1
|
Numata K. The Biology of Natural Polymers Accelerates and Expands the Science of Biomacromolecules: A Focus on Structural Proteins. Biomacromolecules 2025; 26:1393-1403. [PMID: 39965779 PMCID: PMC11898061 DOI: 10.1021/acs.biomac.4c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
This Perspective explores the use of biomacromolecules in natural materials synthesized by living organisms, such as spider silk, in the development of sustainable synthetic materials. Currently employed synthetic polymers lack the hierarchical complexity and unique properties of natural materials composed of biomacromolecules. By understanding the composition of these natural materials, it may be able to reproduce their properties synthetically. Additionally, research directions involving the use of renewable resources such as nitrogen and carbon dioxide from the air and seawater to develop biomacromolecules such as spider silk and biopolyester via photosynthetic organisms are reviewed. Next-generation biomacromolecule research will aid in the creation of a sustainable global society, advancing fields such as biomanufacturing, agriculture, aquaculture, and other industries.
Collapse
Affiliation(s)
- Keiji Numata
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1
Hirosawa, Wako, Saitama 351-0198, Japan
- Institute
for Advanced Biosciences, Keio University, Nipponkoku 403-1, Daihouji, Tsuruoka, Yamagata 997-0017, Japan
| |
Collapse
|
2
|
Ahmadi AN, Ganjeali A, Mohassel MHR, Mashreghi M. Controlled release of trifluralin herbicide using luminescent Vibrio-derived polyhydroxyalkanoate (PHA) microcapsules. Int J Biol Macromol 2025; 289:138845. [PMID: 39694375 DOI: 10.1016/j.ijbiomac.2024.138845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
The controlled release of herbicides using new and safe materials can mitigate environmental pollution. Polyhydroxyalkanoate (PHA) is a type of biopolymer that can be produced by various bacteria. It has properties that make it suitable for encapsulation and controlled release applications. A luminescent bacterium, Vibrio sp. VLC strain was used as the PHA producer in this study. Initially, the polymer was synthesized by the bacterium following optimization of the culture medium, resulting in an approximate yield of 25 %. Subsequently, the produced polymer was analyzed using TEM, FTIR, and H-NMR techniques. Microcapsules were produced using the emulsion method. FE-SEM imaging revealed spherical microcapsules with an average diameter of 0.5-2 μm. The herbicide loading content and encapsulation efficiency were determined to be 16.64 % and 66.56 %, respectively. The herbicidal effect of the microcapsules containing trifluralin was investigated using Amaranthus retroflexus and Setaria viridis plants, demonstrating a significant reduction in various parameters after application. Furthermore, the impact of encapsulated herbicide on soil microbial population was assessed, revealing a less negative effect compared to its free form. These findings suggest that the PHA from a luminescent vibrio holds promise as an eco-friendly, biodegradable, nontoxic material for the controlled release of herbicides.
Collapse
Affiliation(s)
- Arefe N Ahmadi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Ganjeali
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Nano Research Center, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
3
|
Morrison HM, Bose A. Purple non-sulfur bacteria for biotechnological applications. J Ind Microbiol Biotechnol 2024; 52:kuae052. [PMID: 39730143 PMCID: PMC11730080 DOI: 10.1093/jimb/kuae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/26/2024] [Indexed: 12/29/2024]
Abstract
In this review, we focus on how purple non-sulfur bacteria can be leveraged for sustainable bioproduction to support the circular economy. We discuss the state of the field with respect to the use of purple bacteria for energy production, their role in wastewater treatment, as a fertilizer, and as a chassis for bioplastic production. We explore their ability to serve as single-cell protein and production platforms for fine chemicals from waste materials. We also introduce more Avant-Garde technologies that leverage the unique metabolisms of purple bacteria, including microbial electrosynthesis and co-culture. These technologies will be pivotal in our efforts to mitigate climate change and circularize the economy in the next two decades. ONE-SENTENCE SUMMARY Purple non-sulfur bacteria are utilized for a range of biotechnological applications, including the production of bio-energy, single cell protein, fertilizer, bioplastics, fine chemicals, in wastewater treatment and in novel applications like co-cultures and microbial electrosynthesis.
Collapse
Affiliation(s)
- Hailee M Morrison
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Arpita Bose
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
4
|
Ranaivoarisoa TO, Bai W, Karthikeyan R, Steele H, Silberman M, Olabode J, Conners E, Gallagher B, Bose A. Overexpression of RuBisCO form I and II genes in Rhodopseudomonas palustris TIE-1 augments polyhydroxyalkanoate production heterotrophically and autotrophically. Appl Environ Microbiol 2024; 90:e0143824. [PMID: 39162566 PMCID: PMC11409669 DOI: 10.1128/aem.01438-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
With the rising demand for sustainable renewable resources, microorganisms capable of producing bioproducts such as bioplastics are attractive. While many bioproduction systems are well-studied in model organisms, investigating non-model organisms is essential to expand the field and utilize metabolically versatile strains. This investigation centers on Rhodopseudomonas palustris TIE-1, a purple non-sulfur bacterium capable of producing bioplastics. To increase bioplastic production, genes encoding the putative regulatory protein PhaR and the depolymerase PhaZ of the polyhydroxyalkanoate (PHA) biosynthesis pathway were deleted. Genes associated with pathways that might compete with PHA production, specifically those linked to glycogen production and nitrogen fixation, were deleted. Additionally, RuBisCO form I and II genes were integrated into TIE-1's genome by a phage integration system, developed in this study. Our results show that deletion of phaR increases PHA production when TIE-1 is grown photoheterotrophically with butyrate and ammonium chloride (NH4Cl). Mutants unable to produce glycogen or fix nitrogen show increased PHA production under photoautotrophic growth with hydrogen and NH4Cl. The most significant increase in PHA production was observed when RuBisCO form I and form I & II genes were overexpressed, five times under photoheterotrophy with butyrate, two times with hydrogen and NH4Cl, and two times under photoelectrotrophic growth with N2 . In summary, inserting copies of RuBisCO genes into the TIE-1 genome is a more effective strategy than deleting competing pathways to increase PHA production in TIE-1. The successful use of the phage integration system opens numerous opportunities for synthetic biology in TIE-1.IMPORTANCEOur planet has been burdened by pollution resulting from the extensive use of petroleum-derived plastics for the last few decades. Since the discovery of biodegradable plastic alternatives, concerted efforts have been made to enhance their bioproduction. The versatile microorganism Rhodopseudomonas palustris TIE-1 (TIE-1) stands out as a promising candidate for bioplastic synthesis, owing to its ability to use multiple electron sources, fix the greenhouse gas CO2, and use light as an energy source. Two categories of strains were meticulously designed from the TIE-1 wild-type to augment the production of polyhydroxyalkanoate (PHA), one such bioplastic produced. The first group includes mutants carrying a deletion of the phaR or phaZ genes in the PHA pathway, and those lacking potential competitive carbon and energy sinks to the PHA pathway (namely, glycogen biosynthesis and nitrogen fixation). The second group comprises TIE-1 strains that overexpress RuBisCO form I or form I & II genes inserted via a phage integration system. By studying numerous metabolic mutants and overexpression strains, we conclude that genetic modifications in the environmental microbe TIE-1 can improve PHA production. When combined with other approaches (such as reactor design, use of microbial consortia, and different feedstocks), genetic and metabolic manipulations of purple nonsulfur bacteria like TIE-1 are essential for replacing petroleum-derived plastics with biodegradable plastics like PHA.
Collapse
Affiliation(s)
| | - Wei Bai
- LifeFoundry, San Jose, California, USA
| | | | - Hope Steele
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Miriam Silberman
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jennifer Olabode
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Eric Conners
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Brian Gallagher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Arpita Bose
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Freches A, Fradinho JC. The biotechnological potential of the Chloroflexota phylum. Appl Environ Microbiol 2024; 90:e0175623. [PMID: 38709098 PMCID: PMC11218635 DOI: 10.1128/aem.01756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
In the next decades, the increasing material and energetic demand to support population growth and higher standards of living will amplify the current pressures on ecosystems and will call for greater investments in infrastructures and modern technologies. A valid approach to overcome such future challenges is the employment of sustainable bio-based technologies that explore the metabolic richness of microorganisms. Collectively, the metabolic capabilities of Chloroflexota, spanning aerobic and anaerobic conditions, thermophilic adaptability, anoxygenic photosynthesis, and utilization of toxic compounds as electron acceptors, underscore the phylum's resilience and ecological significance. These diverse metabolic strategies, driven by the interplay between temperature, oxygen availability, and energy metabolism, exemplify the complex adaptations that enabled Chloroflexota to colonize a wide range of ecological niches. In demonstrating the metabolic richness of the Chloroflexota phylum, specific members exemplify the diverse capabilities of these microorganisms: Chloroflexus aurantiacus showcases adaptability through its thermophilic and phototrophic growth, whereas members of the Anaerolineae class are known for their role in the degradation of complex organic compounds, contributing significantly to the carbon cycle in anaerobic environments, highlighting the phylum's potential for biotechnological exploitation in varying environmental conditions. In this context, the metabolic diversity of Chloroflexota must be considered a promising asset for a large range of applications. Currently, this bacterial phylum is organized into eight classes possessing different metabolic strategies to survive and thrive in a wide variety of extreme environments. This review correlates the ecological role of Chloroflexota in such environments with the potential application of their metabolisms in biotechnological approaches.
Collapse
Affiliation(s)
- André Freches
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Joana Costa Fradinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
6
|
Gaur VK, Nguyen-Vo TP, Islam T, Bassey BF, Kim M, Ainala SK, Shin K, Park S. Efficient bioproduction of poly(3-hydroxypropionate) homopolymer using engineered Escherichia coli strains. BIORESOURCE TECHNOLOGY 2024; 397:130469. [PMID: 38382722 DOI: 10.1016/j.biortech.2024.130469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
This study focuses on the development of a scalable method for producing poly(3-hydroxypropionate), a homopolymer with significant physico-mechanical properties, through the use of metabolically-engineered Escherichia coli K12 (MG1655) and externally supplied 3-hydroxypropionate. The polymer synthesis pathway was established and optimized through synthetic biology techniques, including the effects of overexpressing phasin and cell division proteins. The optimized strain achieved unprecedented production titers of 9.5 g/L in flask cultures and 80 g/L in fed-batch bioreactors within 45 h. The analysis of poly(3-hydroxypropionate) polymer properties revealed it possesses excellent elasticity (Young's modulus < 6 MPa) and tensile strength (∼80 MPa), positioning it within the category of elastomers or flexible plastics. These findings suggest a viable path for the sustainable, large-scale production of the poly(3-hydroxypropionate) biopolymer.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Thuan Phu Nguyen-Vo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; Presently: Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Tayyab Islam
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Bassey Friday Bassey
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Miri Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Satish Kumar Ainala
- NOROO Bio R&D Center, NOROO Holdings Co., Ltd, Gyeonggi-do 16229, Republic of Korea
| | - Kyusoon Shin
- NOROO Bio R&D Center, NOROO Holdings Co., Ltd, Gyeonggi-do 16229, Republic of Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
7
|
Ranaivoarisoa TO, Bai W, Rengasamy K, Steele H, Silberman M, Olabode J, Bose A. Improving bioplastic production by Rhodopseudomonas palustris TIE-1 using synthetic biology and metabolic engineering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541174. [PMID: 37292853 PMCID: PMC10245724 DOI: 10.1101/2023.05.17.541174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the increasing demand for sustainably produced renewable resources, it is important to look towards microorganisms capable of producing bioproducts such as biofuels and bioplastics. Though many systems for bioproduct production are well documented and tested in model organisms, it is essential to look beyond to non-model organisms to expand the field and take advantage of metabolically versatile strains. This investigation centers on Rhodopseudomonas palustris TIE-1, a purple, non-sulfur autotrophic, and anaerobic bacterium capable of producing bioproducts that are comparable to their petroleum-based counterparts. To induce bioplastic overproduction, genes that might have a potential role in the PHB biosynthesis such as the regulator, phaR, and phaZ known for its ability to degrade PHB granules were deleted using markerless deletion. Mutants in pathways that might compete with polyhydroxybutyrate (PHB) production such as glycogen and nitrogen fixation previously created to increase n -butanol production by TIE-1 were also tested. In addition, a phage integration system was developed to insert RuBisCO (RuBisCO form I and II genes) driven by a constitutive promoter P aphII into TIE- 1 genome. Our results show that deletion of the phaR gene of the PHB pathway increases PHB productivity when TIE-1 was grown photoheterotrophically with butyrate and ammonium chloride (NH 4 Cl). Mutants unable to make glycogen or fix dinitrogen gas show an increase in PHB productivity under photoautotrophic growth conditions with hydrogen. In addition, the engineered TIE-1 overexpressing RuBisCO form I and form II produces significantly more polyhydroxybutyrate than the wild type under photoheterotrophy with butyrate and photoautotrophy with hydrogen. Inserting RuBisCO genes into TIE-1 genome is a more effective strategy than deleting competitive pathways to increase PHB production in TIE-1. The phage integration system developed for TIE-1 thus creates numerous opportunities for synthetic biology in TIE-1.
Collapse
|
8
|
Manchon C, Muniesa-Merino F, Llorente M, Esteve-Núñez A. Microbial photoelectrosynthesis: Feeding purple phototrophic bacteria electricity to produce bacterial biomass. Microb Biotechnol 2023; 16:569-578. [PMID: 36537073 PMCID: PMC9948228 DOI: 10.1111/1751-7915.14190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 02/24/2023] Open
Abstract
Purple phototrophic bacteria are one of the main actors in chemolithotrophic carbon fixation and, therefore, fundamental in the biogeochemical cycle. These microbes are capable of using insoluble electron donors such as ferrous minerals or even carbon-based electrodes. Carbon fixation through extracellular electron uptake places purple phototrophic bacteria in the field of microbial electrosynthesis as key carbon capturing microorganisms. In this work we demonstrate biomass production dominated by purple phototrophic bacteria with a cathode (-0.6 V vs. Ag/AgCl) as electron donor. In addition, we compared the growth and microbial population structure with ferrous iron as the electron donor. We detect interaction between the cathode and the consortium showing a midpoint potential of 0.05 V (vs. Ag/AgCl). Microbial community analyses revealed different microbial communities depending on the electron donor, indicating different metabolic interactions. Electrochemical measurements together with population analyses point to Rhodopseudomonas genus as the key genus in the extracellular electron uptake. Furthermore, the genera Azospira and Azospirillum could play a role in the photoelectrotrophic consortium.
Collapse
Affiliation(s)
- Carlos Manchon
- Universidad de Alcalá, Madrid, Spain.,Nanoelectra, Madrid, Spain
| | | | | | - Abraham Esteve-Núñez
- Universidad de Alcalá, Madrid, Spain.,Nanoelectra, Madrid, Spain.,IMDEA Water, Alcalá de Henares, Spain
| |
Collapse
|
9
|
Ray S, Jin JO, Choi I, Kim M. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources. Front Bioeng Biotechnol 2023; 10:907500. [PMID: 36686222 PMCID: PMC9852868 DOI: 10.3389/fbioe.2022.907500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Growing concerns over the use of limited fossil fuels and their negative impacts on the ecological niches have facilitated the exploration of alternative routes. The use of conventional plastic material also negatively impacts the environment. One such green alternative is polyhydroxyalkanoates, which are biodegradable, biocompatible, and environmentally friendly. Recently, researchers have focused on the utilization of waste gases particularly those belonging to C1 sources derived directly from industries and anthropogenic activities, such as carbon dioxide, methane, and methanol as the substrate for polyhydroxyalkanoates production. Consequently, several microorganisms have been exploited to utilize waste gases for their growth and biopolymer accumulation. Methylotrophs such as Methylobacterium organophilum produced highest amount of PHA up to 88% using CH4 as the sole carbon source and 52-56% with CH3OH. On the other hand Cupriavidus necator, produced 71-81% of PHA by utilizing CO and CO2 as a substrate. The present review shows the potential of waste gas valorization as a promising solution for the sustainable production of polyhydroxyalkanoates. Key bottlenecks towards the usage of gaseous substrates obstructing their realization on a large scale and the possible technological solutions were also highlighted. Several strategies for PHA production using C1 gases through fermentation and metabolic engineering approaches are discussed. Microbes such as autotrophs, acetogens, and methanotrophs can produce PHA from CO2, CO, and CH4. Therefore, this article presents a vision of C1 gas into bioplastics are prospective strategies with promising potential application, and aspects related to the sustainability of the system.
Collapse
Affiliation(s)
- Subhasree Ray
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Myunghee Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| |
Collapse
|
10
|
George DM, Ramadoss R, Mackey HR, Vincent AS. Comparative computational study to augment UbiA prenyltransferases inherent in purple photosynthetic bacteria cultured from mangrove microbial mats in Qatar for coenzyme Q 10 biosynthesis. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 36:e00775. [PMID: 36404947 PMCID: PMC9672418 DOI: 10.1016/j.btre.2022.e00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/31/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022]
Abstract
Coenzyme Q10 (CoQ10) is a powerful antioxidant with a myriad of applications in healthcare and cosmetic industries. The most effective route of CoQ10 production is microbial biosynthesis. In this study, four CoQ10 biosynthesizing purple photosynthetic bacteria: Rhodobacter blasticus, Rhodovulum adriaticum, Afifella pfennigii and Rhodovulum marinum, were identified using 16S rRNA sequencing of enriched microbial mat samples obtained from Purple Island mangroves (Qatar). The membrane bound enzyme 4-hydroxybenzoate octaprenyltransferase (UbiA) is pivotal for bacterial biosynthesis of CoQ10. The identified bacteria could be inducted as efficient industrial bio-synthesizers of CoQ10 by engineering their UbiA enzymes. Therefore, the mutation sites and substitution residues for potential functional enhancement were determined by comparative computational study. Two mutation sites were identified within the two conserved Asp-rich motifs, and the effect of proposed mutations in substrate binding affinity of the UbiA enzymes was assessed using multiple ligand simultaneous docking (MLSD) studies, as a groundwork for experimental studies.
Collapse
Affiliation(s)
- Drishya M. George
- College of Health and Life Sciences, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ramya Ramadoss
- Biological Sciences, Carnegie Mellon University Qatar, Doha, Qatar
| | - Hamish R. Mackey
- College of Health and Life Sciences, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar
- Division of Sustainable Development, College of Science and Engineering, Hamad bin Khalifa University, Qatar Foundation, Doha, Qatar
| | | |
Collapse
|
11
|
Carlozzi P, Touloupakis E, Filippi S, Cinelli P, Mezzetta A, Seggiani M. Purple non-sulfur bacteria as cell factories to produce a copolymer as PHBV under light/dark cycle in a 4-L photobioreactor. J Biotechnol 2022; 356:51-59. [PMID: 35932942 DOI: 10.1016/j.jbiotec.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/28/2022]
Abstract
The present study reports a strategy to produce polyhydroxyalkanoates (PHAs) by culturing the marine bacterium Rhodovulum sulfidophilum DSM-1374. The study was carried out by growing the bacterium anaerobically for 720 h under 16/8 light/dark cycle. Two analytical techniques such as proton magnetic nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FT-IR) were used to determine that the polyester produced was poly-3-hydroxybutirate-co-3-hydroxyvalerate (PHBV). This study showed that the excess of lactate and the limitation of N-P nutrients under a light-dark cycle enhanced PHBV synthesis and achieved a PHBV concentration of 330 mg/L in the R. sulfidophilum culture. During the 30 days of bacterial cultivation, the percentage of polymer in the six harvested dry biomasses gradually increased from 13.7% to 23.4%. In addition, the study showed that PHBV synthesis stopped during the 8-h dark phase and restarted in the light. The light-dark cycle study also showed that R. sulfidophilum DSM-1374 can be grown outdoors because the cells are exposed to the natural light-dark cycle.
Collapse
Affiliation(s)
- Pietro Carlozzi
- Research Institute on Terrestrial Ecosystems, CNR, Via Madonna del Piano 10, 50019 Florence, Italy.
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, CNR, Via Madonna del Piano 10, 50019 Florence, Italy
| | - Sara Filippi
- Department of Civil and Industrial Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, 56126 Pisa, Italy
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering, University of Pisa, L.go Lucio Lazzarino 1, 56122 Pisa, Italy
| |
Collapse
|
12
|
Nitrogen Fixation Activity and Genome Analysis of a Moderately Haloalkaliphilic Anoxygenic Phototrophic Bacterium Rhodovulum tesquicola. Microorganisms 2022; 10:microorganisms10081615. [PMID: 36014033 PMCID: PMC9412634 DOI: 10.3390/microorganisms10081615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
The genome of the moderately haloalkaliphilic diazotrophic anoxygenic phototrophic bacterium Rhodovulum tesquicola A-36sT isolated from an alkaline lake was analyzed and compared to the genomes of the closest species Rhodovulum steppense A-20sT and Rhodovulum strictum DSM 11289T. The genomic features of three organisms are quite similar, reflecting their ecological and physiological role of facultative photoheterotrophs. Nevertheless, the nitrogenase activity of the pure cultures of the studied bacteria differed significantly: the highest rate (4066 nmoles C2H2/mg of dry weight per hour) was demonstrated by Rhodovulum strictum while the rates in Rhodovulum tesquicola and Rhodovulum steppense were an order of magnitude lower (278 and 523 nmoles C2H2/mg of dry weight per hour, respectively). This difference can be attributed to the presence of an additional nitrogenase operon found exclusively in R. strictum and to the structural variation in nitrogenase operon in R. tesquicola.
Collapse
|
13
|
Srisawat P, Higuchi-Takeuchi M, Numata K. Microbial autotrophic biorefineries: Perspectives for biopolymer production. Polym J 2022. [DOI: 10.1038/s41428-022-00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractThe use of autotrophic microorganisms to fabricate biochemical products has attracted much attention in both academia and industry. Unlike heterotrophic microorganisms that require carbohydrates and amino acids for growth, autotrophic microorganisms have evolved to utilize either light (photoautotrophs) or chemical compounds (chemolithotrophs) to fix carbon dioxide (CO2) and drive metabolic processes. Several biotechnological approaches, including synthetic biology and metabolic engineering, have been proposed to harness autotrophic microorganisms as a sustainable/green production platform for commercially essential products such as biofuels, commodity chemicals, and biopolymers. Here, we review the recent advances in natural autotrophic microorganisms (photoautotrophic and chemoautotrophic), focusing on the biopolymer production. We present current state-of-the-art technologies to engineer autotrophic microbial cell factories for efficient biopolymer production.
Collapse
|
14
|
Foong CP, Higuchi-Takeuchi M, Ohtawa K, Asai T, Liu H, Ozeki Y, Numata K. Engineered Mutants of a Marine Photosynthetic Purple Nonsulfur Bacterium with Increased Volumetric Productivity of Polyhydroxyalkanoate Bioplastics. ACS Synth Biol 2022; 11:909-920. [PMID: 35061943 DOI: 10.1021/acssynbio.1c00537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are green and sustainable bioplastics that could replace petrochemical synthetic plastics without posing environmental threats to living organisms. In addition, sustainable PHA production could be achieved using marine photosynthetic purple nonsulfur bacteria (PNSBs) that utilize natural seawater, sunlight, carbon dioxide gas, and nitrogen gas for growth. However, PHA production using marine photosynthetic PNSBs has not been economically feasible yet due to its high cost and low productivity. In this work, strain improvement, using genome-wide mutagenesis coupled with high-throughput screening via fluorescence-activated cell sorting, we were able to create Rhodovulum sulfidophilum mutants with enhanced volumetric PHA productivity, with an up to 1.7-fold increase. The best selected mutants (E6 and E6M4) reached the stationary growth phase 1 day faster and accumulated the maximum PHA content 2 days faster than the wild type. Maximizing volumetric PHA productivity before the stationary growth phase is indeed an additional advantage for R. sulfidophilum as a growth-associated PHA producer.
Collapse
Affiliation(s)
- Choon Pin Foong
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8246, Japan
| | - Mieko Higuchi-Takeuchi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenji Ohtawa
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takuya Asai
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hanqin Liu
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yasuyuki Ozeki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Keiji Numata
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8246, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
15
|
Samadhiya K, Sangtani R, Nogueira R, Bala K. Insightful Advancement and Opportunities for Microbial Bioplastic Production. Front Microbiol 2022; 12:674864. [PMID: 35058887 PMCID: PMC8763809 DOI: 10.3389/fmicb.2021.674864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022] Open
Abstract
Impetuous urbanization and population growth are driving increased demand for plastics to formulate impeccable industrial and biomedical commodities. The everlasting nature and excruciating waste management of petroleum-based plastics have catered to numerous challenges for the environment. However, just implementing various end-of-life management techniques for assimilation and recycling plastics is not a comprehensive remedy; instead, the extensive reliance on finite resources needs to be reduced for sustainable production and plastic product utilization. Microorganisms, such as bacteria and algae, are explored substantially for their bioplastic production repertoire, thus replacing fossil-based plastics sooner or later. Nevertheless, the utilization of pure microbial cultures has led to various operational and economical complications, opening the ventures for the usage of mixed microbial cultures (MMCs) consisting of bacteria and algae for sustainable production of bioplastic. The current review is primarily focuses on elaborating the bioplastic production capabilities of different bacterial and algal strains, followed by discussing the quintessence of MMCs. The present state-of-the-art of bioplastic, different types of bacterial bioplastic, microalgal biocomposites, operational factors influencing the quality and quantity of bioplastic precursors, embracing the potential of bacteria-algae consortia, and the current global status quo of bioplastic production has been summarized extensively.
Collapse
Affiliation(s)
- Kanchan Samadhiya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Rimjhim Sangtani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Regina Nogueira
- Institute for Sanitary Engineering and Waste Management, Leibniz Universitaet Hannover, Hanover, Germany
| | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| |
Collapse
|
16
|
Guo W, Yang K, Qin X, Luo R, Wang H, Huang R. Polyhydroxyalkanoates in tissue repair and regeneration. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
17
|
Glaskova-Kuzmina T, Starkova O, Gaidukovs S, Platnieks O, Gaidukova G. Durability of Biodegradable Polymer Nanocomposites. Polymers (Basel) 2021; 13:3375. [PMID: 34641189 PMCID: PMC8512741 DOI: 10.3390/polym13193375] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Biodegradable polymers (BP) are often regarded as the materials of the future, which address the rising environmental concerns. The advancement of biorefineries and sustainable technologies has yielded various BP with excellent properties comparable to commodity plastics. Water resistance, high dimensional stability, processability and excellent physicochemical properties limit the reviewed materials to biodegradable polyesters and modified compositions of starch and cellulose, both known for their abundance and relatively low price. The addition of different nanofillers and preparation of polymer nanocomposites can effectively improve BP with controlled functional properties and change the rate of degradation. The lack of data on the durability of biodegradable polymer nanocomposites (BPN) has been the motivation for the current review that summarizes recent literature data on environmental ageing of BPN and the role of nanofillers, their basic engineering properties and potential applications. Various durability tests discussed thermal ageing, photo-oxidative ageing, water absorption, hygrothermal ageing and creep testing. It was discussed that incorporating nanofillers into BP could attenuate the loss of mechanical properties and improve durability. Although, in the case of poor dispersion, the addition of the nanofillers can lead to even faster degradation, depending on the structural integrity and the state of interfacial adhesion. Selected models that describe the durability performance of BPN were considered in the review. These can be applied as a practical tool to design BPN with tailored property degradationand durability.
Collapse
Affiliation(s)
| | - Olesja Starkova
- Institute for Mechanics of Materials, University of Latvia, LV-1004 Riga, Latvia;
| | - Sergejs Gaidukovs
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P.Valdena 3/7, LV-1048 Riga, Latvia; (S.G.); (O.P.)
| | - Oskars Platnieks
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P.Valdena 3/7, LV-1048 Riga, Latvia; (S.G.); (O.P.)
| | | |
Collapse
|
18
|
Muriel-Millán LF, Millán-López S, Pardo-López L. Biotechnological applications of marine bacteria in bioremediation of environments polluted with hydrocarbons and plastics. Appl Microbiol Biotechnol 2021; 105:7171-7185. [PMID: 34515846 DOI: 10.1007/s00253-021-11569-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Marine ecosystems are some of the most adverse environments on Earth and contain a considerable portion of the global bacterial population, and some of these bacterial species play pivotal roles in several biogeochemical cycles. Marine bacteria have developed different molecular mechanisms to address fluctuating environmental conditions, such as changes in nutrient availability, salinity, temperature, pH, and pressure, making them attractive for use in diverse biotechnology applications. Although more than 99% of marine bacteria cannot be cultivated with traditional microbiological techniques, several species have been successfully isolated and grown in the laboratory, facilitating investigations of their biotechnological potential. Some of these applications may contribute to addressing some current global problems, such as environmental contamination by hydrocarbons and synthetic plastics. In this review, we first summarize and analyze recently published information about marine bacterial diversity. Then, we discuss new literature regarding the isolation and characterization of marine bacterial strains able to degrade hydrocarbons and petroleum-based plastics, and species able to produce biosurfactants. We also describe some current limitations for the implementation of these biotechnological tools, but also we suggest some strategies that may contribute to overcoming them. KEY POINTS: • Marine bacteria have a great metabolic capacity to degrade hydrocarbons in harsh conditions. • Marine environments are an important source of new bacterial plastic-degrading enzymes. • Secondary metabolites from marine bacteria have diverse potential applications in biotechnology.
Collapse
Affiliation(s)
- Luis Felipe Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad Universitaria, CDMX, Mexico.
| | - Sofía Millán-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| |
Collapse
|
19
|
Bang J, Ahn JH, Lee JA, Hwang CH, Kim GB, Lee J, Lee SY. Synthetic Formatotrophs for One-Carbon Biorefinery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100199. [PMID: 34194943 PMCID: PMC8224422 DOI: 10.1002/advs.202100199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/06/2021] [Indexed: 06/13/2023]
Abstract
The use of CO2 as a carbon source in biorefinery is of great interest, but the low solubility of CO2 in water and the lack of efficient CO2 assimilation pathways are challenges to overcome. Formic acid (FA), which can be easily produced from CO2 and more conveniently stored and transported than CO2, is an attractive CO2-equivalent carbon source as it can be assimilated more efficiently than CO2 by microorganisms and also provides reducing power. Although there are native formatotrophs, they grow slowly and are difficult to metabolically engineer due to the lack of genetic manipulation tools. Thus, much effort is exerted to develop efficient FA assimilation pathways and synthetic microorganisms capable of growing solely on FA (and CO2). Several innovative strategies are suggested to develop synthetic formatotrophs through rational metabolic engineering involving new enzymes and reconstructed FA assimilation pathways, and/or adaptive laboratory evolution (ALE). In this paper, recent advances in development of synthetic formatotrophs are reviewed, focusing on biological FA and CO2 utilization pathways, enzymes involved and newly developed, and metabolic engineering and ALE strategies employed. Also, future challenges in cultivating formatotrophs to higher cell densities and producing chemicals from FA and CO2 are discussed.
Collapse
Affiliation(s)
- Junho Bang
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
| | - Jung Ho Ahn
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
| | - Jong An Lee
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
| | - Chang Hun Hwang
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
| | - Gi Bae Kim
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular EngineeringSogang UniversitySeoul04107Republic of Korea
- C1 Gas Refinery R&D CenterSogang UniversitySeoul04107Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross‐Generation Collaborative LaboratoryKAISTDaejeon34141Republic of Korea
- BioInformatics Research Center and BioProcess Engineering Research CenterKAISTDaejeon34141Republic of Korea
| |
Collapse
|
20
|
Giubilini A, Bondioli F, Messori M, Nyström G, Siqueira G. Advantages of Additive Manufacturing for Biomedical Applications of Polyhydroxyalkanoates. Bioengineering (Basel) 2021; 8:29. [PMID: 33672131 PMCID: PMC7926534 DOI: 10.3390/bioengineering8020029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, biopolymers have been attracting the attention of researchers and specialists from different fields, including biotechnology, material science, engineering, and medicine. The reason is the possibility of combining sustainability with scientific and technological progress. This is an extremely broad research topic, and a distinction has to be made among different classes and types of biopolymers. Polyhydroxyalkanoate (PHA) is a particular family of polyesters, synthetized by microorganisms under unbalanced growth conditions, making them both bio-based and biodegradable polymers with a thermoplastic behavior. Recently, PHAs were used more intensively in biomedical applications because of their tunable mechanical properties, cytocompatibility, adhesion for cells, and controllable biodegradability. Similarly, the 3D-printing technologies show increasing potential in this particular field of application, due to their advantages in tailor-made design, rapid prototyping, and manufacturing of complex structures. In this review, first, the synthesis and the production of PHAs are described, and different production techniques of medical implants are compared. Then, an overview is given on the most recent and relevant medical applications of PHA for drug delivery, vessel stenting, and tissue engineering. A special focus is reserved for the innovations brought by the introduction of additive manufacturing in this field, as compared to the traditional techniques. All of these advances are expected to have important scientific and commercial applications in the near future.
Collapse
Affiliation(s)
- Alberto Giubilini
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy;
| | - Federica Bondioli
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy;
| | - Massimo Messori
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Gustav Nyström
- Cellulose & Wood Materials Laboratory, Empa—Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland;
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Gilberto Siqueira
- Cellulose & Wood Materials Laboratory, Empa—Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland;
| |
Collapse
|
21
|
Goswami M, Rekhi P, Debnath M, Ramakrishna S. Microbial Polyhydroxyalkanoates Granules: An Approach Targeting Biopolymer for Medical Applications and Developing Bone Scaffolds. Molecules 2021; 26:860. [PMID: 33562111 PMCID: PMC7915662 DOI: 10.3390/molecules26040860] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Microbial polyhydroxyalkanoates (PHA) are proteinaceous storage granules ranging from 100 nm to 500 nm. Bacillus sp. serve as unique bioplastic sources of short-chain length and medium-chain length PHA showcasing properties such as biodegradability, thermostability, and appreciable mechanical strength. The PHA can be enhanced by adding functional groups to make it a more industrially useful biomaterial. PHA blends with hydroxyapatite to form nanocomposites with desirable features of compressibility. The reinforced matrices result in nanocomposites that possess significantly improved mechanical and thermal properties both in solid and melt states along with enhanced gas barrier properties compared to conventional filler composites. These superior qualities extend the polymeric composites' applications to aggressive environments where the neat polymers are likely to fail. This nanocomposite can be used in different industries as nanofillers, drug carriers for packaging essential hormones and microcapsules, etc. For fabricating a bone scaffold, electrospun nanofibrils made from biocomposite of hydroxyapatite and polyhydroxy butyrate, a form of PHA, can be incorporated with the targeted tissue. The other methods for making a polymer scaffold, includes gas foaming, lyophilization, sol-gel, and solvent casting method. In this review, PHA as a sustainable eco-friendly NextGen biomaterial from bacterial sources especially Bacillus cereus, and its application for fabricating bone scaffold using different strategies for bone regeneration have been discussed.
Collapse
Affiliation(s)
- Moushmi Goswami
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Pavni Rekhi
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore;
| |
Collapse
|
22
|
Praveen P, Vaidya A, Tutt K, Andrews J. Assessing the potential of purple phototrophic microbial community for nitrogen recycling from ammonia-rich medium and anaerobic digestate. BIORESOURCE TECHNOLOGY 2021; 320:124436. [PMID: 33248813 DOI: 10.1016/j.biortech.2020.124436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Purple phototrophic bacteria (PPB) community, enriched from municipal wastewater, was characterized to assess their growth, tolerance, composition and potential for resource recovery from NH4+-rich medium. Batch experiments were conducted in tissue culture flasks and glass bottles under anaerobic conditions with infra-red lights. PPBs showed remarkable tolerance to high concentrations of NH4+-N and acetate. Below 1.5 g/L, growth was unaffected by NH4+-N with optical density at 590 nm (OD590) reaching 2.6-2.9, while they could tolerate 4.5 g/L NH4+-N. Similarly, PPB growth was unaffected at acetate concentrations below 4 g/L and they could tolerate >20 g/L acetate. Taxonomic characterization showed that the community comprised of 37-52% PPBs (with 15-20% proteins) under different conditions, with Rhodobacter sp. over Rhodopseudomonas sp. dominating at higher NH4+-N concentrations. PPBs showed growth and removal rates in anaerobic digestate and accumulated 26% proteins. These results indicated the potential of PPBs in resource recovery from NH4+-rich wastewater.
Collapse
Affiliation(s)
| | - Alankar Vaidya
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua, New Zealand
| | - Keryn Tutt
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua, New Zealand
| | - John Andrews
- Scion, Te Papa Tipu Innovation Park, 49 Sala Street, Rotorua, New Zealand
| |
Collapse
|
23
|
Carlozzi P, Touloupakis E. Bioplastic production by feeding the marine Rhodovulum sulfidophilum DSM-1374 with four different carbon sources under batch, fed-batch and semi-continuous growth regimes. N Biotechnol 2020; 62:10-17. [PMID: 33333263 DOI: 10.1016/j.nbt.2020.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/05/2020] [Accepted: 12/13/2020] [Indexed: 12/27/2022]
Abstract
In the present study, the ability of the marine bacterium Rhodovulum sulfidophilum DSM-1374 to convert, via photo-fermentative process, certain organic acids such as single carbon source (acetate, lactate, malate and succinate) into polyhydroxyalkanoate accumulations within bacterial cells is evaluated. The main goal of the investigation was poly-3-hydroxybutyrate (P3HB) synthesis by a photo-fermentative process. Of the four carbon sources, only succinate simultaneously produced P3HB and H2 (268 mg/L and 1085 mL/L respectively). Malate was the least productive source for P3HB; the other carbon sources (acetate and lactate) produced a significant amount of polymer (596 mg P3HB/L for acetate and 716 mg P3HB/L for lactate) when R. sulfidophilum was cultured in batch growth conditions. Cumulative P3HB increased significantly when the bacterium was grown under two steps: nutrient sufficient conditions (step 1) followed by macronutrient deficient conditions (step 2). The highest cumulative P3HB was observed at the end of step 2 (1000 mg/L) when R. sulfidophilum was fed with lactate under phosphorus starvation. When grown over 1200 h, under a semi-continuous regimen, the harvested dry-biomass reached a constant content of P3HB (39.1 ± 1.6 % of cell dry-weight), in the semi-steady state condition. Since lactate is an abundant byproduct of world industries, it can be used to mitigate the environmental impact in a modern circular bio-economy.
Collapse
Affiliation(s)
- Pietro Carlozzi
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy.
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|
24
|
Mourão MM, Gradíssimo DG, Santos AV, Schneider MPC, Faustino SMM, Vasconcelos V, Xavier LP. Optimization of Polyhydroxybutyrate Production by Amazonian Microalga Stigeoclonium sp. B23. Biomolecules 2020; 10:E1628. [PMID: 33287108 PMCID: PMC7761742 DOI: 10.3390/biom10121628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 01/22/2023] Open
Abstract
The present work established the optimization and production of biodegradable thermoplastic polyhydroxybutyrate (PHB) from Amazonian microalga Stigeoclonium sp. B23. The optimization was performed in eight different growth media conditions of Stigeoclonium sp. B23, supplemented with sodium acetate and sodium bicarbonate and total deprivation of sodium nitrate. B23 was stained with Nile Red, and PHB was extracted and quantified by correlating the amount of fluorescence and biopolymer concentration through spectrofluorimetry and spectrophotometry, respectively. Our results detected the production of PHB in Stigeoclonium sp. B23 and in all modified media. Treatment with increased acetate and bicarbonate and without nitrate gave the highest concentration of PHB, while the treatment with only acetate gave the lowest among supplemented media. Our results showed a great potential of Stigeoclonium sp. B23, the first Amazonian microalga reported on PHB production. The microalga was isolated from a poorly explored and investigated region and proved to be productive when compared to other cyanobacterial and bacterial species. Additionally, microalga biomass changes due to the nutritional conditions and, reversely, biopolymer is well-synthetized. This great potential could lead to the pursuit of new Amazonian microalgae species in the search for alternative polyesters.
Collapse
Affiliation(s)
- Murilo Moraes Mourão
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, 01 Augusto Corrêa Street, 66075-110 Belém, Pará, Brazil; (D.G.G.); (L.P.X.)
| | - Diana Gomes Gradíssimo
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, 01 Augusto Corrêa Street, 66075-110 Belém, Pará, Brazil; (D.G.G.); (L.P.X.)
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, 01 Augusto Corrêa Street, 66075-110 Belém, Pará, Brazil; (D.G.G.); (L.P.X.)
| | - Maria Paula Cruz Schneider
- Genomics and Systems Biology Center, Federal University of Pará, 01 Augusto Corrêa Street, 66075-110 Belém, Pará, Brazil;
| | - Silvia Maria Mathes Faustino
- Laboratory of Algae Cultivation and Bioprospecting, Pharmacy Coordination, Federal University of Amapá, Marco Zero do Equador Campus, Juscelino Kubitschek Highway, Km 2, 68903-419 Macapá, Amapá, Brazil;
| | - Vitor Vasconcelos
- Interdisciplinary Center of Marine and Environmental Research, University of Porto, General Norton de Matos Av., 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Campo Alegre Street, 4069-007 Porto, Portugal
| | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, 01 Augusto Corrêa Street, 66075-110 Belém, Pará, Brazil; (D.G.G.); (L.P.X.)
| |
Collapse
|
25
|
George DM, Vincent AS, Mackey HR. An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable Resource recovery. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00563. [PMID: 33304839 PMCID: PMC7714679 DOI: 10.1016/j.btre.2020.e00563] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Anoxygenic phototrophic bacteria (APB) are a phylogenetically diverse group of organisms that can harness solar energy for their growth and metabolism. These bacteria vary broadly in terms of their metabolism as well as the composition of their photosynthetic apparatus. Unlike oxygenic phototrophic bacteria such as algae and cyanobacteria, APB can use both organic and inorganic electron donors for light-dependent fixation of carbon dioxide without generating oxygen. Their versatile metabolism, ability to adapt in extreme conditions, low maintenance cost and high biomass yield make APB ideal for wastewater treatment, resource recovery and in the production of high value substances. This review highlights the advantages of APB over algae and cyanobacteria, and their applications in photo-bioelectrochemical systems, production of poly-β-hydroxyalkanoates, single-cell protein, biofertilizers and pigments. The ecology of ABP, their distinguishing factors, various physiochemical parameters governing the production of high-value substances and future directions of APB utilization are also discussed.
Collapse
Key Words
- ALA, 5-Aminolevulinic acid
- APB, Anoxygenic phototrophic bacteria
- Anoxygenic phototrophic bacteria (APB)
- BChl, Bacteriochlorophyll
- BES, Bioelectrochemical systems
- BPV, Biophotovoltaic
- BPh, Bacteriopheophytin
- Bacteriochlorophyll (BChl)
- Chl, Chlorophyll
- CoQ10, Coenzyme Q10
- DET, Direct electron transfer
- DNA, Deoxyribonucleic acid
- DO, Dissolved oxygen
- DXP, 1 deoxy-d-xylulose 5-phosphate
- FPP, Farnesyl pyrophosphate
- Fe-S, Iron-Sulfur
- GNSB, Green non sulfur bacteria
- GSB, Green sulfur bacteria
- IPP, Isopentenyl pyrophosphate isomerase
- LED, light emitting diode
- LH2, light-harvesting component II
- MFC, Microbial fuel cell
- MVA, Mevalonate
- PH3B, Poly-3-hydroxybutyrate
- PHA, Poly-β-hydroxyalkanoates
- PHB, Poly-β-hydroxybutyrate
- PNSB, Purple non sulfur bacteria
- PPB, Purple phototrophic bacteria
- PSB, Purple sulfur bacteria
- Pheo-Q, Pheophytin-Quinone
- Photo-BES, Photosynthetic bioelectrochemical systems
- Photo-MFC, Photo microbial fuel cell
- Poly-β-hydroxyalkanoates (PHA)
- Purple phototrophic bacteria (PPB)
- Resource recovery
- RuBisCO, Ribulose-1,5-biphosphate carboxylase/oxygenase
- SCP, Single-cell protein
- SOB, Sulfide oxidizing bacteria
- SRB, Sulfate reducing bacteria
- Single-cell proteins (SCP)
Collapse
Affiliation(s)
- Drishya M. George
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Annette S. Vincent
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Biological Sciences Program, Carnegie Mellon University in Qatar, Qatar
| | - Hamish R. Mackey
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
26
|
Higuchi-Takeuchi M, Miyamoto T, Foong CP, Goto M, Morisaki K, Numata K. Peptide-Mediated Gene Transfer into Marine Purple Photosynthetic Bacteria. Int J Mol Sci 2020; 21:ijms21228625. [PMID: 33207642 PMCID: PMC7697693 DOI: 10.3390/ijms21228625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 11/22/2022] Open
Abstract
Use of photosynthetic organisms is one of the sustainable ways to produce high-value products. Marine purple photosynthetic bacteria are one of the research focuses as microbial production hosts. Genetic transformation is indispensable as a biotechnology technique. However, only conjugation has been determined to be an applicable method for the transformation of marine purple photosynthetic bacteria so far. In this study, for the first time, a dual peptide-based transformation method combining cell penetrating peptide (CPP), cationic peptide and Tat-derived peptide (dTat-Sar-EED) (containing D-amino acids of Tat and endosomal escape domain (EED) connected by sarcosine linkers) successfully delivered plasmid DNA into Rhodovulum sulfidophilum, a marine purple photosynthetic bacterium. The plasmid delivery efficiency was greatly improved by dTat-Sar-EED. The concentrations of dTat-Sar-EED, cell growth stage and recovery duration affected the efficiency of plasmid DNA delivery. The delivery was inhibited at 4 °C and by A22, which is an inhibitor of the actin homolog MreB. This suggests that the plasmid DNA delivery occurred via MreB-mediated energy dependent process. Additionally, this peptide-mediated delivery method was also applicable for E. coli cells. Thus, a wide range of bacteria could be genetically transformed by using this novel peptide-based transformation method.
Collapse
Affiliation(s)
- Mieko Higuchi-Takeuchi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; (T.M.); (M.G.); (K.M.)
- Correspondence: (M.H.-T.); (K.N.)
| | - Takaaki Miyamoto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; (T.M.); (M.G.); (K.M.)
| | - Choon Pin Foong
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Mami Goto
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; (T.M.); (M.G.); (K.M.)
| | - Kumiko Morisaki
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; (T.M.); (M.G.); (K.M.)
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; (T.M.); (M.G.); (K.M.)
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
- Correspondence: (M.H.-T.); (K.N.)
| |
Collapse
|
27
|
Castro LM, Foong CP, Higuchi-Takeuchi M, Morisaki K, Lopes EF, Numata K, Mota AJ. Microbial prospection of an Amazonian blackwater lake and whole-genome sequencing of bacteria capable of polyhydroxyalkanoate synthesis. Polym J 2020. [DOI: 10.1038/s41428-020-00424-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Doloman A, Seefeldt LC. An Experimentally Evaluated Thermodynamic Approach to Estimate Growth of Photoheterotrophic Purple Non-sulfur Bacteria. Front Microbiol 2020; 11:540378. [PMID: 33013778 PMCID: PMC7494753 DOI: 10.3389/fmicb.2020.540378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/17/2020] [Indexed: 11/21/2022] Open
Abstract
Distribution of energy during the growth and formation of useful chemicals by microorganisms can define the overall performance of a biotechnological system. However, to date, this distribution has not been used to reliably predict growth characteristics of phototrophic microorganisms. The presented research addresses this application by estimating the photon-associated Gibbs energy delivered for the photoheterotrophic growth of purple non-sulfur bacteria and production of dihydrogen. The approach is successfully evaluated with the data from a fed-batch growth of Rhodopseudomonas palustris nifA∗ fixing N2 gas in phototrophic conditions and a reliable prediction of growth characteristics is demonstrated. Additionally, literature-available experimental data is collected and used for evaluation of the presented thermodynamic approach to predict photoheterotrophic growth yields. A proposed thermodynamic framework with modification to account for the phototrophic growth can be used to predict growth rates in broader environmental niches and to assess the possibility for the development of novel biotechnological applications in light-induced biological systems.
Collapse
Affiliation(s)
- Anna Doloman
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, United States
| |
Collapse
|
29
|
Suzuki M, Tachibana Y, Kasuya KI. Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments. Polym J 2020. [DOI: 10.1038/s41428-020-00396-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractApproximately 4.8–12.7 million tons of plastic waste has been estimated to be discharged into marine environments annually by wind and river currents. The Ellen MacArthur Foundation warns that the total weight of plastic waste in the oceans will exceed the total weight of fish in 2050 if the environmental runoff of plastic continues at the current rate. Hence, biodegradable plastics are attracting attention as a solution to the problems caused by plastic waste. Among biodegradable plastics, polyhydroxyalkanoates (PHAs) and poly(ε-caprolactone) (PCL) are particularly noteworthy because of their excellent marine biodegradability. In this review, the biosynthesis of PHA and cutin, a natural analog of PCL, and the biodegradation of PHA and PCL in carbon cycles in marine ecosystems are discussed. PHA is biosynthesized and biodegraded by various marine microbes in a wide range of marine environments, including coastal, shallow-water, and deep-sea environments. Marine cutin is biosynthesized by marine plants or obtained from terrestrial environments, and PCL and cutin are biodegraded by cutin hydrolytic enzyme-producing microbes in broad marine environments. Thus, biological carbon cycles for PHA and PCL exist in the marine environment, which would allow materials made of PHA and PCL to be quickly mineralized in marine environments.
Collapse
|
30
|
Rhodopseudomonas palustris CGA009 polyhydroxybutyrate production from a lignin aromatic and quantification via flow cytometry. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Production of polyhydroxybutyrate by pure and mixed cultures of purple non-sulfur bacteria: A review. J Biotechnol 2020; 317:39-47. [DOI: 10.1016/j.jbiotec.2020.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 11/24/2022]
|
32
|
Abstract
AbstractStructural proteins, including silk fibroins, play an important role in shaping the skeletons and structures of cells, tissues, and organisms. The amino acid sequences of structural proteins often show characteristic features, such as a repeating tandem motif, that are notably different from those of functional proteins such as enzymes and antibodies. In recent years, materials composed of or containing structural proteins have been studied and developed as biomedical, apparel, and structural materials. This review outlines the definition of structural proteins, methods for characterizing structural proteins as polymeric materials, and potential applications.
Collapse
|
33
|
Carlozzi P, Di Lorenzo T, Ghanotakis DF, Touloupakis E. Effects of pH, temperature and salinity on P3HB synthesis culturing the marine Rhodovulum sulfidophilum DSM-1374. Appl Microbiol Biotechnol 2020; 104:2007-2015. [PMID: 31927760 DOI: 10.1007/s00253-020-10352-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
Abstract
Rhodovulum sulfidophilum DSM-1374 is a potential producer of polyester when growing in phototrophic conditions. The present study investigated on a polyester product (P3HB) by culturing Rhodovulum sulfidophilum DSM-1374 in two different photobioreactors (PBR-1 and PBR-2) both with 4-L working volumes. PBR-1 is equipped with an internal rotor having 4 paddles to mix the bacterial culture while PBR-2 has an internal coil-shaped rotor. After selecting PBR-1, which best performed in the preliminary experiment, the effect of different stressing growth conditions as pH (7.0, 8.0, and 9.0), temperature (25, 30, and 35 °C), and medium salinity (1.5, 2.5, 3.5, and 4.5%) were tested. When the pH of the culture was set to 8.0, the capability of the bacterium to synthetize the polyester increased significantly reaching a concentration of 412 mg (P3HB)/L; the increase of the pH at 9.0 caused a reduction of the P3HB concentration in the culture. The medium salinity of 4.5% was the best stress-growth condition to reach the highest concentration of polyester in the culture (820 ± 50 mg (P3HB)/L) with a P3HB mass fraction in the dry biomass of 33 ± 1.5%. Stresses caused by culture temperature are another potential parameter that could increase the synthesis of P3HB.
Collapse
Affiliation(s)
- Pietro Carlozzi
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy.
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | | | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| |
Collapse
|
34
|
Papadopoulou EL, Basnett P, Paul UC, Marras S, Ceseracciu L, Roy I, Athanassiou A. Green Composites of Poly(3-hydroxybutyrate) Containing Graphene Nanoplatelets with Desirable Electrical Conductivity and Oxygen Barrier Properties. ACS OMEGA 2019; 4:19746-19755. [PMID: 31788606 PMCID: PMC6881833 DOI: 10.1021/acsomega.9b02528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Poly(3-hydroxybutyrate), a green polymer originating from prokaryotic microbes, has been used to prepare composites with graphene nanoplatelets (GnP) at different concentrations. The films were fabricated by drop-casting and were hot-pressed at a temperature lower than their melting point to provide the molecular chains enough energy to reorientate while avoiding melting and degradation. It was found that hot-pressing increases crystallinity and improves mechanical properties. The Young's modulus increased from 1.2 to 1.6 GPa for the poly(3-hydroxybutyrate) (P(3HB)) films and from 0.5 to 2.2 GPa for the 15 wt % P(3HB)/GnP composites. Electrical resistivity decreases enormously with GnP concentration and hot-pressing, reaching 6 Ω sq-1 for the hot-pressed 30 wt % P(3HB)/GnP composite. Finally, the hot-pressed P(3HB) samples exhibit remarkable oxygen barrier properties, with oxygen permeability reaching 2800 mL μm m-2 day-1, which becomes 895 mL μm m-2 day-1 when 15% GnP is added to the biopolymer matrix, one of the lowest values known for biopolymers and biocomposites. We propose that these biocomposites are used for elastic packaging and electronics.
Collapse
Affiliation(s)
- Evie L. Papadopoulou
- Smart
Materials and Materials Characterization Facility, Istituto
Italiano di Tecnologia, via Morego 30, Genoa 16163, Italy
| | - Pooja Basnett
- Applied
Biotechnology Research Group, School of Life Sciences, College of
Liberal Arts and Sciences, University of
Westminster, London W1W 6UW, U.K.
| | - Uttam C. Paul
- Smart
Materials and Materials Characterization Facility, Istituto
Italiano di Tecnologia, via Morego 30, Genoa 16163, Italy
| | - Sergio Marras
- Smart
Materials and Materials Characterization Facility, Istituto
Italiano di Tecnologia, via Morego 30, Genoa 16163, Italy
| | - Luca Ceseracciu
- Smart
Materials and Materials Characterization Facility, Istituto
Italiano di Tecnologia, via Morego 30, Genoa 16163, Italy
| | - Ipsita Roy
- Applied
Biotechnology Research Group, School of Life Sciences, College of
Liberal Arts and Sciences, University of
Westminster, London W1W 6UW, U.K.
- Department
of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Athanassia Athanassiou
- Smart
Materials and Materials Characterization Facility, Istituto
Italiano di Tecnologia, via Morego 30, Genoa 16163, Italy
| |
Collapse
|
35
|
Kumar V, Kumar S, Singh D. Microbial polyhydroxyalkanoates from extreme niches: Bioprospection status, opportunities and challenges. Int J Biol Macromol 2019; 147:1255-1267. [PMID: 31739043 DOI: 10.1016/j.ijbiomac.2019.09.253] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 01/20/2023]
Abstract
Extreme niches are offered with unusual physiochemical conditions that impose stress to the life-forms including microbial communities. Microbes have evolved unique physiology and genetics to interact dynamically with extreme environments for their adaptation and survival. Amongst the several adaptive features of microbes in stressed conditions, polyhydroxyalkanoates synthesis is a crucial strategy of many bacteria and archaea to reserve carbon and energy inside the cell. Apart from the relevance of PHA to microbial world, these intracellular polyesters are seen as essential biological macromolecules for the bio-material industry owing to their plastic-like properties, biodegradable and eco-friendly nature. Recently, much attention has been attracted by the microbes of extreme habitats for a new source of industrially suited PHA producers and novel PHA with unique properties. Therefore, the current review is focused on the critical evaluation of microbes from extreme niches for PHA production and opportunities for the development of commercially feasible PHA bioprocess.
Collapse
Affiliation(s)
- Vijay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India.
| |
Collapse
|
36
|
Higuchi-Takeuchi M, Morisaki K, Numata K. Method for the facile transformation of marine purple photosynthetic bacteria using chemically competent cells. Microbiologyopen 2019; 9:e00953. [PMID: 31638342 PMCID: PMC6957439 DOI: 10.1002/mbo3.953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 02/03/2023] Open
Abstract
Marine purple photosynthetic bacteria are ideal organisms for the production of useful materials at reduced costs and contributing to a sustainable society because they can utilize sunlight, seawater, and components of air, including carbon dioxide and nitrogen gases, for their growth. However, conjugation is the only applicable method for the transformation of marine purple photosynthetic bacteria so far. Here, we examined a calcium chloride‐mediated method for the transformation of marine purple photosynthetic bacteria. Plasmid DNAs containing the kanamycin resistance gene were successfully transferred into chemically competent cells of two strains of marine purple photosynthetic bacteria (Rhodovulum sulfidophilum and Roseospira marina). Heat shock treatment increased the transformation efficiency in R. sulfidophilum, whereas the addition of cell‐penetrating peptide did not improve it. We also found that prolonged incubation in agar plates containing kanamycin led to spontaneous mutation of the 16S rRNA, resulting in kanamycin resistance in R. marina. Thus, we developed an efficient and facile transformation method using chemically competent cells of marine purple photosynthetic bacteria with calcium chloride.
Collapse
Affiliation(s)
- Mieko Higuchi-Takeuchi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kumiko Morisaki
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| |
Collapse
|
37
|
Higuchi-Takeuchi M, Numata K. Marine Purple Photosynthetic Bacteria as Sustainable Microbial Production Hosts. Front Bioeng Biotechnol 2019; 7:258. [PMID: 31681740 PMCID: PMC6798066 DOI: 10.3389/fbioe.2019.00258] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/25/2019] [Indexed: 12/01/2022] Open
Abstract
Photosynthetic microorganisms can serve as the ideal hosts for the sustainable production of high-value compounds. Purple photosynthetic bacteria are typical anoxygenic photosynthetic microorganisms and are expected to be one of the suitable microorganisms for industrial production. Purple photosynthetic bacteria are reported to produce polyhydroxyalkanoate (PHA), extracellular nucleic acids and hydrogen gas. We characterized PHA production as a model compound in purple photosynthetic bacteria, especially focused on marine strains. PHA is a family of biopolyesters synthesized by a variety of microorganisms as carbon and energy storage materials. PHA have recently attracted attention as an alternative to conventional petroleum-based plastics. Production of extracellular nucleic acids have been studied in Rhodovulum sulfidophilum, a marine purple non-sulfur bacterium. Several types of artificial RNAs have been successfully produced in R. sulfidophilum. Purple photosynthetic bacteria produce hydrogen via nitrogenase, and genetic engineering strategies have been investigated to enhance the hydrogen production. This mini review describes the microbial production of these high-value compounds using purple photosynthetic bacteria as the host microorganism.
Collapse
Affiliation(s)
- Mieko Higuchi-Takeuchi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| |
Collapse
|
38
|
Ranaivoarisoa TO, Singh R, Rengasamy K, Guzman MS, Bose A. Towards sustainable bioplastic production using the photoautotrophic bacterium Rhodopseudomonas palustris TIE-1. J Ind Microbiol Biotechnol 2019; 46:1401-1417. [PMID: 30927110 PMCID: PMC6791910 DOI: 10.1007/s10295-019-02165-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/23/2019] [Indexed: 12/22/2022]
Abstract
Bacterial synthesis of polyhydroxybutyrates (PHBs) is a potential approach for producing biodegradable plastics. This study assessed the ability of Rhodopseudomonas palustris TIE-1 to produce PHBs under various conditions. We focused on photoautotrophy using a poised electrode (photoelectroautotrophy) or ferrous iron (photoferroautotrophy) as electron donors. Growth conditions were tested with either ammonium chloride or dinitrogen gas as the nitrogen source. Although TIE-1's capacity to produce PHBs varied fairly under different conditions, photoelectroautotrophy and photoferroautotrophy showed the highest PHB electron yield and the highest specific PHB productivity, respectively. Gene expression analysis showed that there was no differential expression in PHB biosynthesis genes. This suggests that the variations in PHB accumulation might be post-transcriptionally regulated. This is the first study to systematically quantify the amount of PHB produced by a microbe via photoelectroautotrophy and photoferroautotrophy. This work could lead to sustainable bioproduction using abundant resources such as light, electricity, iron, and carbon dioxide.
Collapse
Affiliation(s)
- Tahina Onina Ranaivoarisoa
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Rajesh Singh
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Karthikeyan Rengasamy
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Michael S Guzman
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Arpita Bose
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
39
|
Murcia Valderrama MA, van Putten RJ, Gruter GJM. The potential of oxalic – and glycolic acid based polyesters (review). Towards CO2 as a feedstock (Carbon Capture and Utilization – CCU). Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
40
|
Exploiting the natural poly(3-hydroxyalkanoates) production capacity of Antarctic Pseudomonas strains: from unique phenotypes to novel biopolymers. ACTA ACUST UNITED AC 2019; 46:1139-1153. [DOI: 10.1007/s10295-019-02186-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Abstract
Extreme environments are a unique source of microorganisms encoding metabolic capacities that remain largely unexplored. In this work, we isolated two Antarctic bacterial strains able to produce poly(3-hydroxyalkanoates) (PHAs), which were classified after 16S rRNA analysis as Pseudomonas sp. MPC5 and MPC6. The MPC6 strain presented nearly the same specific growth rate whether subjected to a temperature of 4 °C 0.18 (1/h) or 30 °C 0.2 (1/h) on glycerol. Both Pseudomonas strains produced high levels of PHAs and exopolysaccharides from glycerol at 4 °C and 30 °C in batch cultures, an attribute that has not been previously described for bacteria of this genus. The MPC5 strain produced the distinctive medium-chain-length-PHA whereas Pseudomonas sp. MPC6 synthesized a novel polyoxoester composed of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate-co-3-hydroxydecanoate-co-3-hydroxydodecanoate). Batch bioreactor production of PHAs in MPC6 resulted in a titer of 2.6 (g/L) and 1.3 (g/L), accumulating 47.3% and 34.5% of the cell dry mass as PHA, at 30 and 4 °C, respectively. This study paves the way for using Antarctic Pseudomonas strains for biosynthesizing novel PHAs from low-cost substrates such as glycerol and the possibility to carry out the bioconversion process for biopolymer synthesis without the need for temperature control.
Collapse
|
41
|
Higuchi-Takeuchi M, Numata K. Acetate-Inducing Metabolic States Enhance Polyhydroxyalkanoate Production in Marine Purple Non-sulfur Bacteria Under Aerobic Conditions. Front Bioeng Biotechnol 2019; 7:118. [PMID: 31192201 PMCID: PMC6546801 DOI: 10.3389/fbioe.2019.00118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a family of biopolyesters that a variety of microorganisms accumulate as carbon and energy storage molecules under starvation conditions in the presence of excess carbon. Anoxygenic photosynthetic bacteria exhibit a variety of growth styles and high PHA production activity. Here, we characterized PHA production by four marine purple non-sulfur bacteria strains (Rhodovulum sulfidophilum, Rhodovulum euryhalinum, Rhodovulum imhoffii, and Rhodovulum visakhapatnamense) under different growth conditions. Unlike the well-studied PHA-producing bacteria, nutrient limitation is not appropriate for PHA production in marine purple non-sulfur bacteria. We found that marine purple non-sulfur bacteria did not accumulate PHA under aerobic conditions in the presence of malate and pyruvate. Interestingly, PHA accumulation was observed upon the addition of acetate under aerobic conditions but was not observed upon the addition of reductants, suggesting that an acetate-dependent pathway is involved in PHA accumulation. Gene expression analysis revealed that the expression of isocitrate dehydrogenase in the tricarboxylic acid (TCA) cycle decreased under aerobic conditions and increased with the addition of acetate, indicating that TCA cycle activity is involved in PHA production under aerobic conditions. We also found that expression of PdhRrs, which belongs to the GntR family of transcription regulators, in Rhodovulum sulfidophilum was upregulated upon the addition of acetate. Taken together, the results show that the changes in the metabolic state upon the addition of acetate, possibly regulated by PdhR, are important for PHA production under aerobic conditions in marine purple non-sulfur bacteria.
Collapse
Affiliation(s)
- Mieko Higuchi-Takeuchi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| |
Collapse
|
42
|
Foong CP, Higuchi-Takeuchi M, Numata K. Optimal iron concentrations for growth-associated polyhydroxyalkanoate biosynthesis in the marine photosynthetic purple bacterium Rhodovulum sulfidophilum under photoheterotrophic condition. PLoS One 2019; 14:e0212654. [PMID: 31034524 PMCID: PMC6488045 DOI: 10.1371/journal.pone.0212654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a group of natural biopolyesters that resemble petroleum-derived plastics in terms of physical properties but are less harmful biologically to the environment and humans. Most of the current PHA producers are heterotrophs, which require expensive feeding materials and thus contribute to the high price of PHAs. Marine photosynthetic bacteria are promising alternative microbial cell factories for cost-effective, carbon neutral and sustainable production of PHAs. In this study, Rhodovulum sulfidophilum, a marine photosynthetic purple nonsulfur bacterium with a high metabolic versatility, was evaluated for cell growth and PHA production under the influence of various media components found in previous studies. We evaluated iron, using ferric citrate, as another essential factor for cell growth and efficient PHA production and confirmed that PHA production in R. sulfidophilum was growth-associated under microaerobic and photoheterotrophic conditions. In fact, a subtle amount of iron (1 to 2 μM) was sufficient to promote rapid cell growth and biomass accumulation, as well as a high PHA volumetric productivity during the logarithmic phase. However, an excess amount of iron did not enhance the growth rate or PHA productivity. Thus, we successfully confirmed that an optimum concentration of iron, an essential nutrient, promotes cell growth in R. sulfidophilum and also enhances PHA utilization.
Collapse
Affiliation(s)
- Choon Pin Foong
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Mieko Higuchi-Takeuchi
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Keiji Numata
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
43
|
Mohandas SP, Balan L, Jayanath G, Anoop B, Philip R, Cubelio SS, Bright Singh I. Biosynthesis and characterization of polyhydroxyalkanoate from marine Bacillus cereus MCCB 281 utilizing glycerol as carbon source. Int J Biol Macromol 2018; 119:380-392. [DOI: 10.1016/j.ijbiomac.2018.07.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 11/28/2022]
|
44
|
Lin S, Mackey HR, Hao T, Guo G, van Loosdrecht MCM, Chen G. Biological sulfur oxidation in wastewater treatment: A review of emerging opportunities. WATER RESEARCH 2018; 143:399-415. [PMID: 29986249 DOI: 10.1016/j.watres.2018.06.051] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Sulfide prevails in both industrial and municipal waste streams and is one of the most troublesome issues with waste handling. Various technologies and strategies have been developed and used to deal with sulfide for decades, among which biological means make up a considerable portion due to their low operation requirements and flexibility. Sulfur bacteria play a vital role in these biotechnologies. In this article, conventional biological approaches dealing with sulfide and functional microorganisms are systematically reviewed. Linking the sulfur cycle with other nutrient cycles such as nitrogen or phosphorous, and with continued focus of waste remediation by sulfur bacteria, has led to emerging biotechnologies. Furthermore, opportunities for energy harvest and resource recovery based on sulfur bacteria are also discussed. The electroactivity of sulfur bacteria indicates a broad perspective of sulfur-based bioelectrochemical systems in terms of bioelectricity production and bioelectrochemical synthesis. The considerable PHA accumulation, high yield and anoxygenic growth conditions in certain phototrophic sulfur bacteria could provide an interesting alternative for bioplastic production. In this review, new merits of biological sulfide oxidation from a traditional environmental management perspective as well as a waste to resource perspective are presented along with their potential applications.
Collapse
Affiliation(s)
- Sen Lin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hamish R Mackey
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Gang Guo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China; Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
45
|
Sagong HY, Son HF, Choi SY, Lee SY, Kim KJ. Structural Insights into Polyhydroxyalkanoates Biosynthesis. Trends Biochem Sci 2018; 43:790-805. [PMID: 30139647 DOI: 10.1016/j.tibs.2018.08.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/27/2018] [Accepted: 08/04/2018] [Indexed: 12/25/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are diverse biopolyesters produced by numerous microorganisms and have attracted much attention as a substitute for petroleum-based polymers. Despite several decades of study, the detailed molecular mechanisms of PHA biosynthesis have remained unknown due to the lack of structural information on the key PHA biosynthetic enzyme PHA synthase. The recently determined crystal structure of PHA synthase, together with the structures of acetyl-coenzyme A (CoA) acetyltransferase and reductase, have changed this situation. Structural and biochemical studies provided important clues for the molecular mechanisms of each enzyme as well as the overall mechanism of PHA biosynthesis from acetyl-CoA. This new information and knowledge is expected to facilitate production of designed novel PHAs and also enhanced production of PHAs.
Collapse
Affiliation(s)
- Hye-Young Sagong
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeoncheol Francis Son
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea
| | - So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
46
|
Gu JJ, Zhou Y, Tong YB, Lu JJ, Ye BC. Efficient production and characterization of homopolymeric poly(3-hydroxyvalerate) produced by Bacillus strain PJC48. Biotechnol Appl Biochem 2018; 65:622-629. [PMID: 29377329 DOI: 10.1002/bab.1648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/24/2018] [Indexed: 11/10/2022]
Abstract
Aliphatic polyester, poly(3-hydroxyvalerate) (PHV), is commonly produced as a granular component in bacterial cells of various species. Based on 16S rDNA gene sequence analysis, strain PJC48 was identified as a Bacillus species. The current study is aimed to screen for a high-yield strain that can produce PHV efficiently and to increase PHV product yield by optimizing the fermentative process. We identified a high-producer strain based on Nile red staining. Characterization of the PHV produced by PJC48 by nuclear magnetic resonance spectroscopy revealed that it consisted of (R)-3-hydroxyvalerate monomers. The suggested model was validated by response surface methodology. Optimization of the PHV yield resulted in an increase of 32.75% compared to control, with a maximum production of 1.64 g/L after 48 H.
Collapse
Affiliation(s)
- Jin-Jin Gu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Ying Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, People's Republic of China
| | - Yan-Bin Tong
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Jian-Jiang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Bang-Ce Ye
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, People's Republic of China.,State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, People's Republic of China
| |
Collapse
|
47
|
Higuchi-Takeuchi M, Motoda Y, Kigawa T, Numata K. Class I Polyhydroxyalkanoate Synthase from the Purple Photosynthetic Bacterium Rhodovulum sulfidophilum Predominantly Exists as a Functional Dimer in the Absence of a Substrate. ACS OMEGA 2017; 2:5071-5078. [PMID: 30023736 PMCID: PMC6044645 DOI: 10.1021/acsomega.7b00667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/21/2017] [Indexed: 06/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of biopolyesters that accumulate as carbon and energy storage compounds in a variety of micro-organisms. The marine purple photosynthetic bacterium Rhodovulum sulfidophilum is capable of synthesizing PHA. In this study, we cloned a gene encoding a class I PHA synthase from R. sulfidophilum (phaCRs ) and synthesized PhaCRs using a cell-free protein expression system. The specific activity of PhaCRs increased linearly as the (R)-3-hydroxybutyryl-coenzyme A (3HB-CoA) concentration increased and never reached a plateau, even at 3.75 mM 3HB-CoA, suggesting that PhaCRs was not saturated because of low substrate affinity. Size exclusion chromatography and native polyacrylamide gel electrophoresis analyses revealed that PhaCRs exists predominantly as an active dimer even in the absence of 3HB-CoA, unlike previously characterized PhaCs. The linear relationship between the PhaCRs activity and 3HB-CoA concentrations could result from a low substrate affinity as well as the absence of a rate-limiting step during PHA polymerization because of the existence of predominantly active dimers.
Collapse
Affiliation(s)
- Mieko Higuchi-Takeuchi
- Enzyme Research
Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yoko Motoda
- Enzyme Research
Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Takanori Kigawa
- Laboratory for Biomolecular Structure and
Dynamics, RIKEN Quantitative Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Keiji Numata
- Enzyme Research
Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
48
|
Yoshizumi T, Yamada M, Higuchi-Takeuchi M, Matsumoto K, Taguchi S, Matsui M, Numata K. Sucrose supplementation suppressed the growth inhibition in polyhydroxyalkanoate-producing plants. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2017; 34:39-43. [PMID: 31275006 PMCID: PMC6543704 DOI: 10.5511/plantbiotechnology.16.1121a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/21/2016] [Indexed: 06/09/2023]
Abstract
Polyhydroxyalkanoate (PHA) is a thermoplastic polymer with several advantageous properties, including biomass origin, biocompatibility, and biodegradability. PHA is synthesized in transgenic plants harboring 3 enzymatic genes: phaA, phaB, and phaC (collectively referred to as phaABC). PHA-producing plants exhibit severe growth inhibition that leads to extremely low PHA accumulation when these enzymes are localized in the cytosol. This growth inhibition could be attributed to the deleterious effects of the PHA biosynthetic pathway on endogenous essential metabolites or to PHA cytotoxicity itself. We performed precise morphological observations of phaABC-overexpressing Arabidopsis (ABC-ox), which displayed typical growth inhibition. On growth medium without sucrose, ABC-ox exhibited a pale green phenotype, dwarfism, including small cotyledons and true leaves, and short roots. ABC-ox partially recovered from this growth inhibition when the growth medium was supplemented with 1% sucrose. This recovery was reversed after ABC-ox grown on 1% sucrose medium was transferred to soil. ABC-ox grown on 1% sucrose medium not only demonstrated recovery from growth inhibition but were also the only examined plants with PHA accumulation, suggesting that growth inhibition was not caused by PHA cytotoxicity but rather by a lack of essential metabolites.
Collapse
Affiliation(s)
- Takeshi Yoshizumi
- Enzyme Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Miwa Yamada
- Enzyme Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Mieko Higuchi-Takeuchi
- Enzyme Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Ken’ichiro Matsumoto
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Seiichi Taguchi
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Minami Matsui
- Synthetic Genomics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-2 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Keiji Numata
- Enzyme Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
49
|
Lambert S, Wagner M. Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem Soc Rev 2017; 46:6855-6871. [DOI: 10.1039/c7cs00149e] [Citation(s) in RCA: 340] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review provides a critical discussion as to the future direction of plastic materials, including balancing factors such as biodegradability and longevity, effects of additive compounds, feedstock developments, and environmental considerations.
Collapse
Affiliation(s)
- Scott Lambert
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13
- Frankfurt
- Germany
| | - Martin Wagner
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13
- Frankfurt
- Germany
- Department of Biology
- Norwegian University of Science and Technology (NTNU)
| |
Collapse
|
50
|
Higuchi-Takeuchi M, Morisaki K, Numata K. A Screening Method for the Isolation of Polyhydroxyalkanoate-Producing Purple Non-sulfur Photosynthetic Bacteria from Natural Seawater. Front Microbiol 2016; 7:1509. [PMID: 27708640 PMCID: PMC5030216 DOI: 10.3389/fmicb.2016.01509] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 11/23/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are a family of biopolyesters accumulated by a variety of microorganisms as carbon and energy storage under starvation conditions. We focused on marine purple non-sulfur photosynthetic bacteria as host microorganisms for PHA production and developed a method for their isolation from natural seawater. To identify novel PHA-producing marine purple non-sulfur photosynthetic bacteria, natural seawaters were cultured in nutrient-rich medium for purple non-sulfur photosynthetic bacteria, and twelve pink- or red-pigmented colonies were picked up. Gas chromatography mass spectrometry analysis revealed that four isolates synthesized PHA at levels ranging from 0.5 to 24.4 wt% of cell dry weight. The 16S ribosomal RNA sequence analysis revealed that one isolate (HM2) showed 100% identity to marine purple non-sulfur photosynthetic bacteria. In conclusion, we have demonstrated in this study that PHA-producing marine purple non-sulfur photosynthetic bacteria can be isolated from natural seawater under nutrient-rich conditions.
Collapse
Affiliation(s)
- Mieko Higuchi-Takeuchi
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science Wako, Japan
| | - Kumiko Morisaki
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science Wako, Japan
| | - Keiji Numata
- Enzyme Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science Wako, Japan
| |
Collapse
|