1
|
Zhang WJ, Chen RQ, Tang X, Li PB, Wang J, Wu HK, Xu N, Zou MF, Luo SR, Ouyang ZQ, Chen ZK, Liao XX, Wu H. Naoxintong capsule for treating cardiovascular and cerebrovascular diseases: from bench to bedside. Front Pharmacol 2024; 15:1402763. [PMID: 38994201 PMCID: PMC11236728 DOI: 10.3389/fphar.2024.1402763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Naoxintong Capsule (NXT), a renowned traditional Chinese medicine (TCM) formulation, has been broadly applied in China for more than 30 years. Over decades, accumulating evidences have proven satisfactory efficacy and safety of NXT in treating cardiovascular and cerebrovascular diseases (CCVD). Studies have been conducted unceasingly, while this growing latest knowledge of NXT has not yet been interpreted properly and summarized comprehensively. Hence, we systematically review the advancements in NXT research, from its chemical constituents, quality control, pharmacokinetics, to its profound pharmacological activities as well as its clinical applications in CCVD. Moreover, we further propose specific challenges for its future perspectives: 1) to precisely clarify bioactivities of single compound in complicated mixtures; 2) to evaluate the pharmacokinetic behaviors of NXT feature components in clinical studies, especially drug-drug interactions in CCVD patients; 3) to explore and validate its multi-target mechanisms by integrating multi-omics technologies; 4) to re-evaluate the safety and efficacy of NXT by carrying out large-scale, multicenter randomized controlled trials. In brief, this review aims to straighten out a paradigm for TCM modernization, which help to contribute NXT as a piece of Chinese Wisdom into the advanced intervention strategy for CCVD therapy.
Collapse
Affiliation(s)
- Wei-jian Zhang
- Department of Neurosurgery, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Rui-qi Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan Tang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pei-bo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Wang
- Department of Neurosurgery, Foshan Sanshui District People’s Hospital, Foshan, Guangdong, China
| | - Hai-ke Wu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Ning Xu
- Second People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Ming-fei Zou
- Second People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Sen-rong Luo
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zi-qi Ouyang
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhi-kai Chen
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xu-xing Liao
- Department of Neurosurgery, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Suetsugu K, Muraki S, Fukumoto J, Matsukane R, Mori Y, Hirota T, Miyamoto T, Egashira N, Akashi K, Ieiri I. Effects of Letermovir and/or Methylprednisolone Coadministration on Voriconazole Pharmacokinetics in Hematopoietic Stem Cell Transplantation: A Population Pharmacokinetic Study. Drugs R D 2021; 21:419-429. [PMID: 34655050 PMCID: PMC8602551 DOI: 10.1007/s40268-021-00365-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/26/2022] Open
Abstract
Objective The aim of this study was to identify factors affecting blood concentrations of voriconazole following letermovir coadministration using population pharmacokinetic (PPK) analysis in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients. Methods The following data were retrospectively collected: voriconazole trough levels, patient characteristics, concomitant drugs, and laboratory information. PPK analysis was performed with NONMEM® version 7.4.3, using the first-order conditional estimation method with interaction. We collected data on plasma voriconazole steady-state trough concentrations at 216 timepoints for 47 patients. A nonlinear pharmacokinetic model with the Michaelis–Menten equation was applied to describe the relationship between steady-state trough concentration and daily maintenance dose of voriconazole. After stepwise covariate modeling, the final model was evaluated using a goodness-of-fit plot, case deletion diagnostics, and bootstrap methods. Results The maximum elimination rate (Vmax) of voriconazole in patients coadministered letermovir and methylprednisolone was 1.72 and 1.30 times larger than that in patients not coadministered these drugs, respectively, resulting in decreased voriconazole trough concentrations. The developed PPK model adequately described the voriconazole trough concentration profiles in allo-HSCT recipients. Simulations clearly showed that increased daily doses of voriconazole were required to achieve an optimal trough voriconazole concentration (1–5 mg/L) when patients received voriconazole with letermovir and/or methylprednisolone. Conclusions The development of individualized dose adjustment is critical to achieve optimal voriconazole concentration, especially among allo-HSCT recipients receiving concomitant letermovir and/or methylprednisolone. Supplementary Information The online version contains supplementary material available at 10.1007/s40268-021-00365-0.
Collapse
Affiliation(s)
- Kimitaka Suetsugu
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shota Muraki
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Junshiro Fukumoto
- Department of Clinical Pharmacology and Biopharmaceutics, The Pharmaceutical College, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryosuke Matsukane
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yasuo Mori
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Hirota
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Clinical Pharmacology and Biopharmaceutics, The Pharmaceutical College, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ichiro Ieiri
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Clinical Pharmacology and Biopharmaceutics, The Pharmaceutical College, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
3
|
A Metabonomics Investigation into the Therapeutic Effects of BuChang NaoXinTong Capsules on Reversing the Amino Acid-Protein Interaction Network of Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7258624. [PMID: 31015890 PMCID: PMC6446104 DOI: 10.1155/2019/7258624] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 02/05/2023]
Abstract
Background Amino acids (AAs) in cerebrospinal fluid (CSF) play a pivotal role in cerebral ischemia (CI). BuChang NaoXinTong Capsules (BNC) are widely prescribed in Chinese medicine for the treatment of cerebrovascular and cardiovascular diseases. Methods In order to investigate the therapeutic effects and pharmacological mechanisms of BNC on reversing CI from a system level, an amino acid-protein interaction imbalanced network of CI containing metabolites of AAs, key regulatory enzymes, and proteins was constructed for the first time. Furthermore, a novel method for detecting the ten AAs in CSF was developed by UPLC-QQQ-MS in an effort to validate the imbalanced networks and the therapeutic effects of BNC via analysis of metabolites. Results Based on a middle cerebral artery occlusion (MCAO) rat model, the dynamic levels of amino acids in CSF 3, 6, 12, and 24 h after MCAO were analyzed. Up to 24 h, the accumulated nine AA biomarkers were found to significantly change in the MCAO group compared to the sham group and exhibited an obvious tendency for returning to baseline values after BNC treatment. In addition, based on the imbalanced network of CI, four key enzymes that regulate the generation of BNC-mediated AA biomarkers were selected and validated using an enzyme-linked immunosorbent assay and western blotting. Finally, aromatic-L-amino-acid decarboxylase (AADC) was found to be one of the putative targets for BNC-mediated protection against CI. Conclusion This study provides new strategies to explore the mechanism of cerebral ischemia and help discover the potential mechanism of BNC.
Collapse
|
5
|
Fernández I, Gavaia PJ, Laizé V, Cancela ML. Fish as a model to assess chemical toxicity in bone. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 194:208-226. [PMID: 29202272 DOI: 10.1016/j.aquatox.2017.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/14/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Environmental toxicology has been expanding as growing concerns on the impact of produced and released chemical compounds over the environment and human health are being demonstrated. Among the toxic effects observed in organisms exposed to pollutants, those affecting skeletal tissues (osteotoxicity) have been somehow overlooked in comparison to hepato-, immune-, neuro- and/or reproductive toxicities. Nevertheless, sub-lethal effects of toxicants on skeletal development and/or bone maintenance may result in impaired growth, reduced survival rate, increased disease susceptibility and diminished welfare. Osteotoxicity may occur by acute or chronic exposure to different environmental insults. Because of biologically and technically advantagous features - easy to breed and inexpensive to maintain, external and rapid rate of development, translucent larvae and the availability of molecular and genetic tools - the zebrafish (Danio rerio) has emerged in the last decade as a vertebrate model system of choice to evaluate osteotoxicity. Different experimental approaches in fish species and analytical tools have been applied, from in vitro to in vivo systems, from specific to high throughput methodologies. Current knowledge on osteotoxicity and underlying mechanisms gained using fish, with a special emphasis on zebrafish systems, is reviewed here. Osteotoxicants have been classified into four categories according to the pathway involved in the transduction of the osteotoxic effects: activation/inhibition of membrane and/or nuclear receptors, alteration of redox condition, mimicking of bone constituents and unknown pathways. Knowledge on these pathways is also reported here as it may provide critical insights into the development, production and release of future chemical compounds with none or low osteotoxicity, thus promoting the green/environmental friendly chemistry.
Collapse
Affiliation(s)
- Ignacio Fernández
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal.
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal; Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| |
Collapse
|