1
|
Liu J, Wei X, Zhang Y, Ran Y, Qu B, Wang C, Zhao F, Zhang L. dCas9-guided demethylation of the AKT1 promoter improves milk protein synthesis in a bovine mastitis mammary gland epithelial model induced by using Staphylococcus aureus. Cell Biol Int 2024; 48:300-310. [PMID: 38100153 DOI: 10.1002/cbin.12106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/16/2023] [Accepted: 11/20/2023] [Indexed: 02/15/2024]
Abstract
Mastitis is among the main factors affecting milk quality and yield. Although DNA methylation is associated with mastitis, its role in mastitis remains unclear. In this study, a bovine mastitis mammary epithelial cells (BMMECs) model was established via Staphylococcus aureus infection of bovine mammary gland epithelial cells (BMECs). Bisulfite sequencing PCR was used to determine the methylation status of the AKT1 promoter in BMMECs. We found that the degree of the AKT1 promoter methylation in BMMECs was significantly greater than that in BMECs, and the expression levels of genes related to milk protein synthesis were significantly decreased. We used the pdCas9-C-Tet1-SgRNA 2.0 system to regulate the methylation status of the AKT1 promoter. High-efficiency sgRNAs were screened and dCas9-guided AKT1 promoter demethylation vectors were constructed. Following transfection with the vectors, the degree of methylation of the AKT1 promoter was significantly reduced in BMMECs, while AKT1 protein levels increased. When the methylation level of the AKT1 promoter decreased, the synthesis of milk proteins and the expression levels of genes related to milk protein synthesis increased significantly. The viability of the BMMECs was enhanced. Taken together, these results indicate that demethylation guided by the pdCas9-C-Tet1-SgRNA 2.0 system on the AKT1 promoter can reactivate the expression of AKT1 and AKT1/mTOR signaling pathway-related proteins by reducing the AKT1 promoter methylation level and promoting the recovery milk protein expression in BMMECs, thereby alleviating the symptoms of mastitis.
Collapse
Affiliation(s)
- Jie Liu
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Xiangfei Wei
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Yan Zhang
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Yaoxiang Ran
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Bo Qu
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Chunmei Wang
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Feng Zhao
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| | - Li Zhang
- The Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Bennato F, Ianni A, Oliva E, Franceschini N, Grotta L, Sergi M, Martino G. Characterization of Phenolic Profile in Milk Obtained by Ewes Fed Grape Pomace: Reflection on Antioxidant and Anti-Inflammatory Status. Biomolecules 2023; 13:1026. [PMID: 37509062 PMCID: PMC10377608 DOI: 10.3390/biom13071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of the present work was to evaluate if the use of grape pomace (GP) in the feeding of dairy ewes can improve the content of phenolic compounds (PCs) in the milk and affect the anti-inflammatory and antioxidative status of the milk. For this purpose, 46 ewes were randomly assigned to two groups of 23 animals each: a control group (Ctrl) that received a standard diet and an experimental group (GP+), whose diet was been formulated with 10% GP on a dry matter (DM) basis. At the end of the 60 days of the trial, from 10 ewes selected randomly from each group, individual milk samples were collected and analyzed for the identification and the quantification of phenolic compounds through an ultra-high-performance liquid chromatography system, and milk anti-inflammatory and antioxidative status were evaluated by enzyme-linked immunosorbent assay, determining the activity of GPx and CAT and the levels of IL-1 and TNFα. In addition, gelatinolytic activity of Type IV collagenases (MMP-2/MMP-9) was evaluated by the fluorometric method and zymographic approach. The results obtained showed that the diet with GP affects the phenolic profile of milk, inducing milk enrichment of phenolic compounds without, however, having a significant impact on milk antioxidant and inflammatory status. However, a lower activity of MMP-9 was found in GP+ milk. The use of the molecular docking approach showed the ability of luteolin to approach the catalytic pocket of the enzyme, interfering with the recruitment of the substrate, and therefore, slowing down their hydrolytic activity.
Collapse
Affiliation(s)
- Francesca Bennato
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Andrea Ianni
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Eleonora Oliva
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Nicola Franceschini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100 L'Aquila, Italy
| | - Lisa Grotta
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Manuel Sergi
- Chemistry Department, University La Sapienza, 00185 Rome, Italy
| | - Giuseppe Martino
- Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
3
|
Tiantong A, Eardmusic S, Arunvipas P, Lee JW, Inyawilert W. The influence of subclinical mastitis on the protein composition and protease activities of raw milk from lactating Thai-crossbred dairy cows. Vet World 2023; 16:1363-1368. [PMID: 37577188 PMCID: PMC10421544 DOI: 10.14202/vetworld.2023.1363-1368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/24/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Mastitis in dairy cattle is associated with a high rate of morbidity and death, which has major implications for milk production and quality. This study aimed to investigate the protein component and the activity of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in raw milk samples with different testing scores determined using the California mastitis test (CMT). Materials and Methods Thirty cows were employed in the study, and milk from each quarter was tested for subclinical mastitis (SCM). According to the results of CMT, raw milk samples were classified into five categories: Healthy (score 0), trace (score T), weakly positive (score 1), distinctly positive (score 2), and strongly positive (score 3) for somatic cell count (SCC). The total milk protein was analyzed using the Bio-Rad protein assay, and the milk protein composition was determined using the sodium dodecyl sulfate-polyacrylamide gel electrophoresis technique. In addition, gelatin zymography was used to evaluate changes in proteolytic abilities. Results Milk samples with CMT scores of 1 and 3 had the highest total milk protein levels (32.25 ± 12.60 g/L and 32.50 ± 7.67 g/L, respectively), while the samples from healthy cows (CMT score 0) were only 6.75 ± 1.64 g/L. Globulin and lactoferrin were significantly increased in samples with a CMT score of 3 compared with those with other CMT scores. The bovine serum albumin level in samples with a CMT score of 2 was significantly (p < 0.05) higher than those with other CMT scores. No significant differences in casein abundance were found among samples with different CMT scores. Results from analysis of proteolytic activities demonstrated that the level of MMP-9 in samples with a CMT score of 3 was significantly (p < 0.05) higher than those with other CMT scores. Conclusion The protein content and gelatinolytic activity of milk were drastically altered by the number of SCC, mainly due to SCM.
Collapse
Affiliation(s)
- Attapol Tiantong
- Faculty of Animal Sciences and Agricultural Technology, Silpakorn University, Phetchaburi IT Campus, Cha-Am, Phetchaburi, 76120, Thailand
| | - Sirichai Eardmusic
- Faculty of Animal Sciences and Agricultural Technology, Silpakorn University, Phetchaburi IT Campus, Cha-Am, Phetchaburi, 76120, Thailand
| | - Pipat Arunvipas
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Wilasinee Inyawilert
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
4
|
Qiu M, Feng L, Yu Z, Zhao C, Gao S, Bao L, Zhang N, Fu Y, Hu X. Probiotic Enterococcus mundtii H81 inhibits the NF-κB signaling pathway to ameliorate Staphylococcus aureus-induced mastitis in mice. Microb Pathog 2022; 164:105414. [DOI: 10.1016/j.micpath.2022.105414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
5
|
The Potential of Metalloproteinase-9 Administration to Accelerate Mammary Involution and Boost the Immune System at Dry-Off. Animals (Basel) 2021; 11:ani11123415. [PMID: 34944191 PMCID: PMC8697945 DOI: 10.3390/ani11123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The cow dry period is a critical period presenting a high risk of contracting intramammary infections. Active molecules to boost the innate immunity of the mammary gland and increase infection resilience could be decisive for the milking performance of dairy cows in the next lactation. Metalloproteinase-9 is a protein with a relevant role in facilitating the immune function and activating the regeneration of the mammary gland. The focus of this study was to test the role of the infusion of a recombinant version of metalloproteinase 9 at cow dry off, showing, contrary to expectations, that it is not able to enhance the innate immunity nor to improve the involution and regeneration of the mammary gland. Abstract The dry period is decisive for the milking performance of dairy cows. The promptness of mammary gland involution at dry-off affects not only the productivity in the next lactation, but also the risk of new intra-mammary infections since it is closely related with the activity of the immune system. Matrix metalloproteinase-9 (MMP-9) is an enzyme present in the mammary gland and has an active role during involution by disrupting the extracellular matrix, mediating cell survival and the recruitment of immune cells. The objective of this study was to determine the potential of exogenous administration of a soluble and recombinant version of a truncated MMP-9 (rtMMP-9) to accelerate mammary involution and boost the immune system at dry-off, avoiding the use of antibiotics. Twelve Holstein cows were dried abruptly, and two quarters of each cow received an intra-mammary infusion of either soluble rtMMP-9 or a positive control based on immunostimulant inclusion bodies (IBs). The contralateral quarters were infused with saline solution as negative control. Samples of mammary secretion were collected during the week following dry-off to determine SCC, metalloproteinase activity, bovine serum albumin, lactoferrin, sodium, and potassium concentrations. The soluble form of rtMMP-9 increased endogenous metalloproteinase activity in the mammary gland compared with saline quarters but did not accelerate either the immune response or involution in comparison with control quarters. The results demonstrated that the strategy to increase the mammary gland immunocompetence by recombinant infusion of rtMMP-9 was unsuccessful.
Collapse
|
6
|
Zhang X, Li X, Wu J, Jiao J, He Z, Tan Z, Han X. Rumen-protected glucose supplementation in transition dairy cows shifts fermentation patterns and enhances mucosal immunity. ACTA ACUST UNITED AC 2021; 7:1182-1188. [PMID: 34754960 PMCID: PMC8556486 DOI: 10.1016/j.aninu.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/01/2022]
Abstract
Manipulation of perinatal diets, such as supplementing feed with rumen-protected glucose (RPG), has been positively regarded as a strategy to improve milking performance. This study was conducted to assess the effects of RPG on the fermentation profiles, resident microbiota and mucosal immunity in the cecum. Ten Holstein dairy cows were randomly assigned to either a 25 g/kg RPG diet (DM basis) or a 11 g/kg coating fat diet (control, CON). Compared with the CON group, the acetate-to-propionate ratio was lower in the RPG group. Gene expression analysis indicated that RPG supplementation tended to upregulate the expression of Na+/H+ hydrogen exchanger 3 (NHE3) (P = 0.076). RPG supplementation downregulated the expression of genes involved in self-rehabilitation such as matrix metalloproteinase 1 (MMP1), MMP3, MMP9 and MMP13. Additionally, the mRNA expression of genes involved in immunity including Toll-like receptors (TLR4, TLR6 and TLR7) and proinflammatory cytokines (immune interferon gamma [IFNG] and interleukins interleukin 17A [IL17F], IL17A, IL22), was downregulated by RPG supplementation. Nonetheless, no differences existed in the bacterial copy number and beta diversity between the 2 groups. Overall, supplementation with RPG would probably cause a shift towards propionate production in the cecal digesta, and promote the immune homeostasis of the cecal mucosa in transition dairy cows. Our results extended the basic understanding of RPG supplementation and utilization in transition dairy cows in terms of host microbe interplay in the cecum.
Collapse
Affiliation(s)
- Xiaoli Zhang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaopeng Li
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Jian Wu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinzhen Jiao
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Zhixiong He
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Xuefeng Han
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| |
Collapse
|
7
|
Reisinger N, Wendner D, Schauerhuber N, Mayer E. Effect of Lipopolysaccharides (LPS) and Lipoteichoic Acid (LTA) on the Inflammatory Response in Rumen Epithelial Cells (REC) and the Impact of LPS on Claw Explants. Animals (Basel) 2021; 11:ani11072058. [PMID: 34359186 PMCID: PMC8300308 DOI: 10.3390/ani11072058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Endotoxins, often referred to as lipopolysaccharides (LPS), are bacterial toxins and play an essential role in several diseases in ruminants. One of the most common disorders in dairy cows, sub-acute rumen acidosis (SARA), is associated with a substantial increase of ruminal and intestinal endotoxin load. Other potentially harmful substances, e.g., lipoteichoic acid (LTA), derived from the cell wall of Gram-positive bacteria, might play an essential role during SARA as well. Besides the potential local effect of LPS, translocation to the blood can induce a strong immune response in cattle. Furthermore, LPS might reach the claw tissue after translocation. In our study, we used a cell culture model with epithelial cells isolated from rumen tissue to assess the effects of LPS and LTA. Furthermore, we evaluated the effects of LPS on claw tissue with an explant model. LPS and LTA could induce an inflammatory response in rumen epithelial cells. However, the effect of LPS was more substantial and seen at an earlier time point compared to LTA. Furthermore, in claw explants, LPS negatively affected the separation force, an indicator for tissue integrity, which decreased with increasing LPS concentrations. Overall, our data suggest that especially endotoxins can impact local inflammatory response in the rumen. Furthermore, if endotoxins reach the claw tissue, it might affect claw health. Abstract Endotoxins play a crucial role in ruminant health due to their deleterious effects on animal health. The study aimed to evaluate whether LPS and LTA can induce an inflammatory response in rumen epithelial cells. For this purpose, epithelial cells isolated from rumen tissue (REC) were stimulated with LPS and LTA for 1, 2, 4, and 24 h. Thereafter, the expression of selected genes of the LPS and LTA pathway and inflammatory response were evaluated. Furthermore, it was assessed whether LPS affects inflammatory response and structural integrity of claw explants. Therefore, claw explants were incubated with LPS for 4 h to assess the expression of selected genes and for 24 h to evaluate tissue integrity via separation force. LPS strongly affected the expression of genes related to inflammation (NFkB, TNF-α, IL1B, IL6, CXCL8, MMP9) in REC. LTA induced a delayed and weaker inflammatory response than LPS. In claw explants, LPS affected tissue integrity, as there was a concentration-dependent decrease of separation force. Incubation time had a strong effect on inflammatory genes in claw explants. Our data suggest that endotoxins can induce a local inflammatory response in the rumen epithelium. Furthermore, translocation of LPS might negatively impact claw health.
Collapse
|
8
|
Novac CS, Andrei S. The Impact of Mastitis on the Biochemical Parameters, Oxidative and Nitrosative Stress Markers in Goat's Milk: A Review. Pathogens 2020; 9:E882. [PMID: 33114454 PMCID: PMC7693667 DOI: 10.3390/pathogens9110882] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Goat mastitis has become one of the most frequently diagnosed conditions in goat farms, with significant economic impact on the dairy industry. Inflammation of the mammary gland poses serious consequences on milk composition, with changes regarding biochemical parameters and oxidative stress markers. The aim of this paper is to present the most recent knowledge on the main biochemical changes that occur in the mastitic milk, as well as the overall effect of the oxidative and nitrosative stress on milk components, focusing on both enzymatic and nonenzymatic antioxidant markers. Mastitis in goats is responsible for a decrease in milk production, change in protein content with pronounced casein hydrolysis, and reduction in lactose concentration and milk fat. Milk enzymatic activity also undergoes changes, regarding indigenous enzymes and those involved in milk synthesis. Furthermore, during mastitis, both the electrical conductivity and the milk somatic cell count are increased. Intramammary infections are associated with a reduced milk antioxidant capacity and changes in catalase, lactoperoxidase, glutathione peroxidase or superoxide dismutase activity, as well as reduced antioxidant vitamin content. Mastitis is also correlated with an increase in the concentration of nitric oxide, nitrite, nitrate and other oxidation compounds, leading to the occurrence of nitrosative stress.
Collapse
Affiliation(s)
- Cristiana S. Novac
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania;
| | | |
Collapse
|
9
|
Li P, Liu Q, Zhang T, Guo W, Qiao W, Deng M. Protective Effects of Lixisenatide against Lipopolysaccharide-Induced Inflammation Response in MAC-T Bovine Mammary Epithelial Cells: A Therapeutic Implication in Mastitis. Chem Res Toxicol 2020; 33:982-987. [PMID: 32191445 DOI: 10.1021/acs.chemrestox.9b00524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mastitis is acute inflammation caused by microbial infections in the mammary glands. This disease is extremely harmful to lactating mothers. The preferred clinical strategy is antibiotic treatment, but this method results in resistance and side effects. Lixisenatide, a kind of glucagon-like peptide-1 (GLP-1) receptor agonist, is typically used for the treatment of type II diabetes. It is unknown whether lixisenatide possesses a beneficial role in mastitis. In the current study, we assessed the protective effects of lixisenatide against lipopolysaccharide (LPS) stimulation in MAC-T bovine mammary epithelial cells (MECs). Our findings show that lixisenatide attenuated LPS-induced oxidative stress by reducing reactive oxygen species (ROS) production and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases-1 (NOX-1) expression in MAC-T MECs. Additionally, lixisenatide inhibited LPS-induced expression and secretion of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β). We also found that lixisenatide suppressed LPS-induced expression of matrix metalloproteinase 2 (MMP-2) and metalloproteinase 9 (MMP-9), and reduced the expression of toll-like receptor 4 (TLR4) (a typical receptor of LPS), its downstream molecule myeloid differentiation factor 88 (MyD88), and the phosphorylation of TGF β-activated kinase 1 (TAK1). Notably, lixisenatide decreased the nuclear levels of nuclear factor-κB (NF-κB) and its transcriptional activity. These findings suggest that lixisenatide might become a possible therapeutic agent for the treatment of mastitis by weakening oxidative stress and the inflammatory response in MECs.
Collapse
Affiliation(s)
- Peng Li
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Qipeng Liu
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Ting Zhang
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Wanying Guo
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Weiqiang Qiao
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Miao Deng
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
10
|
Li L, Chen X, Chen Z. Identification of Key Candidate Genes in Dairy Cow in Response to Escherichia coli Mastitis by Bioinformatical Analysis. Front Genet 2019; 10:1251. [PMID: 31921295 PMCID: PMC6915111 DOI: 10.3389/fgene.2019.01251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
At present, bovine mastitis is one of the most costly diseases affecting animal health and welfare. Escherichia coli (E. coli) is considered to be one of the main pathogens causing mastitis with clinical signs in dairy cattle. However, the cure rate of E. coli mastitis is low, and the pathogenesis of E. coli mastitis is not completely known. In order to develop new strategies for the rapid detection of E. coli mastitis, a comprehensive molecular investigation of E. coli mastitis is necessary. Hence, this study integrated three microarray data sets to identify the potential key candidate genes in dairy cow in response to E. coli mastitis. Differentially expressed genes (DEGs) were screened in mammary gland tissues with live E. coli infection. Furthermore, the pathways enrichment of DEGs were analyzed, and the protein–protein interaction (PPI) network was performed. In total, 105 shared DEGs were identified from the three data sets. The DEGs were significantly enriched in biological processes mainly involved in immunity. The PPI network of DEGs was constructed with 102 nodes and 546 edges. The module with the highest score through MCODE analysis was filtered from PPI; 18 central node genes were identified. However, in addition to immune-related pathways, some of the 18 DEGs were involved in signaling pathways triggered by other diseases. Considering the specificity of biomarkers for rapid detection, IL8RB, CXCL6, and MMP9 were identified as the most potential biomarker for E. coli mastitis. In conclusion, the novel DEGs and pathways identified in this study can help to improve the diagnosis and treatment strategies for E. coli mastitis in cattle.
Collapse
Affiliation(s)
- Liabin Li
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Xiuli Chen
- Animal Disease Prevention and Control Center of Hanzhong, Hanzhong, China
| | - Zeshi Chen
- Key Laboratory of Tropical Animal Breeding and Epidemic Disease Research of Hainan Province, College of Animal Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
11
|
Muriuki C, Bush SJ, Salavati M, McCulloch ME, Lisowski ZM, Agaba M, Djikeng A, Hume DA, Clark EL. A Mini-Atlas of Gene Expression for the Domestic Goat ( Capra hircus). Front Genet 2019; 10:1080. [PMID: 31749840 PMCID: PMC6844187 DOI: 10.3389/fgene.2019.01080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Goats (Capra hircus) are an economically important livestock species providing meat and milk across the globe. They are of particular importance in tropical agri-systems contributing to sustainable agriculture, alleviation of poverty, social cohesion, and utilisation of marginal grazing. There are excellent genetic and genomic resources available for goats, including a highly contiguous reference genome (ARS1). However, gene expression information is limited in comparison to other ruminants. To support functional annotation of the genome and comparative transcriptomics, we created a mini-atlas of gene expression for the domestic goat. RNA-Seq analysis of 17 transcriptionally rich tissues and 3 cell-types detected the majority (90%) of predicted protein-coding transcripts and assigned informative gene names to more than 1000 previously unannotated protein-coding genes in the current reference genome for goat (ARS1). Using network-based cluster analysis, we grouped genes according to their expression patterns and assigned those groups of coexpressed genes to specific cell populations or pathways. We describe clusters of genes expressed in the gastro-intestinal tract and provide the expression profiles across tissues of a subset of genes associated with functional traits. Comparative analysis of the goat atlas with the larger sheep gene expression atlas dataset revealed transcriptional similarities between macrophage associated signatures in the sheep and goats sampled in this study. The goat transcriptomic resource complements the large gene expression dataset we have generated for sheep and contributes to the available genomic resources for interpretation of the relationship between genotype and phenotype in small ruminants.
Collapse
Affiliation(s)
- Charity Muriuki
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| | - Stephen J. Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mazdak Salavati
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| | - Mary E.B. McCulloch
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Zofia M. Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Morris Agaba
- Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA - ILRI) Hub, Nairobi, Kenya
| | - Appolinaire Djikeng
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Woolloongabba, QLD, Australia
| | - Emily L. Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Edinburgh, United Kingdom
| |
Collapse
|
12
|
Tsai MH, Yang CM, Chang KT, Chuang CC, Lin WN, Jiang RS, Wu CH, Lee IT. Carbon monoxide ameliorates Staphylococcus aureus-elicited COX-2/IL-6/MMP-9-dependent human aortic endothelial cell migration and inflammatory responses. Immunol Lett 2018; 203:40-49. [PMID: 30236480 DOI: 10.1016/j.imlet.2018.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus (S. aureus) can often lead to many life-threatening diseases. It has the ability to invade normal endovascular tissue. Acute inflammation and its resolution are important to ensure bacterial clearance and limit tissue injury. Carbon monoxide (CO) has been shown to exert anti-inflammatory effects in various tissues and organ systems. In our study, we investigated the effects and the mechanisms of carbon monoxide releasing molecule-2 (CORM-2) on S. aureus-induced inflammatory responses in human aortic endothelial cells (HAECs). We proved that S. aureus induced cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2)/interleukin-6 (IL-6)/matrix metallopeptidase-9 (MMP-9) expression and cell migration, which were decreased by CORM-2. Moreover, CORM-2 had no effects on TLR2 mRNA levels in response to S. aureus. Interestingly, we proved that S. aureus decreased intracellular ROS generation, suggesting that the inhibition of ROS further promoted inflammatory responses. However, CORM-2 significantly inhibited S. aureus-induced inflammation by increasing intracellular ROS generation. S. aureus-induced NF-κB activation was also inhibited by CORM-2. Finally, we proved that S. aureus induced levels of the biomarkers of inflammation in cardiovascular diseases, which were inhibited by CORM-2. Taken together, these results suggest that CORM-2 inhibits S. aureus-induced COX-2/PGE2/IL-6/MMP-9 expression and aorta inflammatory responses by increasing the ROS generation and reducing the inflammatory molecules levels.
Collapse
Affiliation(s)
- Ming-Horng Tsai
- Department of Pediatrics, Division of Neonatology and Pediatric Hematology/Oncology, Chang Gung Memorial Hospital, Yunlin, Taiwan; Graduate Institute of Clinical Medical Science, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chuen-Mao Yang
- Department of Physiology and Pharmacology and Health Ageing Research Center, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Department of Anesthetics, Chang Gung Memorial Hospital at Linkuo and Chang Gung University, Kwei-San, Tao-Yuan, Taiwan; Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Kuo-Ting Chang
- Translational Medicine Center, Taoyuan General Hospital, Ministry of Healthy and Welfare, Taoyuan, Taiwan
| | - Chu-Chun Chuang
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Rong-San Jiang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Cheng-Hsun Wu
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| | - I-Ta Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Nursing, College of Nursing, Hungkuang University, Taichung, Taiwan.
| |
Collapse
|
13
|
Boutinaud M, Isaka N, Gandemer E, Lamberton P, Wiart S, Taranilla AIDP, Sordillo L, Lollivier V. Inhibiting prolactin by cabergoline accelerates mammary gland remodeling during the early dry period in dairy cows. J Dairy Sci 2017; 100:9787-9798. [DOI: 10.3168/jds.2017-12783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022]
|
14
|
Wei X, Li H, Zhao G, Yang J, Li L, Huang Y, Lan X, Ma Y, Hu L, Zheng H, Chen H. ΔFosB regulates rosiglitazone-induced milk fat synthesis and cell survival. J Cell Physiol 2017; 233:9284-9298. [PMID: 29154466 DOI: 10.1002/jcp.26218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
Abstract
Rosiglitazone induces adipogenesis in adipocyte and regulates cell survival and differentiation in number of cell types. However, whether PPARγ regulates the synthesis of milk fat and cell survival in goat mammary gland remains unknown. Rosiglitazone strongly enhanced cellular triacylglycerol content and accumulation of lipid droplet in goat mammary epithelial cells (GMEC). Furthermore, ΔFosB decreased the expression of PPARγ at both mRNA and protein levels, and rosiglitazone-induced milk fat synthesis was abolished by ΔFosB overexpression. ΔFosB reduced milk fat synthesis and enhanced saturated fatty acid concentration. Rosiglitazone increased the number of GMEC in G0/G1 phase and inhibited cell proliferation, and these effects were improved by overexpression of ΔFosB. ΔFosB was found to promote the expression of Bcl-2 and suppress the expression of Bax, and protected GMEC from apoptosis induced by rosiglitazone. Intracellular calcium trafficking assay revealed that rosiglitazone markedly increased intracellular calcium concentration. ΔFosB protected GMEC from apoptosis induced by intracellular Ca2+ overload. ΔFosB increased MMP-9 gelatinolytic activity. SB-3CT, an MMP-9 inhibitor, suppressed the expression of Bcl-2, and increased intracellular calcium levels, and this effect was abolished by ΔFosB overexpression. SB-3CT induced GMEC apoptosis and this effect was inhibited by ΔFosB overexpression. These findings suggest that ΔFosB regulates rosiglitazone-induced milk fat synthesis and cell survival. Therefore, ΔFosB may be an important checkpoint to control milk fat synthesis and cell apoptosis.
Collapse
Affiliation(s)
- Xuefeng Wei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Hui Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Guangwei Zhao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiameng Yang
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Lihui Li
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Yongzhen Huang
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Xianyong Lan
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Yun Ma
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Huiling Zheng
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan, China
| |
Collapse
|