1
|
Wu H, Liu S, Wu D, Zhou H, Wu G. Tumor extrachromosomal DNA: Biogenesis and recent advances in the field. Biomed Pharmacother 2024; 174:116588. [PMID: 38613997 DOI: 10.1016/j.biopha.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Extrachromosomal DNA (ecDNA) is a self-replicating circular DNA originating from the chromosomal genome and exists outside the chromosome. It contains specific gene sequences and non-coding regions that regulate transcription. Recent studies have demonstrated that ecDNA is present in various malignant tumors. Malignant tumor development and poor prognosis may depend on ecDNA's distinctive ring structure, which assists in amplifying oncogenes. During cell division, an uneven distribution of ecDNA significantly enhances tumor cells' heterogeneity, allowing tumor cells to adapt to changes in the tumor microenvironment and making them more resistant to treatments. The application of ecDNA as a cancer biomarker and therapeutic target holds great potential. This article examines the latest advancements in this area and discusses the potential clinical applications of ecDNA.
Collapse
Affiliation(s)
- Haomin Wu
- Department of General Surgery, the First Hospital of China Medical University, 155# Nanjing Street, Shenyang 110001, China
| | - Shiqi Liu
- Department of General Surgery, the First Hospital of China Medical University, 155# Nanjing Street, Shenyang 110001, China
| | - Di Wu
- Department of General Surgery, the First Hospital of China Medical University, 155# Nanjing Street, Shenyang 110001, China
| | - Haonan Zhou
- Department of General Surgery, the First Hospital of China Medical University, 155# Nanjing Street, Shenyang 110001, China
| | - Gang Wu
- Department of General Surgery, the First Hospital of China Medical University, 155# Nanjing Street, Shenyang 110001, China.
| |
Collapse
|
2
|
Knowles C, Petrie L, Warren C, Lillico SG, Carlisle A, Whitelaw CBA, Kolb AF. Site specific insertion of a transgene into the murine α-casein (CSN1S1) gene results in the predictable expression of a recombinant protein in milk. Biotechnol J 2024; 19:e2300287. [PMID: 38047759 DOI: 10.1002/biot.202300287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Gene loci of highly expressed genes provide ideal sites for transgene expression. Casein genes are highly expressed in mammals leading to the synthesis of substantial amounts of casein proteins in milk. The α-casein (CSN1S1) gene has assessed as a site of transgene expression in transgenic mice and a mammary gland cell line. A transgene encoding an antibody light chain gene (A1L) was inserted into the α-casein gene using sequential homologous and site-specific recombination. Expression of the inserted transgene is directed by the α-casein promoter, is responsive to lactogenic hormone activation, leads to the synthesis of a chimeric α-casein/A1L transgene mRNA, and secretion of the recombinant A1L protein into milk. Transgene expression is highly consistent in all transgenic lines, but lower than that of the α-casein gene (4%). Recombinant A1L protein accounted for 0.5% and 1.6% of total milk protein in heterozygous and homozygous transgenic mice, respectively. The absence of the α-casein protein in homozygous A1L transgenic mice leads to a reduction of total milk protein and delayed growth of the pups nursed by these mice. Overall, the data demonstrate that the insertion of a transgene into a highly expressed endogenous gene is insufficient to guarantee its abundant expression.
Collapse
Affiliation(s)
- Christopher Knowles
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Linda Petrie
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Claire Warren
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Ailsa Carlisle
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Andreas F Kolb
- Nutrition, Obesity and Disease Research Theme, Rowett Institute, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
3
|
Noorani I, Mischel PS, Swanton C. Leveraging extrachromosomal DNA to fine-tune trials of targeted therapy for glioblastoma: opportunities and challenges. Nat Rev Clin Oncol 2022; 19:733-743. [PMID: 36131011 DOI: 10.1038/s41571-022-00679-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Glioblastoma evolution is facilitated by intratumour heterogeneity, which poses a major hurdle to effective treatment. Evidence indicates a key role for oncogene amplification on extrachromosomal DNA (ecDNA) in accelerating tumour evolution and thus resistance to treatment, particularly in glioblastomas. Oncogenes contained within ecDNA can reach high copy numbers and expression levels, and their unequal segregation can result in more rapid copy number changes in response to therapy than is possible through natural selection of intrachromosomal genomic loci. Notably, targeted therapies inhibiting oncogenic pathways have failed to improve glioblastoma outcomes. In this Perspective, we outline reasons for this disappointing lack of clinical translation and present the emerging evidence implicating ecDNA as an important driver of tumour evolution. Furthermore, we suggest that through detection of ecDNA, patient selection for clinical trials of novel agents can be optimized to include those most likely to benefit based on current understanding of resistance mechanisms. We discuss the challenges to successful translation of this approach, including accurate detection of ecDNA in tumour tissue with novel technologies, development of faithful preclinical models for predicting the efficacy of novel agents in the presence of ecDNA oncogenes, and understanding the mechanisms of ecDNA formation during cancer evolution and how they could be attenuated therapeutically. Finally, we evaluate the feasibility of routine ecDNA characterization in the clinic and how this process could be integrated with other methods of molecular stratification to maximize the potential for clinical translation of precision medicines.
Collapse
Affiliation(s)
- Imran Noorani
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine and Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
4
|
Gene Amplification and the Extrachromosomal Circular DNA. Genes (Basel) 2021; 12:genes12101533. [PMID: 34680928 PMCID: PMC8535887 DOI: 10.3390/genes12101533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Oncogene amplification is closely linked to the pathogenesis of a broad spectrum of human malignant tumors. The amplified genes localize either to the extrachromosomal circular DNA, which has been referred to as cytogenetically visible double minutes (DMs), or submicroscopic episome, or to the chromosomal homogeneously staining region (HSR). The extrachromosomal circle from a chromosome arm can initiate gene amplification, resulting in the formation of DMs or HSR, if it had a sequence element required for replication initiation (the replication initiation region/matrix attachment region; the IR/MAR), under a genetic background that permits gene amplification. In this article, the nature, intracellular behavior, generation, and contribution to cancer genome plasticity of such extrachromosomal circles are summarized and discussed by reviewing recent articles on these topics. Such studies are critical in the understanding and treating human cancer, and also for the production of recombinant proteins such as biopharmaceuticals by increasing the recombinant genes in the cells.
Collapse
|
5
|
How Chaotic Is Genome Chaos? Cancers (Basel) 2021; 13:cancers13061358. [PMID: 33802828 PMCID: PMC8002653 DOI: 10.3390/cancers13061358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer genomes can undergo major restructurings involving many chromosomal locations at key stages in tumor development. This restructuring process has been designated “genome chaos” by some authors. In order to examine how chaotic cancer genome restructuring may be, the cell and molecular processes for DNA restructuring are reviewed. Examination of the action of these processes in various cancers reveals a degree of specificity that indicates genome restructuring may be sufficiently reproducible to enable possible therapies that interrupt tumor progression to more lethal forms. Abstract Cancer genomes evolve in a punctuated manner during tumor evolution. Abrupt genome restructuring at key steps in this evolution has been called “genome chaos.” To answer whether widespread genome change is truly chaotic, this review (i) summarizes the limited number of cell and molecular systems that execute genome restructuring, (ii) describes the characteristic signatures of DNA changes that result from activity of those systems, and (iii) examines two cases where genome restructuring is determined to a significant degree by cell type or viral infection. The conclusion is that many restructured cancer genomes display sufficiently unchaotic signatures to identify the cellular systems responsible for major oncogenic transitions, thereby identifying possible targets for therapies to inhibit tumor progression to greater aggressiveness.
Collapse
|
6
|
SIRT1 stabilizes extrachromosomal gene amplification and contributes to repeat-induced gene silencing. J Biol Chem 2021; 296:100356. [PMID: 33539925 PMCID: PMC7949162 DOI: 10.1016/j.jbc.2021.100356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Sirtuin 1 (SIRT1) is a protein deacetylase that maintains genome stability by preventing the activation of latent replication origins. Amplified genes in cancer cells localize on either extrachromosomal double minutes (DMs) or the chromosomal homogeneously staining region. Previously, we found that a plasmid with a mammalian replication initiation region and a matrix attachment region spontaneously mimics gene amplification in cultured animal cells and efficiently generates DMs and/or an homogeneously staining region. Here, we addressed the possibility that SIRT1 might be involved in initiation region/matrix attachment region–mediated gene amplification using SIRT1-knockout human COLO 320DM cells. Consequently, we found that extrachromosomal amplification was infrequent in SIRT1-deficient cells, suggesting that DNA breakage caused by latent origin activation prevented the formation of stable extrachromosomal amplicons. Moreover, we serendipitously found that reporter gene expression from the amplified repeats, which is commonly silenced by repeat-induced gene silencing (RIGS) in SIRT1-proficient cells, was strikingly higher in SIRT1-deficient cells, especially in the culture treated with the histone deacetylase inhibitor butyrate. Compared with the SIRT1-proficient cells, the gene expression per copy was up to thousand-fold higher in the sorter-isolated highest 10% cells among the SIRT1-deficient cells. These observations suggest that SIRT1 depletion alleviates RIGS. Thus, SIRT1 may stabilize extrachromosomal amplicons and facilitate RIGS. This result could have implications in cancer malignancy and protein expression.
Collapse
|
7
|
Suchkova IO, Borisova EV, Patkin EL. Length Polymorphism and Methylation Status of UPS29 Minisatellite of the ACAP3 Gene as Molecular Biomarker of Epilepsy. Sex Differences in Seizure Types and Symptoms. Int J Mol Sci 2020; 21:E9206. [PMID: 33276684 PMCID: PMC7730309 DOI: 10.3390/ijms21239206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 01/10/2023] Open
Abstract
Epilepsy is a neurological disease with different clinical forms and inter-individuals heterogeneity, which may be associated with genetic and/or epigenetic polymorphisms of tandem-repeated noncoding DNA. These polymorphisms may serve as predictive biomarkers of various forms of epilepsy. ACAP3 is the protein regulating morphogenesis of neurons and neuronal migration and is an integral component of important signaling pathways. This study aimed to carry out an association analysis of the length polymorphism and DNA methylation of the UPS29 minisatellite of the ACAP3 gene in patients with epilepsy. We revealed an association of short UPS29 alleles with increased risk of development of symptomatic and cryptogenic epilepsy in women, and also with cerebrovascular pathologies, structural changes in the brain, neurological status, and the clinical pattern of seizures in both women and men. The increase of frequency of hypomethylated UPS29 alleles in men with symptomatic epilepsy, and in women with both symptomatic and cryptogenic epilepsy was observed. For patients with hypomethylated UPS29 alleles, we also observed structural changes in the brain, neurological status, and the clinical pattern of seizures. These associations had sex-specific nature similar to a genetic association. In contrast with length polymorphism epigenetic changes affected predominantly the long UPS29 allele. We suppose that genetic and epigenetic alterations UPS29 can modify ACAP3 expression and thereby affect the development and clinical course of epilepsy.
Collapse
Affiliation(s)
- Irina O. Suchkova
- Laboratory of Molecular Cytogenetics of Mammalian Development, Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, St. Petersburg 197376, Russia;
| | - Elena V. Borisova
- Department of Neurology, Clinic of Institute of Experimental Medicine, St. Petersburg 197376, Russia;
| | - Eugene L. Patkin
- Laboratory of Molecular Cytogenetics of Mammalian Development, Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, St. Petersburg 197376, Russia;
| |
Collapse
|
8
|
Wei J, Wu C, Meng H, Li M, Niu W, Zhan Y, Jin L, Duan Y, Zeng Z, Xiong W, Li G, Zhou M. The biogenesis and roles of extrachromosomal oncogene involved in carcinogenesis and evolution. Am J Cancer Res 2020; 10:3532-3550. [PMID: 33294253 PMCID: PMC7716155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023] Open
Abstract
More and more extrachromosomal DNA (ecDNA) was found in human tumor cells in recent years, which has a high copy number in tumors and changes the expression of oncogenes, thus different from normal chromosomal DNA. These circular structures were identified to originate from chromosomes, and play critical roles in rapid carcinogenesis, tumor evolution and multidrug resistance. Therefore, this review mostly focuses on the biogenesis and regulation of extrachromosomal oncogene in ecDNA as well as its function and mechanism in tumors, which are of great significance for our comprehensive understanding of the role of ecDNA in tumor carcinogenic mechanism and are expected to provide ecDNA with the potential to be a new molecular target for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| | - Chunchun Wu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Hanbing Meng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| | - Weihong Niu
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Yuting Zhan
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
- Department of Pathology, The Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Long Jin
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South UniversityChangsha 410078, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South UniversityChangsha 410078, Hunan, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410013, Hunan, China
| |
Collapse
|
9
|
Luebeck J, Coruh C, Dehkordi SR, Lange JT, Turner KM, Deshpande V, Pai DA, Zhang C, Rajkumar U, Law JA, Mischel PS, Bafna V. AmpliconReconstructor integrates NGS and optical mapping to resolve the complex structures of focal amplifications. Nat Commun 2020; 11:4374. [PMID: 32873787 PMCID: PMC7463033 DOI: 10.1038/s41467-020-18099-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Oncogene amplification, a major driver of cancer pathogenicity, is often mediated through focal amplification of genomic segments. Recent results implicate extrachromosomal DNA (ecDNA) as the primary driver of focal copy number amplification (fCNA) - enabling gene amplification, rapid tumor evolution, and the rewiring of regulatory circuitry. Resolving an fCNA's structure is a first step in deciphering the mechanisms of its genesis and the fCNA's subsequent biological consequences. We introduce a computational method, AmpliconReconstructor (AR), for integrating optical mapping (OM) of long DNA fragments (>150 kb) with next-generation sequencing (NGS) to resolve fCNAs at single-nucleotide resolution. AR uses an NGS-derived breakpoint graph alongside OM scaffolds to produce high-fidelity reconstructions. After validating its performance through multiple simulation strategies, AR reconstructed fCNAs in seven cancer cell lines to reveal the complex architecture of ecDNA, a breakage-fusion-bridge and other complex rearrangements. By reconstructing the rearrangement signatures associated with an fCNA's generative mechanism, AR enables a more thorough understanding of the origins of fCNAs.
Collapse
Affiliation(s)
- Jens Luebeck
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Ceyda Coruh
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Siavash R Dehkordi
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Joshua T Lange
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA, 92093, USA
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Kristen M Turner
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Viraj Deshpande
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Dave A Pai
- Bionano Genomics, Inc., San Diego, CA, 92121, USA
| | - Chao Zhang
- Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Utkrisht Rajkumar
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, 92093, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, CA, 92093, USA
- Department of Pathology, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
10
|
Ogaki Y, Fukuma M, Shimizu N. Repeat induces not only gene silencing, but also gene activation in mammalian cells. PLoS One 2020; 15:e0235127. [PMID: 32579599 PMCID: PMC7313748 DOI: 10.1371/journal.pone.0235127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/08/2020] [Indexed: 11/19/2022] Open
Abstract
Repeat-induced gene silencing (RIGS) establishes the centromere structure, prevents the spread of transposons and silences transgenes, thereby limiting recombinant protein production. We previously isolated a sequence (B-3-31) that alleviates RIGS from the human genome. Here, we developed an assay system for evaluating the influence of repeat sequences on gene expression, based on in vitro ligation followed by our original gene amplification technology in animal cells. Using this assay, we found that the repeat of B-3-31, three core sequences of replication initiation regions (G5, C12, and D8) and two matrix attachment regions (AR1 and 32–3), activated the co-amplified plasmid-encoded d2EGFP gene in both human and hamster cell lines. This upregulation effect persisted for up to 82 days, which was confirmed to be repeat-induced, and was thus designated as a repeat-induced gene activation (RIGA). In clear contrast, the repeat of three bacterial sequences (lambda-phage, Amp, and ColE1) and three human retroposon sequences (Alu, 5’-untranslated region, and ORF1 of a long interspersed nuclear element) suppressed gene expression, thus reflecting RIGS. RIGS was CpG-independent. We suggest that RIGA might be associated with replication initiation. The discovery of RIGS and RIGA has implications for the repeat in mammalian genome, as well as practical value in recombinant production.
Collapse
Affiliation(s)
- Yusuke Ogaki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Miki Fukuma
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
11
|
Karpukhina A, Vassetzky Y. DUX4, a Zygotic Genome Activator, Is Involved in Oncogenesis and Genetic Diseases. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420030078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Oobatake Y, Shimizu N. Double-strand breakage in the extrachromosomal double minutes triggers their aggregation in the nucleus, micronucleation, and morphological transformation. Genes Chromosomes Cancer 2020; 59:133-143. [PMID: 31569279 DOI: 10.1002/gcc.22810] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/27/2019] [Accepted: 09/15/2019] [Indexed: 01/09/2023] Open
Abstract
Gene amplification plays a pivotal role in malignant transformation. Amplified genes often reside on extrachromosomal double minutes (DMs). Low-dose hydroxyurea induces DM aggregation in the nucleus which, in turn, generates micronuclei composed of DMs. Low-dose hydroxyurea also induces random double-strand breakage throughout the nucleus. In the present study, we found that double-strand breakage in DMs is sufficient for induction of DM aggregation. Here, we used CRISPR/Cas9 to introduce specific breakages in both natural and artificially tagged DMs of human colorectal carcinoma COLO 320DM cells. Aggregation occurred in the S phase but not in the G1 phase within 4 hours after breakage, which suggested the possible involvement of homologous recombination in the aggregation of numerous DMs. Simultaneous detection of DMs and the phosphorylated histone H2AX revealed that the aggregation persisted after breakage repair. Thus, the aggregate generated cytoplasmic micronuclei at the next interphase. Our data also suggested that micronuclear entrapment eliminated the DMs or morphologically transformed them into giant DMs or homogeneously staining regions (HSRs). In this study, we obtained a model explaining the consequences of DMs after double-strand breakage in cancer cells. Because double-strand breakage is frequently involved in cancer therapy, the model suggests how it affects gene amplification.
Collapse
Affiliation(s)
- Yoshihiro Oobatake
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Asoshina M, Myo G, Tada N, Tajino K, Shimizu N. Targeted amplification of a sequence of interest in artificial chromosome in mammalian cells. Nucleic Acids Res 2019; 47:5998-6006. [PMID: 31062017 PMCID: PMC6582328 DOI: 10.1093/nar/gkz343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/08/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
A plasmid with a replication initiation region (IR) and a matrix attachment region (MAR) initiates gene amplification in mammalian cells at a random chromosomal location. A mouse artificial chromosome (MAC) vector can stably carry a large genomic region. In this study we combined these two technologies with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas)9 strategy to achieve targeted amplification of a sequence of interest. We previously showed that the IR/MAR plasmid was amplified up to the extrachromosomal tandem repeat; here we demonstrate that cleavage of these tandem plasmids and MAC by Cas9 facilitates homologous recombination between them. The plasmid array on the MAC could be further extended to form a ladder structure with high gene expression by a breakage–fusion–bridge cycle involving breakage at mouse major satellites. Amplification of genes on the MAC has the advantage that the MAC can be transferred between cells. We visualized the MAC in live cells by amplifying the lactose operator array on the MAC in cells expressing lactose repressor-green fluorescent protein fusion protein. This targeted amplification strategy is in theory be applicable to any sequence at any chromosomal site, and provides a novel tool for animal cell technology.
Collapse
Affiliation(s)
- Manami Asoshina
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Genki Myo
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan
| | - Natsuko Tada
- Chromocenter Inc., Yonago, Tottori 683-0823, Japan
| | - Koji Tajino
- Chromocenter Inc., Yonago, Tottori 683-0823, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
14
|
Abstract
The human genome is generally organized into stable chromosomes, and only tumor cells are known to accumulate kilobase (kb)-sized extrachromosomal circular DNA elements (eccDNAs). However, it must be expected that kb eccDNAs exist in normal cells as a result of mutations. Here, we purify and sequence eccDNAs from muscle and blood samples from 16 healthy men, detecting ~100,000 unique eccDNA types from 16 million nuclei. Half of these structures carry genes or gene fragments and the majority are smaller than 25 kb. Transcription from eccDNAs suggests that eccDNAs reside in nuclei and recurrence of certain eccDNAs in several individuals implies DNA circularization hotspots. Gene-rich chromosomes contribute to more eccDNAs per megabase and the most transcribed protein-coding gene in muscle, TTN (titin), provides the most eccDNAs per gene. Thus, somatic genomes are rich in chromosome-derived eccDNAs that may influence phenotypes through altered gene copy numbers and transcription of full-length or truncated genes. Somatic cells can accumulate structural variations such as deletions. Here, Møller et al. show that normal human cells generate large extrachromosomal circular DNAs (eccDNAs), most likely the products of excised DNA, that can be transcriptionally active and, thus, may have phenotypic consequences.
Collapse
|
15
|
Gu B, Swigut T, Spencley A, Bauer MR, Chung M, Meyer T, Wysocka J. Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 2018; 359:1050-1055. [PMID: 29371426 PMCID: PMC6590518 DOI: 10.1126/science.aao3136] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/16/2018] [Indexed: 12/15/2022]
Abstract
To achieve guide RNA (gRNA) multiplexing and an efficient delivery of tens of distinct gRNAs into single cells, we developed a molecular assembly strategy termed chimeric array of gRNA oligonucleotides (CARGO). We coupled CARGO with dCas9 (catalytically dead Cas9) imaging to quantitatively measure the movement of enhancers and promoters that undergo differentiation-associated activity changes in live embryonic stem cells. Whereas all examined functional elements exhibited subdiffusive behavior, their relative mobility increased concurrently with transcriptional activation. Furthermore, acute perturbation of RNA polymerase II activity can reverse these activity-linked increases in loci mobility. Through quantitative CARGO-dCas9 imaging, we provide direct measurements of cis-regulatory element dynamics in living cells and distinct cellular and activity states and uncover an intrinsic connection between cis-regulatory element mobility and transcription.
Collapse
Affiliation(s)
- Bo Gu
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew Spencley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew R Bauer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mingyu Chung
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice. SCIENCE CHINA-LIFE SCIENCES 2017; 60:506-515. [DOI: 10.1007/s11427-017-9008-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/20/2016] [Indexed: 12/26/2022]
|