by ncRNAs regulates gene expression and signaling pathways involved in the development. Deregulation of ncRNAs can alter the epigenetic machinery of a cell, affecting the transcription and translation profiles of gene regulatory networks required for cellular proliferation and differentiation during embryonic development. Therefore, it is essential to understand the role of ncRNAs in pediatric tumor development to accelerate translational research to discover new treatments for childhood cancers. This review focuses on the role of ncRNA in regulating the epigenetics of pediatric tumors and their tumor microenvironment, the impact of their deregulation on driving pediatric tumor progress, and their potential as effective therapeutic targets.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Chadda KR, Blakey EE, Coleman N, Murray MJ. The clinical utility of dysregulated microRNA expression in paediatric solid tumours. Eur J Cancer 2022; 176:133-154. [PMID: 36215946 DOI: 10.1016/j.ejca.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are short, non-protein-coding genes that regulate the expression of numerous protein-coding genes. Their expression is dysregulated in cancer, where they may function as oncogenes or tumour suppressor genes. As miRNAs are highly resistant to degradation, they are ideal biomarker candidates to improve the diagnosis and clinical management of cancer, including prognostication. Furthermore, miRNAs dysregulated in malignancy represent potential therapeutic targets. The use of miRNAs for these purposes is a particularly attractive option to explore for paediatric malignancies, where the mutational burden is typically low, in contrast to cancers affecting adult patients. As childhood cancers are rare, it has taken time to accumulate the necessary body of evidence showing the potential for miRNAs to improve clinical management across this group of tumours. Here, we review the current literature regarding the potential clinical utility of miRNAs in paediatric solid tumours, which is now both timely and justified. Exploring such avenues is warranted to improve the management and outcomes of children affected by cancer.
Collapse
Affiliation(s)
- Karan R Chadda
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ellen E Blakey
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
4
|
Spectrum of microRNAs and their target genes in cancer: intervention in diagnosis and therapy. Mol Biol Rep 2022; 49:6827-6846. [PMID: 35031927 DOI: 10.1007/s11033-021-07040-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
Till date, several groups have studied the mechanism of microRNA (miRNA) biogenesis, processing, stability, silencing, and their dysregulation in cancer. The miRNA coding genes recurrently go through abnormal amplification, deletion, transcription, and epigenetic regulation in cancer. Some miRNAs function as tumor promoters while few others are tumor suppressors based on the transcriptional regulation of target genes. A review of miRNAs and their target genes in a wide range of cancers is attempted in this article, which may help in the development of new diagnostic tools and intervention therapies. The contribution of miRNAs for drug sensitivity or resistance in cancer therapy and opportunities of miRNAs in cancer prognosis or diagnosis and therapy is also presented in detail.
Collapse
|
5
|
Chen S, Deng X, Sheng H, Rong Y, Zheng Y, Zhang Y, Lin J. Noncoding RNAs in pediatric brain tumors: Molecular functions and pathological implications. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:417-431. [PMID: 34552822 PMCID: PMC8426460 DOI: 10.1016/j.omtn.2021.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain tumors are common solid pediatric malignancies and the main reason for cancer-related death in the pediatric setting. Recently, evidence has revealed that noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), play a critical role in brain tumor development and progression. Therefore, in this review article, we describe the functions and molecular mechanisms of ncRNAs in multiple types of cancer, including medulloblastoma, pilocytic astrocytoma, ependymoma, atypical teratoid/rhabdoid tumor, glioblastoma, diffuse intrinsic pontine glioma, and craniopharyngioma. We also mention the limitations of using ncRNAs as therapeutic targets because of the nonspecificity of ncRNA targets and the delivery methods of ncRNAs. Due to the critical role of ncRNAs in brain oncogenesis, targeting aberrantly expressed ncRNAs might be an effective strategy to improve the outcomes of pediatric patients with brain tumors.
Collapse
Affiliation(s)
- Shaohuai Chen
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Deng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hansong Sheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxi Rong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanhao Zheng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yusong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Zhao YN, Li K, Han XS, Pan YW. The mechanism of non-coding RNAs in medulloblastoma. Oncol Lett 2021; 22:758. [PMID: 34539862 PMCID: PMC8436364 DOI: 10.3892/ol.2021.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022] Open
Abstract
Medulloblastoma (MB) is one of the most common malignant tumors of the central nervous system in children. Although surgery, radiotherapy and chemotherapy have resulted in considerable progress in the treatment of this disease, the prognosis of patients with MB remains very poor. Therefore, highly specific molecular targeted treatment, which can improve the therapeutic efficacy and reduce the side effects of MB, has become a research hotspot. In recent years, non-coding RNAs (ncRNAs), which were initially considered to be transcriptional noise, have been shown to possess regulatory functions. A series of ncRNAs have been identified, including microRNAs and circular RNAs, which affect the expression of specific genes in a variety of tumors. These genes lead to the formation of a specific complex of proteins or they directly participate in protein synthesis in order to regulate the occurrence and development of tumors. The aim of the present review article was to summarize the recent research studies that have explored the ability of ncRNAs to regulate the occurrence and development of MB.
Collapse
Affiliation(s)
- Ying-Nan Zhao
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Kun Li
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Xing-Sheng Han
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Ya-Wen Pan
- The Second Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
7
|
Lambrou GI, Zaravinos A, Braoudaki M. Co-Deregulated miRNA Signatures in Childhood Central Nervous System Tumors: In Search for Common Tumor miRNA-Related Mechanics. Cancers (Basel) 2021; 13:3028. [PMID: 34204289 PMCID: PMC8235499 DOI: 10.3390/cancers13123028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Despite extensive experimentation on pediatric tumors of the central nervous system (CNS), related to both prognosis, diagnosis and treatment, the understanding of pathogenesis and etiology of the disease remains scarce. MicroRNAs are known to be involved in CNS tumor oncogenesis. We hypothesized that CNS tumors possess commonly deregulated miRNAs across different CNS tumor types. AIM The current study aims to reveal the co-deregulated miRNAs across different types of pediatric CNS tumors. MATERIALS A total of 439 CNS tumor samples were collected from both in-house microarray experiments as well as data available in public databases. Diagnoses included medulloblastoma, astrocytoma, ependydoma, cortical dysplasia, glioblastoma, ATRT, germinoma, teratoma, yoc sac tumors, ocular tumors and retinoblastoma. RESULTS We found miRNAs that were globally up- or down-regulated in the majority of the CNS tumor samples. MiR-376B and miR-372 were co-upregulated, whereas miR-149, miR-214, miR-574, miR-595 and miR-765 among others, were co-downregulated across all CNS tumors. Receiver-operator curve analysis showed that miR-149, miR-214, miR-574, miR-595 and miR765 could distinguish between CNS tumors and normal brain tissue. CONCLUSIONS Our approach could prove significant in the search for global miRNA targets for tumor diagnosis and therapy. To the best of our knowledge, there are no previous reports concerning the present approach.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, European University Cyprus, Diogenis Str., 6, Nicosia 2404, Cyprus
- Cancer Genetics, Genomics and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield AL10 9AB, Hertfordshire, UK
| |
Collapse
|
8
|
de Sá Pereira BM, Montalvão de Azevedo R, da Silva Guerra JV, Faria PA, Soares-Lima SC, De Camargo B, Maschietto M. Non-coding RNAs in Wilms' tumor: biological function, mechanism, and clinical implications. J Mol Med (Berl) 2021; 99:1043-1055. [PMID: 33950291 DOI: 10.1007/s00109-021-02075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Non-coding RNAs are involved with maintenance and regulation of physiological mechanisms and are involved in pathological processes, such as cancer. Among the small ncRNAs, miRNAs are the most explored in tumorigenesis, metastasis development, and resistance to chemotherapy. These small molecules of ~ 22 nucleotides are modulated during early renal development, involved in the regulation of gene expression and Wilms' tumor progression. Wilms' tumors are embryonic tumors with few mutations and complex epigenetic dysregulation. In recent years, the small ncRNAs have been explored as potentially related both in physiological development and in the tumorigenesis of several types of cancer. Besides, genes regulated by miRNAs are related to biological pathways as PI3K, Wnt, TGF-β, and Hippo signaling pathways, among others, which may be involved with the underlying mechanisms of resistance to chemotherapy, and in this way, it has emerged as potential targets for cancer therapies, including for Wilms' tumors.
Collapse
Affiliation(s)
| | - Rafaela Montalvão de Azevedo
- Brazilian National Cancer Institute (INCa), Rio de Janeiro, RJ, Brazil.,Current institution: Molecular Bases of Genetic Risk and Genetic Testing Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - João Victor da Silva Guerra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutic Sciences, University of Campinas, Campinas, SP, Brazil
| | - Paulo A Faria
- Brazilian National Cancer Institute (INCa), Rio de Janeiro, RJ, Brazil
| | | | | | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil. .,Current: Research Institute, Boldrini Children's Hospital, Rua Dr. Gabriel Porto, 1270 - Cidade Universitária, Campinas, SP, 13083-210, Brazil.
| |
Collapse
|
9
|
mRNA and miRNA Expression Analyses of the MYC/ E2F/miR-17-92 Network in the Most Common Pediatric Brain Tumors. Int J Mol Sci 2021; 22:ijms22020543. [PMID: 33430425 PMCID: PMC7827072 DOI: 10.3390/ijms22020543] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022] Open
Abstract
Numerous molecular factors disrupt the correctness of the cell cycle process leading to the development of cancer due to increased cell proliferation. Among known causative factors of such process is abnormal gene expression. Nowadays in the light of current knowledge such alterations are frequently considered in the context of mRNA–miRNA correlation. One of the molecular factors with potential value in tumorigenesis is the feedback loop between MYC and E2F genes in which miR-17-5p and miR-20a from the miR-17-92 cluster are involved. The current literature shows that overexpression of the members of the OncomiR-1 are involved in the development of many solid tumors. In the present work, we investigated the expression of components of the MYC/E2F/miR-17-92 network and their closely related elements including members of MYC and E2F families and miRNAs from two paralogs of miR-17-92: miR-106b-25 and miR-106a-363, in the most common brain tumors of childhood, pilocytic astrocytoma (PA), WHO grade 1; ependymoma (EP), WHO grade 2; and medulloblastoma (MB), WHO grade 4. We showed that the highest gene expression was observed in the MYC family for MYCN and in the E2F family for E2F2. Positive correlation was observed between the gene expression and tumor grade and type, with the highest expression being noted for medulloblastomas, followed by ependymomas, and the lowest for pilocytic astrocytomas. Most members of miR-17-92, miR-106a-363 and miR-106b-25 clusters were upregulated and the highest expression was noted for miR-18a and miR-18b. The rest of the miRNAs, including miR-19a, miR-92a, miR-106a, miR-93, or miR-25 also showed high values. miR-17-5p, miR-20a obtained a high level of expression in medulloblastomas and ependymomas, while close to the control in the pilocytic astrocytoma samples. miRNA expression also depended on tumor grade and histology.
Collapse
|
10
|
Abstract
Even though the treatment of childhood cancer has evolved significantly in recent decades, aggressive central nervous system (CNS) tumors are still a leading cause of morbidity and mortality in this population. Consequently, the identification of molecular targets that can be incorporated into diagnostic practice, effectively predict prognosis, follow treatment response, and materialize into potential targeted therapeutic approaches are still warranted. Since the first evidence of the participation of miRNAs in cancer development and progression 20 years ago, notable progress has been made in the basic understanding of the contribution of their dysregulation as epigenetic driver of tumorigenesis. Nevertheless, among the plethora of articles in the literature, microRNA profiling of pediatric tumors are scarce. This article gives an overview of the recent advances in the diagnostic/prognostic potential of miRNAs in a selection of pediatric CNS tumors: medulloblastoma, ependymoma, pilocytic astrocytoma, glioblastoma, diffuse intrinsic pontine glioma, atypical teratoid/rhabdoid tumors, and choroid plexus tumors.
Collapse
|
11
|
Diana A, Gaido G, Murtas D. MicroRNA Signature in Human Normal and Tumoral Neural Stem Cells. Int J Mol Sci 2019; 20:ijms20174123. [PMID: 31450858 PMCID: PMC6747235 DOI: 10.3390/ijms20174123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs, also called miRNAs or simply miR-, represent a unique class of non-coding RNAs that have gained exponential interest during recent years because of their determinant involvement in regulating the expression of several genes. Despite the increasing number of mature miRNAs recognized in the human species, only a limited proportion is engaged in the ontogeny of the central nervous system (CNS). miRNAs also play a pivotal role during the transition of normal neural stem cells (NSCs) into tumor-forming NSCs. More specifically, extensive studies have identified some shared miRNAs between NSCs and neural cancer stem cells (CSCs), namely miR-7, -124, -125, -181 and miR-9, -10, -130. In the context of NSCs, miRNAs are intercalated from embryonic stages throughout the differentiation pathway in order to achieve mature neuronal lineages. Within CSCs, under a different cellular context, miRNAs perform tumor suppressive or oncogenic functions that govern the homeostasis of brain tumors. This review will draw attention to the most characterizing studies dealing with miRNAs engaged in neurogenesis and in the tumoral neural stem cell context, offering the reader insight into the power of next generation miRNA-targeted therapies against brain malignances.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (Cagliari), Italy.
| | - Giuseppe Gaido
- Department of Surgery, Cottolengo Mission Hospital Charia, 60200 Meru, Kenya
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (Cagliari), Italy.
| |
Collapse
|
12
|
Zhou P, Li X. Serum miR-338-5p has potential for use as a tumor marker for retinoblastoma. Oncol Lett 2019; 18:307-313. [PMID: 31289501 PMCID: PMC6540340 DOI: 10.3892/ol.2019.10331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the expression of microRNA (miR)-338-5p in retinoblastoma(RB), thereby evaluating whether it could have potential as a biomarker to screen patients with RB from healthy controls. The results revealed that miR-338-5p was significantly upregulated in patients with RB compared with in healthy controls. There was no significant difference in the expression of miR-338-5p between patients with RB of different age, sex, tumor stage or binocular disease. Receiver operator characteristic analysis indicated that serum miR-338-5p combined with neuron-specific enolase (NSE) had a larger area under the curve compared with serum miR-338-5p alone when diagnosing RB. In addition, suppression of miR-338-5p induced slower proliferation of ACBRI-181 and Y79 cells at 2, 3, 4 and 5 days compared with the negative control group. Flow cytometric analysis indicated that transfection with miR-338-5p inhibitor leads to significant cell cycle arrest in ACBRI-181 and Y79 cells compared with in the negative control group. Furthermore, transfection with miR-338-5p inhibitor significantly decreased ACBRI-181 and Y79 cell migration and invasion, suggesting that miR-338-5p may serve an oncogenic role in the progression of RB. In conclusion, the low expression of miR-338-5p in the serum of patients with RB suggests that it may be involved in the formation of RB. Serum miR-338-5p has the potential to be a tumor marker of RB, and, in combination with NSE, miR-338-5p may improve the early diagnosis rate of RB.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|
13
|
Cipro Š, Belhajová M, Eckschlager T, Zámečník J. MicroRNA expression in pediatric intracranial ependymomas and their potential value for tumor grading. Oncol Lett 2019; 17:1379-1383. [PMID: 30655909 DOI: 10.3892/ol.2018.9685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 10/26/2018] [Indexed: 11/06/2022] Open
Abstract
Intracranial ependymoma represents one of the most common pediatric central nervous system malignancies, and exhibits a wide range of clinical behavior from relatively indolent lesions to highly malignant anaplastic ependymomas. Due to the heterogeneous nature of this disease there is lack of prognostic markers, which would reliably predict the outcome of patients. MicroRNAs (miRNAs) have emerged as important molecules in cancer biology during past decade; however, very little is known about their role in ependymomas. The aim of the present study was to evaluate expression of miRNAs in archived formalin-fixed paraffin-embedded (FFPE) samples of pediatric intracranial ependymomas. The expression of miRNAs were examined in 29 samples of ependymoma and we observed that miR-135a-3p, miR-137, miR-17-5p, miR-181d and let-7d-5p were upregulated. In addition, a significantly higher expression of miR-203a was detected in Grade III tumors suggesting its possible use as a prognostic or diagnostic marker. The present study also demonstrated that storage of (FFPE) ependymoma samples for >20 years did not result in a deterioration of miRNAs. The present findings broaden the presently available knowledge regarding miRNA expression in ependymomas and provide further evidence for the employment of miRNA analysis as a supplementary method for the morphological assessment of ependymoma samples.
Collapse
Affiliation(s)
- Šimon Cipro
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Marie Belhajová
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Tomáš Eckschlager
- Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, 150 06 Prague 5, Czech Republic
| | - Josef Zámečník
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol, 150 06 Prague 5, Czech Republic
| |
Collapse
|
14
|
Association of MicroRNAs with the Clinicopathologic Characteristics of Ependymoma. J Mol Neurosci 2018; 66:307-313. [DOI: 10.1007/s12031-018-1178-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
|
15
|
Wang Z, Zhang J, Zhang Z, Jiang Y, Li M, Li Q, Bai L, Yao D, Wang M, Wang X. Prognostic value of miR-17-5 p in gastrointestinal cancers: a systematic review and meta-analysis. Onco Targets Ther 2018; 11:5991-5999. [PMID: 30275704 PMCID: PMC6157989 DOI: 10.2147/ott.s157670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There are accumulating studies investigating the aberrant expression of microRNAs in tumor patients. As an important member of miR-17/92 cluster, miR-17-5 p has been identified as a potential prognostic factor for survival in tumor patients. We conducted this meta-analysis aimed to assess the effect of miR-17-5 p as a prognostic biomarker for gastrointestinal tumor patients. MATERIALS AND METHODS Eligible studies were enrolled by searching the online databases of PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and WanFang Data until September 2017. We calculated pooled hazard ratios (HRs) and 95% CI of miR-17-5 p for overall survival and disease-free survival. RESULTS In the categorical variable analysis, we identified 11 studies with 1,279 patients. The pooled analyses suggested that overexpression of miR-17-5 p may predict poor overall survival (HR = 1.86, 95% CI: 1.55-2.25, P<0.001) and disease-free survival (HR = 1.43, 95% CI: 1.01-2.03, P=0.046) in patients with gastrointestinal tumors. Subgroup analysis showed the pooled HR of overall survival was more significant in tissue specimen, Asian patients, and digestive tract tumors. But there was no correlation between the outcomes and European patients. CONCLUSIONS This meta-analysis suggested that miR-17-5 p has predictive effects on overall survival and disease-free survival of patients with gastrointestinal tumors.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Gastroenterology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China,
| | - Jing Zhang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhiguang Zhang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yong Jiang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Man Li
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Qian Li
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Lu Bai
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Dongying Yao
- Department of Gastroenterology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China,
| | - Miao Wang
- Department of Gastroenterology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China,
| | - Xiaoping Wang
- Department of Gastroenterology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China,
| |
Collapse
|
16
|
Kong W, Cheng Y, Liang H, Chen Q, Xiao C, Li K, Huang Z, Zhang J. Prognostic value of miR-17-5p in cancers: a meta-analysis. Onco Targets Ther 2018; 11:3541-3549. [PMID: 29950859 PMCID: PMC6016279 DOI: 10.2147/ott.s150340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Studies have shown that miR-17-5p plays an important role in the development of cancer. The aim of this meta-analysis was to quantitatively analyze the association of miR-17-5p with prognosis in various cancers. Materials and methods We searched the PubMed, EMBASE, Web of Science, and Cochrane library databases for relevant studies through August 2017. The prognostic data and clinico-pathological features of overall survival (OS) and disease-free survival (DFS) were extracted to investigate the association between miR-17-5p expression and tumor prognosis. In addition, odds ratios (ORs) were used to assess the correlations between miR-17-5p expression and clinicopathological characteristics. Results A total of ten studies were incorporated into this systematic review, and we found that high miR-17-5p expression can predict poor OS for malignancies (combined hazard ratio [HR]=1.87; 95% confidence interval [CI], 1.37–2.55; P=0.000) as well as poor DFS (combined HR=1.60; 95% CI, 1.05–2.44; P=0.027). Further subgroup analyses suggested that high miR-17-5p expression was related to poor OS in Asian patients (combined HR=1.92; 95% CI, 1.37–2.71; P=0.000) and the serum/plasma sample source subgroup (combined HR=2.13; 95% CI, 1.36–3.31; P=0.001). The combined OR indicated that the expression of miR-17-5p was associated with lymph node invasion (OR=1.28; 95% CI, 1.05–1.56; P=0.016) and venous invasion (OR=1.92; 95% CI, 1.40–2.63; P=0.000). Conclusion Elevated expression of miR-17-5p suggested a poor prognosis in cancer patients and may serve as a new tumor marker to monitor cancer development and progression.
Collapse
Affiliation(s)
- Weihao Kong
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yusheng Cheng
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Liang
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiangxing Chen
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cuicui Xiao
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kun Li
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zenan Huang
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Zhang
- Department of Liver Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Tantawy M, Elzayat MG, Yehia D, Taha H. Identification of microRNA signature in different pediatric brain tumors. Genet Mol Biol 2018; 41:27-34. [PMID: 29658967 PMCID: PMC5901491 DOI: 10.1590/1678-4685-gmb-2016-0334] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 08/21/2017] [Indexed: 12/02/2022] Open
Abstract
Understanding pediatric brain tumor biology is essential to help on disease
stratification, and to find novel markers for early diagnosis. MicroRNA (miRNA)
expression has been linked to clinical outcomes and tumor biology. Here, we
aimed to detect the expression of different miRNAs in different pediatric brain
tumor subtypes to discover biomarkers for early detection and develop novel
therapies. Expression of 82 miRNAs was detected in 120 pediatric brain tumors
from fixed-formalin paraffin-embedded tissues, low-grade glioma, high-grade
glioma, ependymoma, and medulloblastoma, using quantitative real-time PCR.
Low-expression of miR-221, miR-9, and miR-181c/d and over-expression of miR-101,
miR-222, miR-139, miR-1827, and miR-34c was found in medulloblastoma; low
expression of miR-10a and over-expression of miR-10b and miR-29a in ependymoma;
low expression of miR-26a and overexpression of miR-19a/b, miR-24, miR-27a, miR-
584, and miR-527 in low-grade glioma. Cox regression showed differential miRNA
expression between responders and non-responders. The most specific were miR-10a
and miR-29a low expression in LGG non-responders, miR-135a and miR-146b
over-expression in ependymoma non-responders, and miR-135b overexpression in
medulloblastoma non-responders. MicroRNAs are differentially expressed in
subtypes of brain tumors suggesting that they may help diagnosis. A greater
understanding of aberrant miRNA in pediatric brain tumors may support
development of novel therapies.
Collapse
Affiliation(s)
- Marwa Tantawy
- Research Department, Children's Cancer Hospital Egypt, Cairo, Egypt
| | - Mariam G Elzayat
- Research Department, Children's Cancer Hospital Egypt, Cairo, Egypt
| | - Dina Yehia
- Research Department, Children's Cancer Hospital Egypt, Cairo, Egypt
| | - Hala Taha
- Pathology Department, Children's Cancer Hospital Egypt, Cairo, Egypt.,Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Gruszka R, Zakrzewska M. The Oncogenic Relevance of miR-17-92 Cluster and Its Paralogous miR-106b-25 and miR-106a-363 Clusters in Brain Tumors. Int J Mol Sci 2018; 19:ijms19030879. [PMID: 29547527 PMCID: PMC5877740 DOI: 10.3390/ijms19030879] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/25/2022] Open
Abstract
The fundamental function of ribonucleic acids is to transfer genetic information from DNA to protein during translation process, however, this is not the only way connecting active RNA sequences with essential biological processes. Up until now, many RNA subclasses of different size, structure, and biological function were identified. Among them, there are non-coding single-stranded microRNAs (miRNAs). This subclass comprises RNAs of 19–25 nucleotides in length that modulate the activity of well-defined coding RNAs and play a crucial role in many physiological and pathological processes. miRNA genes are located both in exons, introns, and also within non-translated regions. Several miRNAs that are transcribed from the adjacent miRNA genes are called cluster. One of the largest ones is miR-17-92 cluster known as OncomiR-1 due to its strong link to oncogenesis. Six miRNAs from the OncomiR-1 have been shown to play important roles in various physiological cellular processes but also through inhibition of cell death in many cancer-relevant processes. Due to the origin and similarity of the sequence, miR-17-92 cluster and paralogs, miR-106b-25 and miR-106a-363 clusters were defined. Here we discuss the oncogenic function of those miRNA subgroups found in many types of cancers, including brain tumors.
Collapse
Affiliation(s)
- Renata Gruszka
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| | - Magdalena Zakrzewska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| |
Collapse
|
19
|
Prognostic role of miR-17-92 family in human cancers: evaluation of multiple prognostic outcomes. Oncotarget 2017; 8:69125-69138. [PMID: 28978185 PMCID: PMC5620325 DOI: 10.18632/oncotarget.19096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022] Open
Abstract
Recent evidence indicates that miR-17–92 family might be an essential prognostic biomarker for human cancers. However, results are still inconsistent. We therefore performed a meta-analysis to evaluate the predictive role of miR-17–92 family in human cancer prognosis. We searched literatures published before March 31th, 2017 inPubMed, Cochrane and Embase databases. Twenty six studies were included in our analyses. The overall hazard ratios (HRs) showed that high expression level of miR-17-92 family was a predictor of poor overall survival (OS): adjusted HRs = 1.71, 95% confidence intervals (CIs): 1.39–2.11, p < 0.00001, and poor disease-free survival (DFS): adjusted HRs = 2.29, 95% CIs: 1.41–3.72, p = 0.0008. However, no association between miR-17-92 family expression and cancer progress-free survival (PFS) was found (p > 0.05). Subgroup analyses showed that high expression of miR-17-92 family was associated with poor OS (adjusted HRs = 1.89, 95% CIs: 1.43–2.49, p < 0.00001) and DFS (adjusted HRs = 2.83, 95% CIs: 1.59–5.04, p = 0.0003) among the Asian, and no association was found for the Caucasian (p > 0.05). Besides, the HRs of miR-17-92 family high expression in tissue and serum samples was 1.68 (1.35–2.09) and 2.20 (1.08–4.46) for OS, and 1.73 (0.80–3.74) and 3.37 (2.25–5.02) for DFS. It also found that high expression of miR-17-92 family predicted a poor OS in breast cancer, esophageal squamous cell carcinoma, lymphoma and other cancers. Findings suggest that miR-17-92 family can be an effective predictor for prognosis prediction in cancer patients.
Collapse
|
20
|
Leichter AL, Sullivan MJ, Eccles MR, Chatterjee A. MicroRNA expression patterns and signalling pathways in the development and progression of childhood solid tumours. Mol Cancer 2017; 16:15. [PMID: 28103887 PMCID: PMC5248531 DOI: 10.1186/s12943-017-0584-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/04/2017] [Indexed: 12/18/2022] Open
Abstract
The development of childhood solid tumours is tied to early developmental processes. These tumours may be complex and heterogeneous, and elucidating the aberrant mechanisms that alter the early embryonic environment and lead to disease is essential to our understanding of how these tumours function. MicroRNAs (miRNAs) are vital regulators of gene expression at all stages of development, and their crosstalk via developmental signalling pathways is essential for orchestrating regulatory control in processes such as proliferation, differentiation and apoptosis of cells. Oncogenesis, from aberrant miRNA expression, can occur through amplification and overexpression of oncogenic miRNAs (oncomiRs), genetic loss of tumour suppressor miRNAs, and global miRNA reduction from genetic and epigenetic alterations in the components regulating miRNA biogenesis. While few driver mutations have been identified in many of these types of tumours, abnormal miRNA expression has been found in a number of childhood solid tumours compared to normal tissue. An exploration of the network of key developmental pathways and interacting miRNAs may provide insight into the development of childhood solid malignancies and how key regulators are affected. Here we present a comprehensive introduction to the roles and implications of miRNAs in normal early development and childhood solid tumours, highlighting several tumours in depth, including embryonal brain tumours, neuroblastoma, osteosarcoma, Wilms tumour, and hepatoblastoma. In light of recent literature describing newer classifications and subtyping of tumours based on miRNA profiling, we discuss commonly identified miRNAs, clusters or families associated with several solid tumours and future directions for improving therapeutic approaches.
Collapse
Affiliation(s)
- Anna L Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, P.O. Box 913, Dunedin, 9016, New Zealand
| | | | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, P.O. Box 913, Dunedin, 9016, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, P.O. Box 913, Dunedin, 9016, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| |
Collapse
|