1
|
Schie IW, Placzek F, Knorr F, Cordero E, Wurster LM, Hermann GG, Mogensen K, Hasselager T, Drexler W, Popp J, Leitgeb RA. Morpho-molecular signal correlation between optical coherence tomography and Raman spectroscopy for superior image interpretation and clinical diagnosis. Sci Rep 2021; 11:9951. [PMID: 33976274 PMCID: PMC8113482 DOI: 10.1038/s41598-021-89188-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 01/16/2023] Open
Abstract
The combination of manifold optical imaging modalities resulting in multimodal optical systems allows to discover a larger number of biomarkers than using a single modality. The goal of multimodal imaging systems is to increase the diagnostic performance through the combination of complementary modalities, e.g. optical coherence tomography (OCT) and Raman spectroscopy (RS). The physical signal origins of OCT and RS are distinctly different, i.e. in OCT it is elastic back scattering of photons, due to a change in refractive index, while in RS it is the inelastic scattering between photons and molecules. Despite those diverse characteristics both modalities are also linked via scattering properties and molecular composition of tissue. Here, we investigate for the first time the relation of co-registered OCT and RS signals of human bladder tissue, to demonstrate that the signals of these complementary modalities are inherently intertwined, enabling a direct but more importantly improved interpretation and better understanding of the other modality. This work demonstrates that the benefit for using two complementary imaging approaches is, not only the increased diagnostic value, but the increased information and better understanding of the signal origins of both modalities. This evaluation confirms the advantages for using multimodal imaging systems and also paves the way for significant further improved understanding and clinically interpretation of both modalities in the future.
Collapse
Affiliation(s)
- Iwan W Schie
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, Jena, 07745, Germany.
- Department of Medical Engineering and Biotechnology, University of Applied Sciences-Jena, Carl-Zeiss-Promenade 2, 07745, Jena, Germany.
| | - Fabian Placzek
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20 / 4L, 1090, Vienna, Austria
| | - Florian Knorr
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Eliana Cordero
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, Jena, 07745, Germany
| | - Lara M Wurster
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20 / 4L, 1090, Vienna, Austria
| | - Gregers G Hermann
- Department of Urology, Copenhagen University, Herlev/Gentofte Hospital, Borgmester Ib Juuls Vej 23A, 2730, Herlev/Copenhagen, Denmark
| | - Karin Mogensen
- Department of Urology, Copenhagen University, Herlev/Gentofte Hospital, Borgmester Ib Juuls Vej 23A, 2730, Herlev/Copenhagen, Denmark
| | - Thomas Hasselager
- Department of Pathology, Copenhagen University, Herlev/Gentofte Hospital, Borgmester Ib Juuls Vej 23A, 2730, Herlev/Copenhagen, Denmark
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20 / 4L, 1090, Vienna, Austria
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Straße 9, Jena, 07745, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Rainer A Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20 / 4L, 1090, Vienna, Austria
| |
Collapse
|
2
|
Placzek F, Cordero Bautista E, Kretschmer S, Wurster LM, Knorr F, González-Cerdas G, Erkkilä MT, Stein P, Ataman Ç, Hermann GG, Mogensen K, Hasselager T, Andersen PE, Zappe H, Popp J, Drexler W, Leitgeb RA, Schie IW. Morpho-molecular ex vivo detection and grading of non-muscle-invasive bladder cancer using forward imaging probe based multimodal optical coherence tomography and Raman spectroscopy. Analyst 2020; 145:1445-1456. [PMID: 31867582 DOI: 10.1039/c9an01911a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-muscle-invasive bladder cancer affects millions of people worldwide, resulting in significant discomfort to the patient and potential death. Today, cystoscopy is the gold standard for bladder cancer assessment, using white light endoscopy to detect tumor suspected lesion areas, followed by resection of these areas and subsequent histopathological evaluation. Not only does the pathological examination take days, but due to the invasive nature, the performed biopsy can result in significant harm to the patient. Nowadays, optical modalities, such as optical coherence tomography (OCT) and Raman spectroscopy (RS), have proven to detect cancer in real time and can provide more detailed clinical information of a lesion, e.g. its penetration depth (stage) and the differentiation of the cells (grade). In this paper, we present an ex vivo study performed with a combined piezoelectric tube-based OCT-probe and fiber optic RS-probe imaging system that allows large field-of-view imaging of bladder biopsies, using both modalities and co-registered visualization, detection and grading of cancerous bladder lesions. In the present study, 119 examined biopsies were characterized, showing that fiber-optic based OCT provides a sensitivity of 78% and a specificity of 69% for the detection of non-muscle-invasive bladder cancer, while RS, on the other hand, provides a sensitivity of 81% and a specificity of 61% for the grading of low- and high-grade tissues. Moreover, the study shows that a piezoelectric tube-based OCT probe can have significant endurance, suitable for future long-lasting in vivo applications. These results also indicate that combined OCT and RS fiber probe-based characterization offers an exciting possibility for label-free and morpho-chemical optical biopsies for bladder cancer diagnostics.
Collapse
Affiliation(s)
- Fabian Placzek
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 4L, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Bracher M, Pilkington GJ, Hanemann CO, Pilkington K. A Systematic Approach to Review of in vitro Methods in Brain Tumour Research (SAToRI-BTR): Development of a Preliminary Checklist for Evaluating Quality and Human Relevance. Front Bioeng Biotechnol 2020; 8:936. [PMID: 32850761 PMCID: PMC7427312 DOI: 10.3389/fbioe.2020.00936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Background A wide range of human in vitro methods have been developed and there is considerable interest in the potential of these studies to address questions related to clinical (human) use of drugs, and the pathobiology of tumours. This requires agreement on how to assess the strength of evidence available (i.e., quality and quantity) and the human-relevance of such studies. The SAToRI-BTR (Systematic Approach To Review of in vitro methods in Brain Tumour Research) project seeks to identify relevant appraisal criteria to aid planning and/or evaluation of brain tumour studies using in vitro methods. Objectives To identify criteria for evaluation of quality and human relevance of in vitro brain tumour studies; to assess the general acceptability of such criteria to senior scientists working within the field. Methods Stage one involved identification of potential criteria for evaluation of in vitro studies through: (1) an international survey of brain tumour researchers; (2) interviews with scientists, clinicians, regulators, and journal editors; (3) analysis of relevant reports, documents, and published studies. Through content analysis of findings, an initial list of criteria for quality appraisal of in vitro studies of brain tumours was developed. Stage two involved review of the criteria by an expert panel (Delphi process). Results Results of stage one indicated that methods for and quality of review of in vitro studies are highly variable, and that improved reporting standards are needed. 129 preliminary criteria were identified; duplicate and highly context-specific items were removed, resulting in 48 criteria for review by the expert (Delphi) panel. 37 criteria reached agreement, resulting in a provisional checklist for appraisal of in vitro studies in brain tumour research. Conclusion Through a systematic process of collating assessment criteria and subjecting these to expert review, SAToRI-BTR has resulted in preliminary guidance for appraisal of in vitro brain tumour studies. Further development of this guidance, including investigating strategies for adaptation and dissemination across different sub-fields of brain tumour research, as well as the wider in vitro field, is planned.
Collapse
Affiliation(s)
- Mike Bracher
- School of Health Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Geoffrey J Pilkington
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - C Oliver Hanemann
- Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, United Kingdom
| | - Karen Pilkington
- School of Health and Social Care Professions, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
4
|
Hubbard TJE, Shore A, Stone N. Raman spectroscopy for rapid intra-operative margin analysis of surgically excised tumour specimens. Analyst 2020; 144:6479-6496. [PMID: 31616885 DOI: 10.1039/c9an01163c] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Raman spectroscopy, a form of vibrational spectroscopy, has the ability to provide sensitive and specific biochemical analysis of tissue. This review article provides an in-depth analysis of the suitability of different Raman spectroscopy techniques in providing intra-operative margin analysis in a range of solid tumour pathologies. Surgical excision remains the primary treatment of a number of solid organ cancers. Incomplete excision of a tumour and positive margins on histopathological analysis is associated with a worse prognosis, the need for adjuvant therapies with significant side effects and a resulting financial burden. The provision of intra-operative margin analysis of surgically excised tumour specimens would be beneficial for a number of pathologies, as there are no widely adopted and accurate methods of margin analysis, beyond histopathology. The limitations of Raman spectroscopic studies to date are discussed and future work necessary to enable translation to clinical use is identified. We conclude that, although there remain a number of challenges in translating current techniques into a clinically effective tool, studies so far demonstrate that Raman Spectroscopy has the attributes to successfully perform highly accurate intra-operative margin analysis in a clinically relevant environment.
Collapse
|
5
|
Li Y, Su S, Zhang Y, Liu S, Jin H, Zeng Q, Cheng L. Accuracy of Raman spectroscopy in discrimination of nasopharyngeal carcinoma from normal samples: a systematic review and meta-analysis. J Cancer Res Clin Oncol 2019; 145:1811-1821. [PMID: 31089798 DOI: 10.1007/s00432-019-02934-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/10/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES The aim of this review was to systematically evaluate the diagnostic accuracy of Raman spectroscopy (RS) in the identification of nasopharyngeal carcinomas from normal nasopharyngeal tissue. METHODS We searched six databases (PubMed, Embase, Cochrane Library, Web of Science, Scopus and CNKI) up to September 2018 for all published studies that assessed the diagnostic accuracy of RS in the detection of nasopharyngeal carcinomas. Non-qualifying studies were screened out in accordance with the specified exclusion criteria and relevant information about the diagnostic performance of RS extracted. A random effects model was adopted to calculate the pooled sensitivity, specificity, positive and negative likelihood ratios (PLR and NLR, respectively), diagnostic threshold and diagnostic odds ratio (DOR). Additionally, we conducted a summary receiver-operating characteristic (SROC) curve analysis and threshold analysis, reporting area under the curve (AUC) to evaluate the overall performance of RS. RESULTS Three studies examined RS analysis in vivo, the pooled sensitivity and specificity of RS of which were 0.90 and 0.91, respectively, with an AUC of 0.9617. Eighteen studies assessed ex vivo samples, for which RS exhibited particularly high accuracy for the analysis of blood plasma. CONCLUSIONS RS was demonstrated to be a reliable technique for the detection of nasopharyngeal carcinoma with high accuracy, but additional studies are required to improve its performance and expand its application in ex vivo detection.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 Renmin South Road Third Section, Chengdu, 610041, China
| | - Sihui Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 Renmin South Road Third Section, Chengdu, 610041, China
| | - Yingzhe Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiyao Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 Renmin South Road Third Section, Chengdu, 610041, China
| | - Hongyu Jin
- Department of Liver Surgery, Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianqing Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 Renmin South Road Third Section, Chengdu, 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 Renmin South Road Third Section, Chengdu, 610041, China.
| |
Collapse
|
6
|
Opportunities and priorities for breast surgical research. Lancet Oncol 2018; 19:e521-e533. [DOI: 10.1016/s1470-2045(18)30511-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/14/2018] [Accepted: 07/02/2018] [Indexed: 12/13/2022]
|
7
|
Grootendorst MR, Fitzgerald AJ, Brouwer de Koning SG, Santaolalla A, Portieri A, Van Hemelrijck M, Young MR, Owen J, Cariati M, Pepper M, Wallace VP, Pinder SE, Purushotham A. Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue. BIOMEDICAL OPTICS EXPRESS 2017; 8:2932-2945. [PMID: 28663917 PMCID: PMC5480440 DOI: 10.1364/boe.8.002932] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/02/2017] [Indexed: 05/19/2023]
Abstract
Since nearly 20% of breast-conserving surgeries (BCS) require re-operation, there is a clear need for developing new techniques to more accurately assess tumor resection margins intraoperatively. This study evaluates the diagnostic accuracy of a handheld terahertz pulsed imaging (TPI) system to discriminate benign from malignant breast tissue ex vivo. Forty six freshly excised breast cancer samples were scanned with a TPI handheld probe system, and histology was obtained for comparison. The image pixels on TPI were classified using (1) parameters in combination with support vector machine (SVM) and (2) Gaussian wavelet deconvolution in combination with Bayesian classification. The results were an accuracy, sensitivity, specificity of 75%, 86%, 66% for method 1, and 69%, 87%, 54% for method 2 respectively. This demonstrates the probe can discriminate invasive breast cancer from benign breast tissue with an encouraging degree of accuracy, warranting further study.
Collapse
Affiliation(s)
- Maarten R Grootendorst
- King's College London, Division of Cancer Studies, London, UK
- Department of Breast Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Contributed equally
| | - Anthony J Fitzgerald
- School of Physics, University of Western Australia, Perth, Australia
- Contributed equally
| | - Susan G Brouwer de Koning
- King's College London, Division of Cancer Studies, London, UK
- Department of Breast Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | - Matthew R Young
- Department of Breast Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Julie Owen
- King's College London, Division of Cancer Studies, King's Health Partners Cancer Biobank and Breast Pathology Research Group, London, UK
| | - Massi Cariati
- King's College London, Division of Cancer Studies, London, UK
- Department of Breast Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Michael Pepper
- Teraview Ltd., Cambridge, UK
- London Centre for Nanotechnology, University College London, UK
| | - Vincent P Wallace
- School of Physics, University of Western Australia, Perth, Australia
| | - Sarah E Pinder
- King's College London, Division of Cancer Studies, King's Health Partners Cancer Biobank and Breast Pathology Research Group, London, UK
| | - Arnie Purushotham
- King's College London, Division of Cancer Studies, London, UK
- Department of Breast Surgery, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|