1
|
Coulombe G, Tamber S. Salmonella enterica Outbreaks Linked to the Consumption of Tahini and Tahini-Based Products. Microorganisms 2022; 10:microorganisms10112299. [PMID: 36422369 PMCID: PMC9694856 DOI: 10.3390/microorganisms10112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Salmonella is a leading cause of bacterial foodborne illness in the world. Although typically associated with foods of animal origin, low-moisture foods, such as tahini, are quickly gaining recognition as an important vehicle of Salmonella exposure. This review offers the Canadian perspective on the issue of Salmonella in tahini and tahini-based products. A summary of several recent food product recalls and foodborne outbreaks related to the presence of Salmonella in tahini and tahini-based products such as halva are presented. The properties of the food vehicles, their production practices, and potential routes of contamination are discussed. Particular focus is placed on the ecology of Salmonella in the tahini production continuum, including its survival characteristics and response to intervention technologies.
Collapse
Affiliation(s)
- Geneviève Coulombe
- Microbiology Evaluation Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
| | - Sandeep Tamber
- Microbiology Research Division, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada
- Correspondence:
| |
Collapse
|
2
|
Lin B, Guan X, Huang Z, Wang P, Jiang H, Xu R, Jiao Q, Li R, Wang S. Improvement of radio frequency heating uniformity in wheat kernels with aluminum foil sheets covered on rectangular container walls. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Zoz F, Guyot S, Grandvalet C, Ragon M, Lesniewska E, Dupont S, Firmesse O, Carpentier B, Beney L. Management of Listeria monocytogenes on Surfaces via Relative Air Humidity: Key Role of Cell Envelope. Foods 2021; 10:foods10092002. [PMID: 34574112 PMCID: PMC8468791 DOI: 10.3390/foods10092002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
Although relative air humidity (RH) strongly influences microbial survival, its use for fighting surface pathogens in the food industry has been inadequately considered. We asked whether RH control could destroy Listeria monocytogenes EGDe by envelope damage. The impact of dehydration in phosphate-buffered saline (PBS) at 75%, 68%, 43% and 11% RH on the bacterial envelope was investigated using flow cytometry and atomic force microscopy. Changes after rehydration in the protein secondary structure and peptidoglycan were investigated by infrared spectroscopy. Complementary cultivability measurements were performed by running dehydration–rehydration with combinations of NaCl (3–0.01%), distilled water, city water and PBS. The main results show that cell membrane permeability and cell envelope were greatly altered during dehydration in PBS at 68% RH followed by rapid rehydration. This damage led cells to recover only 67% of their initial volume after rehydration. Moreover, the most efficient way to destroy cells was dehydration and rehydration in city water. Our study indicates that rehydration of dried, sullied foods on surfaces may improve current cleaning procedures in the food industry.
Collapse
Affiliation(s)
- Fiona Zoz
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; (F.Z.); (C.G.); (M.R.); (S.D.); (L.B.)
- Mérieux NutriSciences–70 Mail Marcel Cachin, F-38600 Fontaine, France
| | - Stéphane Guyot
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; (F.Z.); (C.G.); (M.R.); (S.D.); (L.B.)
- Correspondence: ; Tel.: +33-3-8077-2387
| | - Cosette Grandvalet
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; (F.Z.); (C.G.); (M.R.); (S.D.); (L.B.)
| | - Mélanie Ragon
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; (F.Z.); (C.G.); (M.R.); (S.D.); (L.B.)
| | - Eric Lesniewska
- ICB UMR CNRS 6303, Université de Bourgogne Franche-Comté, F-21078 Dijon, France;
| | - Sébastien Dupont
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; (F.Z.); (C.G.); (M.R.); (S.D.); (L.B.)
| | - Olivier Firmesse
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, F-94700 Maisons-Alfort, France; (O.F.); (B.C.)
| | - Brigitte Carpentier
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, F-94700 Maisons-Alfort, France; (O.F.); (B.C.)
| | - Laurent Beney
- Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France; (F.Z.); (C.G.); (M.R.); (S.D.); (L.B.)
| |
Collapse
|
4
|
|
5
|
Xu J, Tang J, Jin Y, Song J, Yang R, Sablani SS, Zhu MJ. High temperature water activity as a key factor influencing survival of Salmonella Enteritidis PT30 in thermal processing. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Xu J, Liu S, Tang J, Ozturk S, Kong F, Shah DH. Application of freeze-dried Enterococcus faecium NRRL B-2354 in radio-frequency pasteurization of wheat flour. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
|
8
|
Lang E, Guyot S, Alvarez-Martin P, Perrier-Cornet JM, Gervais P. Caco-2 Invasion by Cronobacter sakazakii and Salmonella enterica Exposed to Drying and Heat Treatments in Dried State in Milk Powder. Front Microbiol 2017; 8:1893. [PMID: 29033925 PMCID: PMC5627024 DOI: 10.3389/fmicb.2017.01893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/15/2017] [Indexed: 12/22/2022] Open
Abstract
Due to the ability of foodborne pathogens to survive in low moisture food, the decontamination of milk powder is an important issue in food protection. The safety of food products is, however, not always insured and the different steps in the processing of food involve physiological and metabolic changes in bacteria. Among these changes, virulence properties may also be affected. In this study, the effect of drying and successive thermal treatments on the invasion capacity of Salmonella Typhimurium, Salmonella Senftenberg, and Cronobacter sakazakii was assessed. Bacteria were dried on milk powder at three different water activity levels (0.25, 0.58, and 0.80) and heated at two different temperatures (90°C and 100°C) for 30 and 120 s. After recovery, stressed bacterial populations were placed in contact with Caco-2 cells to estimate their invasion capacity. Our results show that drying increases the invasion capacity of foodborne pathogens, but that heat treatment in the dried state did not exert a selective pressure on bacterial cells depending on their invasion capacity after drying. Taken together, our findings add to the sum of knowledge on food safety in dried food products and provide insight into the effects of food processing.
Collapse
Affiliation(s)
- Emilie Lang
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France.,Novolyze, Dijon, France
| | - Stéphane Guyot
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| | | | - Jean-Marie Perrier-Cornet
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| | - Patrick Gervais
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, Dijon, France
| |
Collapse
|
9
|
Haddrell AE, Thomas RJ. Aerobiology: Experimental Considerations, Observations, and Future Tools. Appl Environ Microbiol 2017; 83:e00809-17. [PMID: 28667111 PMCID: PMC5561278 DOI: 10.1128/aem.00809-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Understanding airborne survival and decay of microorganisms is important for a range of public health and biodefense applications, including epidemiological and risk analysis modeling. Techniques for experimental aerosol generation, retention in the aerosol phase, and sampling require careful consideration and understanding so that they are representative of the conditions the bioaerosol would experience in the environment. This review explores the current understanding of atmospheric transport in relation to advances and limitations of aerosol generation, maintenance in the aerosol phase, and sampling techniques. Potential tools for the future are examined at the interface between atmospheric chemistry, aerosol physics, and molecular microbiology where the heterogeneity and variability of aerosols can be explored at the single-droplet and single-microorganism levels within a bioaerosol. The review highlights the importance of method comparison and validation in bioaerosol research and the benefits that the application of novel techniques could bring to increasing the understanding of aerobiological phenomena in diverse research fields, particularly during the progression of atmospheric transport, where complex interdependent physicochemical and biological processes occur within bioaerosol particles.
Collapse
Affiliation(s)
- Allen E Haddrell
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Richard J Thomas
- Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, United Kingdom
| |
Collapse
|
10
|
Lang E, Chemlal L, Molin P, Guyot S, Alvarez-Martin P, Perrier-Cornet JM, Dantigny P, Gervais P. Modeling the heat inactivation of foodborne pathogens in milk powder: High relevance of the substrate water activity. Food Res Int 2017; 99:577-585. [PMID: 28784519 DOI: 10.1016/j.foodres.2017.06.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/10/2017] [Accepted: 06/17/2017] [Indexed: 10/19/2022]
Abstract
Due to the ability of foodborne pathogens to survive in low moisture foods, the decontamination of these products is an important issue in food hygiene. Up to now, such decontamination has mostly been achieved through empirical methods. The intention of this work is to establish a more rational use of heat treatment cycles. The effects of thermal treatment cycles on the inactivation of dried Salmonella Typhimurium, Salmonella Senftenberg, Cronobacter sakazakii and Escherichia coli were assessed. Bacteria were mixed with whole milk powder and dried down to different water activity levels (0.11, 0.25, 0.44 and 0.58). The rate of inactivated bacteria was determined after thermal treatment at 85°C, 90°C, 95°C and 100°C, from 0s to 180s in closed vessels, in order to maintain aw during treatment. In a first step, logarithmic bacterial inactivation was fitted by means of a classical loglinear model in which temperature and aw have a significant effect (p<0.05). DT,aw values were estimated for each T, aw condition and the results clearly showed that aw is a major parameter in the thermal decontamination of dried foods, a lower aw involving greater thermal resistance. In a second step, Bigelow's law was used to determine zT, a classical parameter relative to temperature, and yaw values, a new parameter relative to aw resistance. The values obtained for zT and yaw showed that the bacterium most resistant to temperature variations is Salmonella Typhimurium, while the one most resistant to aw variations is Escherichia coli. These data will help design decontamination protocols or processes in closed batches for low moisture foods.
Collapse
Affiliation(s)
- Emilie Lang
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1 esplanade Erasme, 21000 Dijon, France; Novolyze, 50 rue de Dijon, 21121 Daix, France
| | - Layla Chemlal
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1 esplanade Erasme, 21000 Dijon, France
| | - Paul Molin
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1 esplanade Erasme, 21000 Dijon, France
| | - Stéphane Guyot
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1 esplanade Erasme, 21000 Dijon, France
| | | | - Jean-Marie Perrier-Cornet
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1 esplanade Erasme, 21000 Dijon, France
| | - Philippe Dantigny
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1 esplanade Erasme, 21000 Dijon, France; Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (LUBEM), ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Patrick Gervais
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/AgroSup Dijon, 1 esplanade Erasme, 21000 Dijon, France.
| |
Collapse
|
11
|
Listeria monocytogenes ability to survive desiccation: Influence of serotype, origin, virulence, and genotype. Int J Food Microbiol 2017; 248:82-89. [PMID: 28288399 DOI: 10.1016/j.ijfoodmicro.2017.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/12/2017] [Accepted: 02/18/2017] [Indexed: 11/22/2022]
Abstract
Listeria monocytogenes, a bacterium that is responsible for listeriosis, is a very diverse species. Desiccation resistance has been rarely studied in L. monocytogenes, although it is a stress that is largely encountered by this microorganism in food-processing environments and that could be managed to prevent its presence. The objective of this study was to evaluate the resistance of 30 L. monocytogenes strains to moderate desiccation (75% relative humidity) and evaluate the correlation of such resistance with the strains' virulence, serotype and genotype. The results showed a great heterogeneity of strains regarding their ability to survive (loss of cultivability between 0.4 and 2.0 log). Strains were classified into three groups according to desiccation resistance (sensitive, intermediate, or resistant), and the strain repartition was analyzed relative to serotype, virulence level and environmental origin of the strains. No correlation was found between isolate origin and desiccation resistance. All serotype 1/2b strains were classified into the group of resistant strains. Virulent and hypovirulent strains were distributed among the three groups of desiccation resistance. Finally, a genomic comparison was performed based on 31 genes that were previously identified as being involved in desiccation resistance. The presence of those genes was localized among the genomes of some strains and compared regarding strain-resistance levels. High nucleotide conservation was identified between resistant and desiccation-sensitive strains. In conclusion, the findings regarding the strains of serotype 1/2b indicate potential serotype-specific resistance to desiccation, and thus, to relative humidity fluctuations potentially encountered in food-related environments. The genomic comparison of 31 genes associated to desiccation tolerance did not reveal differences among four strains which have different level of resistance to desiccation.
Collapse
|