1
|
Orubuloye OY, Tchouassi DP, Yusuf AA, Pirk CWW, Masiga DK, Kariuki E, Torto B. Machine Learning Predicts Non-Preferred and Preferred Vertebrate Hosts of Tsetse Flies (Glossina spp.) Based on Skin Volatile Emission Profiles. J Chem Ecol 2025; 51:30. [PMID: 40053178 PMCID: PMC11889071 DOI: 10.1007/s10886-025-01582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/10/2025]
Abstract
Tsetse fly vectors of African trypanosomosis preferentially feed on certain vertebrates largely determined by olfactory cues they emit. Previously, we established that three skin-derived ketones including 6-methyl-5-hepten-2-one, acetophenone and geranyl acetone accounted for avoidance of zebra by tsetse flies. Here, we tested the hypothesis that these three ketones serve as biomarkers for tsetse flies to distinguish between non-preferred- and preferred-vertebrate hosts. We used coupled gas chromatography/mass spectrometry to analyze and compare the skin volatile emissions of two non-preferred- (waterbuck and zebra) and four preferred- (buffalo, donkey, horse, warthog) vertebrate hosts in two wildlife parks in Kenya. We detected a total of 96 volatile organic compounds (VOCs) in the skin emissions composed mainly of aldehydes, ketones, alcohols, phenols and alkanes, which varied with the vertebrate host. Using random forest analysis, we found a weak correlation between the three skin-odor repellent ketones and non-preferred and preferred vertebrate hosts. However, we found that the three repellent ketones plus skin background odors may be more sensitive chemical signals for tsetse flies to discriminate vertebrate hosts. These results contribute to understanding tsetse fly vertebrate host preferences in their natural habitat across geographic scales.
Collapse
Affiliation(s)
- Olabimpe Y Orubuloye
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa.
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Abdullahi A Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Christian W W Pirk
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Daniel K Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Edward Kariuki
- Veterinary and Capture Service Department, Kenya Wildlife Service (KWS), Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
2
|
Khan A, Carter R, Mpamhanga CD, Masiga D, Channumsin M, Ciosi M, Manangwa O, Mramba F, Ijaz UZ, Auty H, Mable BK. Swatting Flies: Biting Insects as Non-Invasive Samplers for Mammalian Population Genomics. Mol Ecol 2025:e17661. [PMID: 39838904 DOI: 10.1111/mec.17661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/27/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
Advances in next-generation sequencing have allowed the use of DNA obtained from unusual sources for wildlife studies. However, these samples have been used predominantly to sequence mitochondrial DNA for species identification while population genetics analyses have been rare. Since next-generation sequencing allows indiscriminate detection of all DNA fragments in a sample, technically it should be possible to sequence whole genomes of animals from environmental samples. Here we used a blood-feeding insect, tsetse fly, to target whole genome sequences of wild animals. Using pools of flies, we compared the ability to recover genomic data from hosts using the short-read sequencing (Illumina) and adaptive sampling of long-read data generated using Oxford nanopore technology (ONT). We found that most of the short-read data (85%-99%) was dominated by tsetse fly DNA and that adaptive sampling on the ONT platform did not substantially reduce this proportion. However, once tsetse reads were removed, the remaining data for both platforms tended to belong to the dominant host expected in the tsetse fly blood meal. Reads mapping to elephants, warthogs and giraffes were recovered more reliably than for buffalo, and there was high variance in the contribution of DNA by individual flies to the pools, suggesting that there are host specific biases. For elephants, using short-read sequencing we were able to identify over 300,000 unfiltered SNPs, which we used to estimate the allele frequencies and expected heterozygosity for the population. Overall, our results show that at least for certain wild mammals, it is possible to recover genome-wide host data from blood-feeding insects.
Collapse
Affiliation(s)
- Anubhab Khan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
- Section for Computational Biology and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ryan Carter
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Chengetai D Mpamhanga
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Manun Channumsin
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi, Thailand
| | - Marc Ciosi
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Oliva Manangwa
- Vector and Vector-Borne Disease Institute, Tanga, Tanzania
| | | | - Umer Zeeshan Ijaz
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Harriet Auty
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Barbara K Mable
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Orubuloye OY, Mbewe NJ, Tchouassi DP, Yusuf AA, Pirk CWW, Torto B. An Overview of Tsetse Fly Repellents: Identification and Applications. J Chem Ecol 2024; 50:581-592. [PMID: 38976099 PMCID: PMC11543710 DOI: 10.1007/s10886-024-01527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
Tsetse flies are vectors of the parasite trypanosoma that cause the neglected tropical diseases human and animal African trypanosomosis. Semiochemicals play important roles in the biology and ecology of tsetse flies. Previous reviews have focused on olfactory-based attractants of tsetse flies. Here, we present an overview of the identification of repellents and their development into control tools for tsetse flies. Both natural and synthetic repellents have been successfully tested in laboratory and field assays against specific tsetse fly species. Thus, these repellents presented as innovative mobile tools offer opportunities for their use in integrated disease management strategies.
Collapse
Affiliation(s)
- Olabimpe Y Orubuloye
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| | - Njelembo J Mbewe
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Abdullahi A Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Christian W W Pirk
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Baldwyn Torto
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
4
|
Mdee FE, Msoffe VT, Mafie EM, Mnyone LL. Species richness and abundance of wild tsetse flies collected from selected human-wildlife-livestock interface in Tanzania. Parasite Epidemiol Control 2024; 27:e00389. [PMID: 39525368 PMCID: PMC11550626 DOI: 10.1016/j.parepi.2024.e00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The successful control of tsetse flies largely depends on understanding of the species available and abundance. This study assessed the species richness, abundance and apparent density of wild collected tsetse flies from selected human-wildlife-livestock interface in Tanzania. Seasonal trapping using baited NZI, Pyramidal and Biconical traps was done across selected wards. Traps were set at 200 m apart, emptied after every 24 h then rotated to the next sites after 72 h. Collected flies were identified morphologically and letter confirmed using the Polymerase Chain Reaction (PCR). Only two Glossina species; Glossina pallidipes (n = 371; 47.32 %) and Glossina morsitans morsitans (n = 413; 52.68 %) were identified. Among them, 96 flies (80 Female, 16 Male) were blood fed; 57(48 Female and 9 Male) G. pallidipes and 39(32 Female and 7 Male) G.m. morsitans. Tsetse fly abundance varied across wards (χ2 = 4.597, df = 1, p = 0.032), villages (χ2 = 9.491, df = 3, p = 0.023), habitats (χ2 = 17.239, df = 2, p < 0.001), months (χ2 = 13.507, df = 3, p = 0.004) and deployed traps (χ2 = 6.348, df = 2, p = 0.04). About 78.82 % of the total catch occurred in Kisaki ward (n = 618; p < 0.001) and 21.17 % (n = 166; p = 0.032) in Bwakila chini. Similarly, 62.37 % of the catch occurred in Mbojoge village. NZI traps (n = 422; 54 %; 4.98 FTD) were most successful traps. Moreover, 78.06 % of the catch occurred in bushed grassland habitat (n = 612; 55.41 FTD) while 5.48 % in farmland (n = 43; 7.17 FTD). This study recommends NZI and Pyramidal traps for tsetse flies control at the interface and proposes wet season as appropriate time for successful trapping of the flies. Finally, it attracts a need for assessing tsetse flies' blood meal sources and the infection status to establish the prevalence to inform existing trypanosome control programs.
Collapse
Affiliation(s)
- Filbert E. Mdee
- Department of Veterinary Medicine and Public health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
- African Centre of Excellence for Innovative Rodent Pest Management and Biosensor Technology Development, Sokoine University of Agriculture, Morogoro, P.O. Box 3110, Tanzania
| | - Venance T. Msoffe
- African Centre of Excellence for Innovative Rodent Pest Management and Biosensor Technology Development, Sokoine University of Agriculture, Morogoro, P.O. Box 3110, Tanzania
| | - Eliakunda M. Mafie
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, P.O. Box 3019, Morogoro, Tanzania
| | - Ladslaus L. Mnyone
- The Institute of Pest Management, Sokoine University of Agriculture, P.O. Box 3110, Morogoro, Tanzania
| |
Collapse
|
5
|
Gashururu RS, Maingi N, Githigia SM, Getange DO, Ntivuguruzwa JB, Habimana R, Cecchi G, Gashumba J, Bargul JL, Masiga DK. Trypanosomes infection, endosymbionts, and host preferences in tsetse flies ( Glossina spp.) collected from Akagera park region, Rwanda: A correlational xenomonitoring study. One Health 2023; 16:100550. [PMID: 37363264 PMCID: PMC10288097 DOI: 10.1016/j.onehlt.2023.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 06/28/2023] Open
Abstract
Akagera National Park and its surroundings are home to tsetse flies and a number of their mammalian hosts in Rwanda. A One-health approach is being used in the control and surveillance of both animal and human trypanosomosis in Rwanda. Determination of the infection level in tsetse flies, species of trypanosomes circulating in vectors, the source of tsetse blood meal and endosymbionts is crucial in understanding the epidemiology of the disease in animals and humans in the region. Tsetse flies (n = 1101), comprising Glossina pallidipes (n = 771) and Glossina morsitans centralis (n = 330) were collected from Akagera park and surrounding areas between May 2018 and June 2019. The flies were screened for trypanosomes, vertebrate host DNA to identify sources of blood meal, and endosymbionts by PCR - High Resolution Melting analysis and amplicon sequencing. The feeding frequency and the feeding indices (selection index - W) were calculated to identify the preferred hosts. An overall trypanosome infection rate of 13.9% in the fly's Head and Proboscis (HP) and 24.3% in the Thorax and Abdomen (TA) were found. Eight trypanosome species were identified in the tsetse fly HP and TA, namely: Trypanosoma (T.) brucei brucei, T. congolense Kilifi, T. congolense savannah, T. vivax, T. simiae, T. evansi, T. godfreyi, T. grayi and T. theileri. We found no evidence of human-infective T. brucei rhodesiense. We also identified eighteen species of vertebrate hosts that tsetse flies fed on, and the most frequent one was the buffalo (Syncerus caffer) (36.5%). The frequently detected host by selection index was the rhinoceros (Diceros bicornis) (W = 16.2). Most trypanosome infections in tsetse flies were associated with the buffalo blood meal. The prevalence of tsetse endosymbionts Sodalis and Wolbachia was 2.8% and 4.8%, respectively. No Spiroplasma and Salivary Gland Hypertrophy Virus were detected. These findings implicate the buffaloes as the important reservoirs of tsetse-transmitted trypanosomes in the area. This contributes to predicting the main cryptic reservoirs and therefore guiding the effective control of the disease. The study findings provide the key scientific information that supports the current One Health collaboration in the control and surveillance of tsetse-transmitted trypanosomosis in Rwanda.
Collapse
Affiliation(s)
- Richard S. Gashururu
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- School of Veterinary Medicine, University of Rwanda, P.O. Box 57, Nyagatare, Rwanda
| | - Ndichu Maingi
- Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi, Kenya
| | - Samuel M. Githigia
- Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi, Kenya
| | - Dennis O. Getange
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Jean B. Ntivuguruzwa
- School of Veterinary Medicine, University of Rwanda, P.O. Box 57, Nyagatare, Rwanda
| | - Richard Habimana
- Food and Drugs Assessment and Registration Department, Rwanda Food and Drugs Authority (FDA), P.O Box 1948, Kigali, Rwanda
| | - Giuliano Cecchi
- Food and Agriculture Organization of the United Nations (FAO), Animal Production and Health Division, Rome, Italy
| | | | - Joel L. Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Daniel K. Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
6
|
Ogolla KO, Onyango T, Bwana BK, Otiende MY, Mang’era CM, Ochieng B, Omolo MO, Mugambi JM, Hassanali A, Omondi P, Mireji PO. Bloodmeal host identities among sympatric Glossina austeni and Glossina pallidipes tsetse flies in Shimba Hills National Reserve, Kwale, Kenya. FRONTIERS IN TROPICAL DISEASES 2023; 4:1145993. [PMID: 38455667 PMCID: PMC10919243 DOI: 10.3389/fitd.2023.1145993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Odor from preferred/non-preferred tsetse fly vertebrate hosts have been exploited in R&D of attractants/repellents of the fly for human and livestock protection. Odors from vertebrate hosts of Glossina austeni and Glossina pallidipes tsetse flies can facilitate formulation of novel attractants effective against G. austeni or improvement of existing attractant blends for G. pallidipes. We compared vertebrate blood meal sources of both fly species at Shimba Hills National Reserve, Kenya, to establish putative preferred host of either species, hence potential source of G. austeni or G. pallidipes specific odors. We trapped sympatric adult flies in 2021 and 2022 using NGU traps/sticky panels baited with POCA, collected their blood meals and characterize the meals using HRM vertebrate 16S rRNA- PCR (for host identification), and compared host profiles using GLM and Fisher's exact tests. We collected 168 and 62 sympatric G. pallidipes and G. austeni with bloodmeal, respectively in 2021 and, 230 and 142 respectively in 2022. In 2021, we identified putative hosts of 65.48 and 69.35 % of the G. pallidipes and G. austeni respectively and 82.61 and 80.28%, respectively in 2022. In 2021, we detected harnessed bushbuck, buffalo, common warthog and cattle putative host bloodmeals, and additionally bushpig and suni antelope bloodmeals in 2022. Putative vertebrate bloodmeal sources were significantly different by tsetse fly species (χ2(1, N=457) = 43.215, p < 0.001) and sampling year (χ2(1, N=457) = 8.044, p = 0.005). Frequency of common warthog bloodmeals was higher in G. pallidipes (65.79 %) than G. austeni (38.60%), and that of suni antelope and harnessed bushbuck putative bloodmeals higher in G. austeni (21.05-28.07%) than in G. pallidipes (6.84 - 17.37%) in 2022. There was an apparent change in putative feeding preference/host choices in both fly species between 2021 and 2022. Host bloodmeals in G. pallidipes or G. austeni predominantly from putative harnessed bushbuck, suni antelope or common warthog reveal these vertebrates with potential odors that can be harnessed and formulated into appropriate attractants for respective species and integrated into routine control regiment for G. pallidipes and/or G. austeni.
Collapse
Affiliation(s)
- Kennedy O. Ogolla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Tevin Onyango
- Wildlife Research and Training Institute, Naivasha, Kenya
| | - Billiah K. Bwana
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | | | - Clarence M. Mang’era
- Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya
| | - Benard Ochieng
- Wildlife Research and Training Institute, Naivasha, Kenya
| | - Maurice O Omolo
- Center for African Medicinal and Nutritional Flora and Fauna, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - John M Mugambi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Ahmed Hassanali
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Patrick Omondi
- Wildlife Research and Training Institute, Naivasha, Kenya
| | - Paul O. Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| |
Collapse
|
7
|
Kim JY, Choi JH, Nam SH, Fyumagwa R, Yong TS. Parasites and blood-meal hosts of the tsetse fly in Tanzania: a metagenomics study. Parasit Vectors 2022; 15:224. [PMID: 35733222 PMCID: PMC9215111 DOI: 10.1186/s13071-022-05344-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background Tsetse flies can transmit various Trypanosoma spp. that cause trypanosomiasis in humans, wild animals, and domestic animals. Amplicon deep sequencing of the 12S ribosomal RNA (rRNA) gene can be used to detect mammalian tsetse hosts, and the 18S rRNA gene can be used to detect all associated eukaryotic pathogens, including Trypanosoma spp. Methods Tsetse flies were collected from the Serengeti National Park (n = 48), Maswa Game Reserve (n = 42), and Tarangire National Park (n = 49) in Tanzania in 2012–13. Amplicon deep sequencing targeting mammal-specific 12S rRNA and 18S rRNA genes was performed to screen the blood-feeding sources of tsetse flies and eukaryotic parasites in tsetse flies, respectively. Results 12S rRNA gene deep sequencing revealed that various mammals were blood-feeding sources of the tsetse flies, including humans, common warthogs, African buffalos, mice, giraffes, African elephants, waterbucks, and lions. Genes of humans were less frequently detected in Serengeti (P = 0.0024), whereas African buffaloes were detected more frequently as a blood-feeding source (P = 0.0010). 18S rRNA gene deep sequencing showed that six tsetse samples harbored the Trypanosoma gene, which was identified as Trypanosoma godfreyi and Trypanosoma simiae in subsequent ITS1 gene sequencing. Conclusions Through amplicon deep sequencing targeting the 12S rRNA and 18S rRNA genes, various mammalian animals were identified as blood-meal sources, and two Trypanosoma species were detected in tsetse flies collected from the Maswa Game Reserve, Serengeti National Park, and Tarangire National Park in Tanzania. This study illustrates the patterns of parasitism of tsetse fly, wild animals targeted by the fly, and Trypanosoma spp. carried by the fly in Tanzania. It may provide essential data for formulating better strategies to control African trypanosomes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05344-1.
Collapse
Affiliation(s)
- Ju Yeong Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.,Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jun Ho Choi
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung-Hyun Nam
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Robert Fyumagwa
- Tanzania Wildlife Research Institute, P.O. Box 661, Arusha, Tanzania
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
8
|
Ebhodaghe FI, Okal MN, Kalayou S, Bastos ADS, Masiga DK. Tsetse Bloodmeal Analyses Incriminate the Common Warthog Phacochoerus africanus as an Important Cryptic Host of Animal Trypanosomes in Smallholder Cattle Farming Communities in Shimba Hills, Kenya. Pathogens 2021; 10:pathogens10111501. [PMID: 34832656 PMCID: PMC8623152 DOI: 10.3390/pathogens10111501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Trypanosomes are endemic and retard cattle health in Shimba Hills, Kenya. Wildlife in the area act as reservoirs of the parasites. However, wild animal species that harbor and expose cattle to tsetse-borne trypanosomes are not well known in Shimba Hills. Using xeno-monitoring surveillance to investigate wild animal reservoirs and sources of trypanosomes in Shimba Hills, we screened 696 trypanosome-infected and uninfected tsetse flies for vertebrate DNA using multiple-gene PCR-High Resolution Melting analysis and amplicon sequencing. Results revealed that tsetse flies fed on 13 mammalian species, preferentially Phacochoerus africanus (warthogs) (17.39%, 95% CI: 14.56–20.21) and Bos taurus (cattle) (11.35%, 95% CI: 8.99–13.71). Some tsetse flies showed positive cases of bloodmeals from multiple hosts (3.45%, 95% CI: 2.09–4.81), including warthog and cattle (0.57%, 95% CI: 0.01–1.14). Importantly, tsetse flies that took bloodmeals from warthog had significant risk of infections with Trypanosoma vivax (5.79%, 95% CI: 1.57–10.00), T. congolense (7.44%, 95% CI: 2.70–12.18), and T. brucei sl (2.48%, 95% CI: −0.33–5.29). These findings implicate warthogs as important reservoirs of tsetse-borne trypanosomes affecting cattle in Shimba Hills and provide valuable epidemiological insights to underpin the parasites targeted management in Nagana vector control programs in the area.
Collapse
Affiliation(s)
- Faith I. Ebhodaghe
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (M.N.O.); (S.K.)
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria Hatfield 0083, South Africa;
- Correspondence: (F.I.E.); (D.K.M.)
| | - Michael N. Okal
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (M.N.O.); (S.K.)
| | - Shewit Kalayou
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (M.N.O.); (S.K.)
| | - Armanda D. S. Bastos
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria Hatfield 0083, South Africa;
| | - Daniel K. Masiga
- International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya; (M.N.O.); (S.K.)
- Correspondence: (F.I.E.); (D.K.M.)
| |
Collapse
|
9
|
Channumsin M, Ciosi M, Masiga D, Auty H, Turner CM, Kilbride E, Mable BK. Blood meal analysis of tsetse flies ( Glossina pallidipes: Glossinidae) reveals higher host fidelity on wild compared with domestic hosts. Wellcome Open Res 2021; 6:213. [PMID: 34703903 PMCID: PMC8513123 DOI: 10.12688/wellcomeopenres.16978.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Changes in climate and land use can alter risk of transmission of parasites between domestic hosts and wildlife, particularly when mediated by vectors that can travel between populations. Here we focused on tsetse flies (genus Glossina), the cyclical vectors for both Human African Trypanosomiasis (HAT) and Animal African Trypanosomiasis (AAT). The aims of this study were to investigate three issues related to G. palldipes from Kenya: 1) the diversity of vertebrate hosts that flies fed on; 2) whether host feeding patterns varied in relation to type of hosts, tsetse feeding behaviour, site or tsetse age and sex; and 3) if there was a relationship between trypanosome detection and host feeding behaviours or host types. Methods: Sources of blood meals of Glossina pallidipes were identified by sequencing of the mitochondrial cytochrome b gene and analyzed in relationship with previously determined trypanosome detection in the same flies. Results: In an area dominated by wildlife but with seasonal presence of livestock (Nguruman), 98% of tsetse fed on single wild host species, whereas in an area including a mixture of resident domesticated animals, humans and wildlife (Shimba Hills), 52% of flies fed on more than one host species. Multiple Correspondence Analysis revealed strong correlations between feeding pattern, host type and site but these were resolved along a different dimension than trypanosome status, sex and age of the flies. Conclusions: Our results suggest that individual G. pallidipes in interface areas may show higher feeding success on wild hosts when available but often feed on both wild and domesticated hosts. This illustrates the importance of G. pallidipes as a vector connecting the sylvatic and domestic cycles of African trypanosomes.
Collapse
Affiliation(s)
- Manun Channumsin
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi, 20230, Thailand
| | - Marc Ciosi
- Institute of Molecular, Cell and Systems Biology, University of glasgow, University Place, Glasgow, G12 8QQ, UK
| | - Dan Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, P.O. Box 30772, 00100, Kenya
| | - Harriet Auty
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), University of Glasgow, University Place, Glasgow, G12 8QQ, UK
| | - C. Michael Turner
- Institute of Infection Immunity and Inflammation (III), University of Glasgow, University Place, Glasgow, G12 8QQ, UK
| | - Elizabeth Kilbride
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), University of Glasgow, University Place, Glasgow, G12 8QQ, UK
| | - Barbara K. Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), University of Glasgow, University Place, Glasgow, G12 8QQ, UK
| |
Collapse
|
10
|
Tsetse blood-meal sources, endosymbionts and trypanosome-associations in the Maasai Mara National Reserve, a wildlife-human-livestock interface. PLoS Negl Trop Dis 2021; 15:e0008267. [PMID: 33406097 PMCID: PMC7822626 DOI: 10.1371/journal.pntd.0008267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/22/2021] [Accepted: 11/22/2020] [Indexed: 01/06/2023] Open
Abstract
African trypanosomiasis (AT) is a neglected disease of both humans and animals caused by Trypanosoma parasites, which are transmitted by obligate hematophagous tsetse flies (Glossina spp.). Knowledge on tsetse fly vertebrate hosts and the influence of tsetse endosymbionts on trypanosome presence, especially in wildlife-human-livestock interfaces, is limited. We identified tsetse species, their blood-meal sources, and correlations between endosymbionts and trypanosome presence in tsetse flies from the trypanosome-endemic Maasai Mara National Reserve (MMNR) in Kenya. Among 1167 tsetse flies (1136 Glossina pallidipes, 31 Glossina swynnertoni) collected from 10 sampling sites, 28 (2.4%) were positive by PCR for trypanosome DNA, most (17/28) being of Trypanosoma vivax species. Blood-meal analyses based on high-resolution melting analysis of vertebrate cytochrome c oxidase 1 and cytochrome b gene PCR products (n = 354) identified humans as the most common vertebrate host (37%), followed by hippopotamus (29.1%), African buffalo (26.3%), elephant (3.39%), and giraffe (0.84%). Flies positive for trypanosome DNA had fed on hippopotamus and buffalo. Tsetse flies were more likely to be positive for trypanosomes if they had the Sodalis glossinidius endosymbiont (P = 0.0002). These findings point to complex interactions of tsetse flies with trypanosomes, endosymbionts, and diverse vertebrate hosts in wildlife ecosystems such as in the MMNR, which should be considered in control programs. These interactions may contribute to the maintenance of tsetse populations and/or persistent circulation of African trypanosomes. Although the African buffalo is a key reservoir of AT, the higher proportion of hippopotamus blood-meals in flies with trypanosome DNA indicates that other wildlife species may be important in AT transmission. No trypanosomes associated with human disease were identified, but the high proportion of human blood-meals identified are indicative of human African trypanosomiasis risk. Our results add to existing data suggesting that Sodalis endosymbionts are associated with increased trypanosome presence in tsetse flies.
Collapse
|
11
|
Olaide OY, Tchouassi DP, Yusuf AA, Pirk CWW, Masiga DK, Saini RK, Torto B. Zebra skin odor repels the savannah tsetse fly, Glossina pallidipes (Diptera: Glossinidae). PLoS Negl Trop Dis 2019; 13:e0007460. [PMID: 31181060 PMCID: PMC6586361 DOI: 10.1371/journal.pntd.0007460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/20/2019] [Accepted: 05/11/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND African trypanosomosis, primarily transmitted by tsetse flies, remains a serious public health and economic challenge in sub-Saharan Africa. Interventions employing natural repellents from non-preferred hosts of tsetse flies represent a promising management approach. Although zebras have been identified as non-preferred hosts of tsetse flies, the basis for this repellency is poorly understood. We hypothesized that zebra skin odors contribute to their avoidance by tsetse flies. METHODOLOGY/PRINCIPAL FINDINGS We evaluated the effect of crude zebra skin odors on catches of wild savannah tsetse flies (Glossina pallidipes Austen, 1903) using unbaited Ngu traps compared to the traps baited with two known tsetse fly management chemicals; a repellent blend derived from waterbuck odor, WRC (comprising geranylacetone, guaiacol, pentanoic acid and δ-octalactone), and an attractant comprising cow urine and acetone, in a series of Latin square-designed experiments. Coupled gas chromatography-electroantennographic detection (GC/EAD) and GC-mass spectrometry (GC/MS) analyses of zebra skin odors identified seven electrophysiologically-active components; 6-methyl-5-hepten-2-one, acetophenone, geranylacetone, heptanal, octanal, nonanal and decanal, which were tested in blends and singly for repellency to tsetse flies when combined with Ngu traps baited with cow urine and acetone in field trials. The crude zebra skin odors and a seven-component blend of the EAD-active components, formulated in their natural ratio of occurrence in zebra skin odor, significantly reduced catches of G. pallidipesby 66.7% and 48.9% respectively, and compared favorably with the repellency of WRC (58.1%- 59.2%). Repellency of the seven-component blend was attributed to the presence of the three ketones 6-methyl-5-hepten-2-one, acetophenone and geranylacetone, which when in a blend caused a 62.7% reduction in trap catch of G. pallidipes. CONCLUSIONS/SIGNIFICANCE Our findings reveal fundamental insights into tsetse fly ecology and the allomonal effect of zebra skin odor, and potential integration of the three-component ketone blend into the management toolkit for tsetse and African trypanosomosis control.
Collapse
Affiliation(s)
- Olabimpe Y. Olaide
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
- * E-mail: ,
| | - David P. Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Abdullahi A. Yusuf
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Christian W. W. Pirk
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Daniel K. Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Rajinder K. Saini
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
12
|
Genetic diversity of trypanosomes pathogenic to livestock in tsetse flies from the Nech Sar National Park in Ethiopia: A concern for tsetse suppressed area in Southern Rift Valley? INFECTION GENETICS AND EVOLUTION 2019; 69:38-47. [DOI: 10.1016/j.meegid.2019.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/20/2022]
|
13
|
Kimaro EG, Toribio JALML, Gwakisa P, Mor SM. Occurrence of trypanosome infections in cattle in relation to season, livestock movement and management practices of Maasai pastoralists in Northern Tanzania. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2018; 12:91-98. [PMID: 31014817 DOI: 10.1016/j.vprsr.2018.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/01/2018] [Accepted: 02/21/2018] [Indexed: 11/27/2022]
Abstract
African animal trypanosomosis (AAT) is a parasitic disease considered to be one of the greatest constraints to cattle production in Tanzania. There is insufficient information on seasonal occurrence of AAT and management practices in Monduli District of the Maasai Steppe ecosystem to guide and prioritize AAT control programs. A cross-sectional survey was undertaken in 10 randomly selected villages of Monduli District. Information on seasonal animal movements, including wildlife interaction, and AAT management practices was gathered using a standardized questionnaire with 130 pastoralists. Blood samples were collected from a total of 960 cattle, in wet and dry seasons. An entomological survey was also undertaken in the dry season. Polymerase chain reaction targeting the internal transcribed spacer 1 (ITS1) was used for parasite identification in cattle blood and in tsetse flies. The overall apparent prevalence of AAT in cattle was 5.8% (95% CI of 4.1-8.3) and 4.2% (95% CI of 2.7-6.3) during wet and dry reasons, respectively. Trypanosoma vivax was the most common species identified in cattle. All tsetse flies (n = 426) collected were trapped in Esilalei village which is in close proximity to Lake Manyara National Park. Tsetse fly infection status was determined to be 7.0%; (CI 95% of 4.9-9.8%) with nearly 50% of infections due to T. congolense. All 130 cattle owners reported that they could easily recognize AAT and the majority (75%) identified the most prominent clinical signs. Nearly all owners (98.5%) identified that tsetse flies were responsible for AAT transmission. All cattle owners (100%) reported the use of trypanocides for AAT treatment, while 2.3% reported to also use herbal medicine. The trypanocides, Novidium® and Berenil®, were the most frequently reported commercial drugs and were used by 42% of cattle owners. Vector control by hand spraying was reported by the majority (90.8%) of cattle owners, while dipping and deployment of insecticide-impregnated targets were reported by few cattle owners (16.2% and 5.4%, respectively). The majority of cattle owners (83.1%) reported to move cattle away from home villages during the dry season with many migrating to areas in close proximity to wildlife parks. This study confirms the presence of circulating pathogenic trypanosomes in tsetse flies which continue to pose a threat to Maasai cattle. The seasonal movement of cattle during the dry season was associated with more clinical cases of cattle trypanosomosis. This study demonstrates the need to strengthen surveillance and control strategies for AAT.
Collapse
Affiliation(s)
- Esther G Kimaro
- School of Veterinary Science, Faculty of Science, The University of Sydney, Australia; Tropical Pesticides Research Institute, Livestock and Human Diseases Vector Control Division, P.O. Box 3420, Arusha, Tanzania
| | - Jenny-Ann L M L Toribio
- School of Veterinary Science, Faculty of Science, The University of Sydney, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Australia
| | - Paul Gwakisa
- Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Siobhan M Mor
- School of Veterinary Science, Faculty of Science, The University of Sydney, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Australia.
| |
Collapse
|
14
|
Garcia HA, Rodrigues CMF, Rodrigues AC, Pereira DL, Pereira CL, Camargo EP, Hamilton PB, Teixeira MMG. Remarkable richness of trypanosomes in tsetse flies (Glossina morsitans morsitans and Glossina pallidipes) from the Gorongosa National Park and Niassa National Reserve of Mozambique revealed by fluorescent fragment length barcoding (FFLB). INFECTION GENETICS AND EVOLUTION 2017; 63:370-379. [PMID: 28688979 DOI: 10.1016/j.meegid.2017.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/25/2022]
Abstract
Trypanosomes of African wild ungulates transmitted by tsetse flies can cause human and livestock diseases. However, trypanosome diversity in wild tsetse flies remains greatly underestimated. We employed FFLB (fluorescent fragment length barcoding) for surveys of trypanosomes in tsetse flies (3086) from the Gorongosa National Park (GNP) and Niassa National Reserve (NNR) in Mozambique (MZ), identified as Glossina morsitans morsitans (GNP/NNR=77.6%/90.5%) and Glossina pallidipes (22.4%/9.5%). Trypanosomes were microscopically detected in 8.3% of tsetse guts. FFLB of gut samples revealed (GNP/NNR): Trypanosoma congolense of Savannah (27%/63%), Kilifi (16.7%/29.7%) and Forest (1.0%/0.3%) genetic groups; T. simiae Tsavo (36.5%/6.1%); T. simiae (22.2%/17.7%); T. godfreyi (18.2%/7.0%); subgenus Trypanozoon (20.2%/25.7%); T. vivax/T. vivax-like (1.5%/5.2%); T. suis/T. suis-like (9.4%/11.9%). Tsetse proboscises exhibited similar species composition, but most prevalent species were (GNP/NNR): T. simiae (21.9%/28%), T. b. brucei (19.2%/31.7%), and T. vivax/T. vivax-like (19.2%/28.6%). Flies harboring mixtures of trypanosomes were common (~ 64%), and combinations of more than four trypanosomes were especially abundant in the pristine NNR. The non-pathogenic T. theileri was found in 2.5% while FFLB profiles of unknown species were detected in 19% of flies examined. This is the first report on molecular diversity of tsetse flies and their trypanosomes in MZ; all trypanosomes pathogenic for ungulates were detected, but no human pathogens were detected. Overall, two species of tsetse flies harbor 12 species/genotypes of trypanosomes. This notable species richness was likely uncovered because flies were captured in wildlife reserves and surveyed using the method of FFLB able to identify, with high sensitivity and accuracy, known and novel trypanosomes. Our findings importantly improve the knowledge on trypanosome diversity in tsetse flies, revealed the greatest species richness so far reported in tsetse fly of any African country, and indicate the existence of a hidden trypanosome diversity to be discovered in African wildlife protected areas.
Collapse
Affiliation(s)
- Herakles A Garcia
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Carla M F Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Adriana C Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | - Carlos L Pereira
- Ministry of Tourism of Mozambique, Wildlife Conservation Society, Mozambique
| | - Erney P Camargo
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - P B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
15
|
Lord JS, Mthombothi Z, Lagat VK, Atuhaire F, Hargrove JW. Host-seeking efficiency can explain population dynamics of the tsetse fly Glossina morsitans morsitans in response to host density decline. PLoS Negl Trop Dis 2017; 11:e0005730. [PMID: 28672001 PMCID: PMC5510883 DOI: 10.1371/journal.pntd.0005730] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/14/2017] [Accepted: 06/20/2017] [Indexed: 11/29/2022] Open
Abstract
Females of all blood-feeding arthropod vectors must find and feed on a host in order to produce offspring. For tsetse-vectors of the trypanosomes that cause human and animal African trypanosomiasis-the problem is more extreme, since both sexes feed solely on blood. Host location is thus essential both for survival and reproduction. Host population density should therefore be an important driver of population dynamics for haematophagous insects, and particularly for tsetse, but the role of host density is poorly understood. We investigate the issue using data on changes in numbers of tsetse (Glossina morsitans morsitans Westwood) caught during a host elimination experiment in Zimbabwe in the 1960s. During the experiment, numbers of flies caught declined by 95%. We aimed to assess whether models including starvation-dependent mortality could explain observed changes in tsetse numbers as host density declined. An ordinary differential equation model, including starvation-dependent mortality, captured the initial dynamics of the observed tsetse population. However, whereas small numbers of tsetse were caught throughout the host elimination exercise, the modelled population went extinct. Results of a spatially explicit agent-based model suggest that this discrepancy could be explained by immigration of tsetse into the experimental plot. Variation in host density, as a result of natural and anthropogenic factors, may influence tsetse population dynamics in space and time. This has implications for Trypanosoma brucei rhodesiense transmission. Increased tsetse mortality as a consequence of low host density may decrease trypanosome transmission, but hungrier flies may be more inclined to bite humans, thereby increasing the risk of transmission to humans. Our model provides a way of exploring the role of host density on tsetse population dynamics and could be incorporated into models of trypanosome transmission dynamics to better understand how spatio-temporal variation in host density impacts trypanosome prevalence in mammalian hosts.
Collapse
Affiliation(s)
- Jennifer S Lord
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Vitalis K Lagat
- Department of Mathematical Sciences, University of Stellenbosch, Stellenbosch, South Africa
- African Institute for Mathematical Sciences, Muizenberg, South Africa
| | - Fatumah Atuhaire
- Department of Mathematical Sciences, University of Stellenbosch, Stellenbosch, South Africa
- African Institute for Mathematical Sciences, Muizenberg, South Africa
| | - John W Hargrove
- SACEMA, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|