1
|
Hou Q, Li C, Chong Y, Yin H, Guo Y, Yang L, Li T, Yin S. Comprehensive single-cell and bulk transcriptomic analyses to develop an NK cell-derived gene signature for prognostic assessment and precision medicine in breast cancer. Front Immunol 2024; 15:1460607. [PMID: 39507529 PMCID: PMC11537931 DOI: 10.3389/fimmu.2024.1460607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background Natural killer (NK) cells play crucial roles in mediating anti-cancer activity in breast cancer (BRCA). However, the potential of NK cell-related molecules in predicting BRCA outcomes and guiding personalized therapy remains largely unexplored. This study focused on developing a prognostic and therapeutic prediction model for BRCA by incorporating NK cell-related genes. Methods The data analyzed primarily originated from the TCGA and GEO databases. The prognostic role of NK cells was evaluated, and marker genes of NK cells were identified via single-cell analysis. Module genes closely associated with immunotherapy resistance were identified by bulk transcriptome-based weighted correlation network analysis (WGCNA). Following taking intersection and LASSO regression, NK-related genes (NKRGs) relevant to BRCA prognosis were screened, and the NK-related prognostic signature was subsequently constructed. Analyses were further expanded to clinicopathological relevance, GSEA, tumor microenvironment (TME) analysis, immune function, immunotherapy responsiveness, and chemotherapeutics. Key NKRGs were screened by machine learning and validated by spatial transcriptomics (ST) and immunohistochemistry (IHC). Results Tumor-infiltrating NK cells are a favorable prognostic factor in BRCA. By combining scRNA-seq and bulk transcriptomic analyses, we identified 7 NK-related prognostic NKRGs (CCL5, EFHD2, KLRB1, C1S, SOCS3, IRF1, and CCND2) and developed an NK-related risk scoring (NKRS) system. The prognostic reliability of NKRS was verified through survival and clinical relevance analyses across multiple cohorts. NKRS also demonstrated robust predictive power in various aspects, including TME landscape, immune functions, immunotherapy responses, and chemotherapeutic sensitivity. Additionally, KLRB1 and CCND2 emerged as key prognostic NKRGs identified through machine learning and external validation, with their expression correlation with NK cells confirmed in BRCA specimens by ST and IHC. Conclusions We developed a novel NK-related gene signature that has proven valuable for evaluating prognosis and treatment response in BRCA, expecting to advance precision medicine of BRCA.
Collapse
Affiliation(s)
- Qianshan Hou
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Chunzhen Li
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yuhui Chong
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Haofeng Yin
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yuchen Guo
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Lanjie Yang
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Tianliang Li
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Shulei Yin
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Jia E, Shi X, Xue J. CCND2 is a prognostic biomarker and correlates with immune infiltration in lung adenocarcinoma. Transl Cancer Res 2024; 13:1241-1251. [PMID: 38617521 PMCID: PMC11009805 DOI: 10.21037/tcr-23-1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/08/2024] [Indexed: 04/16/2024]
Abstract
Background CCND2 expression influences the growth and proliferation of cancer cells and plays a crucial role in immune response of tumor. However, few studies focused on the correlation between CCND2 and lung adenocarcinoma (LUAD) in terms of prognosis and tumor immune infiltration. Methods Original LUAD case data were screened from The Cancer Genome Atlas (TCGA) database. Using R software, we analyzed differently expressed CCND2 between LUAD and adjacent normal tissues. Kaplan-Meier analysis was conducted to determine the relationship between CCND2 expression and the overall survival of LUAD patients, and Cox regression analysis was performed to identify the independently prognostic risk factors for LUAD. Using TIMER (Tumor Immune Estimation Resource) and CIBERSORTx (Cell-type Identification by Estimating Relative Subsets of known RNA Transcripts) databases, the connection between CCND2 expression and LUAD immune infiltration was investigated. Results The level of CCND2 was significantly lower in LUAD than in adjacent normal tissues [adjusted P<0.05 and log2 fold change (FC) =-1.33]. LUAD patients who expressed lower CCND2 had a shorter overall survival (P=0.046) and CCND2 was an independently prognostic risk factor for LUAD [hazard ratio (HR): 0.77, P=0.049]. In LUAD patients, CCND2 expression was positively associated with the levels of B cells (r=0.159, P=4.00e-04), CD8+ T cells (r=0.287, P=7.88e-11), CD4+ T cells (r=0.301, P=8.14e-12), macrophages (r=0.128, P=4.57e-03), neutrophils (r=0.373, P=1.07e-17), and myeloid dendritic cells (r=0.284, P=1.43e-10). The levels of B cells and macrophages had significantly association with the overall survival of LUAD patients. CIBERSORTx showed that the proportions of naive B cells, resting dendritic cells, and macrophages M1 were higher in the low CCND2 expression group (P<0.05); whereas macrophages M1, activated natural killer (NK) cells, and resting CD4+ memory cells were lower (P<0.05). Conclusions CCND2 can be exploited as a novel prognostic biomarker involved in immune infiltration of LUAD, hence providing new preventative and therapeutic options for LUAD.
Collapse
Affiliation(s)
- Erna Jia
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jinru Xue
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Zhu H, Xu X, Zheng E, Ni J, Jiang X, Yang M, Zhao G. LncRNA RP11‑805J14.5 functions as a ceRNA to regulate CCND2 by sponging miR‑34b‑3p and miR‑139‑5p in lung adenocarcinoma. Oncol Rep 2022; 48:161. [PMID: 35866595 PMCID: PMC9350987 DOI: 10.3892/or.2022.8376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/08/2021] [Indexed: 11/05/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common lung cancer with high incidence. The prognosis of LUAD is poor due to its aggressive behavior. Long non‑coding RNAs (lncRNAs) have been reported as a key modulator on LUAD progression. Therefore, the present study aimed to clarify the molecular mechanism of lncRNAs in LUAD development. The expression of lncRNA RP11‑805J14.5 (RP11‑805J14.5) in LUAD tissues and cells was quantified based on the data in The Cancer Genome Atlas (TCGA). Cell viability was determined using Cell Counting Kit‑8 method. Apoptotic cells were sorted and determined by flow cytometry. Cell migration and invasion abilities were detected by the Transwell assay. Luciferase reporter experiment and RNA pull‑down assay were utilized to determine the interactions between RP11‑805J14.5, microRNA (miR)‑34b‑3p, miR‑139‑5p, and cyclin D2 (CCND2). A xenograft tumor was established to determine tumor growth in vivo. RP11‑805J14.5 was highly expressed in LUAD and associated with poor survival of LUAD patients. Knockdown of RP11‑805J14.5 suppressed LUAD cell growth, invasion, migration and tumor growth, indicating that RP11‑805J14.5 is an important regulator of LUAD. Our study demonstrated that the regulation of RP11‑805J14.5 on LUAD was mediated by CCND2 whose expression was regulated by sponging miR‑34b‑3p and miR‑139‑5p. The expression of RP11‑805J14.5 was increased in LUAD, and the knockdown of RP11‑805J14.5 expression suppressed LUAD cell growth, invasion and migration by downregulating CCND2 by sponging miR‑34b‑3p and miR‑139‑5p, indicating that RP11‑805J14.5 could be a prospective target for LUAD therapy.
Collapse
Affiliation(s)
- Huangkai Zhu
- Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiang Xu
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Enkuo Zheng
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Junjun Ni
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Xu Jiang
- Department of Thoracic Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Minglei Yang
- Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Guofang Zhao
- Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
4
|
Ware AP, Kabekkodu SP, Chawla A, Paul B, Satyamoorthy K. Diagnostic and prognostic potential clustered miRNAs in bladder cancer. 3 Biotech 2022; 12:173. [PMID: 35845108 PMCID: PMC9279521 DOI: 10.1007/s13205-022-03225-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/18/2022] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED At specific genomic loci, miRNAs are in clusters and their association with copy number variations (CNVs) may exhibit abnormal expression in several cancers. Hence, the current study aims to understand the expression of miRNA clusters residing within CNVs and the regulation of their target genes in bladder cancer. To achieve this, we used extensive bioinformatics resources and performed an integrated analysis of recurrent CNVs, clustered miRNA expression, gene expression, and drug-gene interaction datasets. The study identified nine upregulated miRNA clusters that are residing on CNV gain regions and three miRNA clusters (hsa-mir-200c/mir-141, hsa-mir-216a/mir-217, and hsa-mir-15b/mir-16-2) are correlated with patient survival. These clustered miRNAs targeted 89 genes that were downregulated in bladder cancer. Moreover, network and gene enrichment analysis displayed 10 hub genes (CCND2, ETS1, FGF2, FN1, JAK2, JUN, KDR, NOTCH1, PTEN, and ZEB1) which have significant potential for diagnosis and prognosis of bladder cancer patients. Interestingly, hsa-mir-200c/mir-141 and hsa-mir-15b/mir-16-2 cluster candidates showed significant differences in their expression in stage-specific manner during cancer progression. Downregulation of NOTCH1 by hsa-mir-200c/mir-141 may also sensitize tumors to methotrexate thus suggesting potential chemotherapeutic options for bladder cancer subjects. To overcome some computational challenges and reduce the complexity in multistep big data analysis, we developed an automated pipeline called CmiRClustFinder v1.0 (https://github.com/msls-bioinfo/CmiRClustFinder_v1.0), which can perform integrated data analysis of 35 TCGA cancer types. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03225-z.
Collapse
Affiliation(s)
- Akshay Pramod Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Arun Chawla
- Department of Urology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| |
Collapse
|
5
|
Pan-cancer analysis of microRNA expression profiles highlights microRNAs enriched in normal body cells as effective suppressors of multiple tumor types: A study based on TCGA database. PLoS One 2022; 17:e0267291. [PMID: 35476804 PMCID: PMC9045663 DOI: 10.1371/journal.pone.0267291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are frequently deregulated in various types of cancer. While antisense oligonucleotides are used to block oncomiRs, delivery of tumour-suppressive miRNAs holds great potential as a potent anti-cancer strategy. Here, we aim to determine, and functionally analyse, miRNAs that are lowly expressed in various types of tumour but abundantly expressed in multiple normal tissues. METHODS The miRNA sequencing data of 14 cancer types were downloaded from the TCGA dataset. Significant differences in miRNA expression between tumor and normal samples were calculated using limma package (R programming). An adjusted p value < 0.05 was used to compare normal versus tumor miRNA expression profiles. The predicted gene targets were obtained using TargetScan, miRanda, and miRDB and then subjected to gene ontology analysis using Enrichr. Only GO terms with an adjusted p < 0.05 were considered statistically significant. All data from wet-lab experiments (cell viability assays and flow cytometry) were expressed as means ± SEM, and their differences were analyzed using GraphPad Prism software (Student's t test, p < 0.05). RESULTS By compiling all publicly available miRNA profiling data from The Cancer Genome Atlas (TCGA) Pan-Cancer Project, we reveal a small set of tumour-suppressing miRNAs (which we designate as 'normomiRs') that are highly expressed in 14 types of normal tissues but poorly expressed in corresponding tumour tissues. Interestingly, muscle-enriched miRNAs (e.g. miR-133a/b and miR-206) and miRNAs from DLK1-DIO3 locus (e.g. miR-381 and miR-411) constitute a large fraction of the normomiRs. Moreover, we define that the CCCGU motif is absent in the oncomiRs' seed sequences but present in a fraction of tumour-suppressive miRNAs. Finally, the gain of function of candidate normomiRs across several cancer cell types indicates that miR-206 and miR-381 exert the most potent inhibition on multiple cancer types in vitro. CONCLUSION Our results reveal a pan-cancer set of tumour-suppressing miRNAs and highlight the potential of miRNA-replacement therapies for targeting multiple types of tumour.
Collapse
|
6
|
Botrus G, Uson Junior PLS, Raman P, Kaufman AE, Kosiorek H, Yin J, Fu Y, Majeed U, Sonbol MB, Ahn DH, Chang IW, Drusbosky LM, Dada H, Starr J, Borad M, Mody K, Bekaii-Saab TS. Circulating Cell-Free Tumor DNA in Advanced Pancreatic Adenocarcinoma Identifies Patients With Worse Overall Survival. Front Oncol 2022; 11:794009. [PMID: 35083150 PMCID: PMC8784799 DOI: 10.3389/fonc.2021.794009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Plasma-based circulating cell-free tumor DNA (ctDNA) genomic profiling by next-generation sequencing (NGS)is an emerging diagnostic tool for pancreatic cancer (PC). The impact of detected genomic alterations and variant allele fraction (VAF) in tumor response to systemic treatments and outcomes is under investigation. Methods Patients with advanced PC who had ctDNA profiled at time of initial diagnosis were retrospectively evaluated. We considered the somatic alteration with the highest VAF as the dominant clone allele frequency (DCAF). ctDNA NGS results were related to clinical demographics, progression-free survival (PFS) and overall survival (OS). Results A total of 104 patients were evaluated. Somatic alterations were detected in 84.6% of the patients. Patients with ≥ 2 detectable genomic alterations had worse median PFS (p < 0.001) and worse median OS (p = 0.001). KRAS was associated with disease progression to systemic treatments (80.4% vs 19.6%, p = 0.006), worse median PFS (p < 0.001) and worse median OS (p = 0.002). TP53 was associated with worse median PFS (p = 0.02) and worse median OS (p = 0.001). The median DCAF was 0.45% (range 0-55%). DCAF >0.45% was associated with worse median PFS (p<0.0001) and median OS (p=0.0003). Patients that achieved clearance of KRAS had better PFS (p=0.047), while patients that achieved clearance of TP53 had better PFS (p=0.0056) and OS (p=0.037). Conclusions Initial detection of ctDNA in advanced PC can identify somatic alterations that may help predict clinical outcomes. The dynamics of ctDNA are prognostic of outcomes and should be evaluated in prospective studies.
Collapse
Affiliation(s)
- Gehan Botrus
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Pedro Luiz Serrano Uson Junior
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States.,Center for Personalized Medicine, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Puneet Raman
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Adrienne E Kaufman
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Heidi Kosiorek
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Jun Yin
- Division of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Yu Fu
- Guardant Health, Inc., Redwood City, CA, United States
| | - Umair Majeed
- Division of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Mohamad Bassam Sonbol
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Daniel H Ahn
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | - Isabela W Chang
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| | | | - Hiba Dada
- Guardant Health, Inc., Redwood City, CA, United States
| | - Jason Starr
- Division of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Mitesh Borad
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States.,Center of individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Mayo Clinic Cancer Center, Phoenix, AZ, United States
| | - Kabir Mody
- Division of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Tanios S Bekaii-Saab
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, United States
| |
Collapse
|
7
|
Pharmaco-proteogenomic profiling of pediatric diffuse midline glioma to inform future treatment strategies. Oncogene 2021; 41:461-475. [PMID: 34759345 PMCID: PMC8782719 DOI: 10.1038/s41388-021-02102-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Diffuse midline glioma (DMG) is a deadly pediatric and adolescent central nervous system (CNS) tumor localized along the midline structures of the brain atop the spinal cord. With a median overall survival (OS) of just 9–11-months, DMG is characterized by global hypomethylation of histone H3 at lysine 27 (H3K27me3), driven by recurring somatic mutations in H3 genes including, HIST1H3B/C (H3.1K27M) or H3F3A (H3.3K27M), or through overexpression of EZHIP in patients harboring wildtype H3. The recent World Health Organization’s 5th Classification of CNS Tumors now designates DMG as, ‘H3 K27-altered’, suggesting that global H3K27me3 hypomethylation is a ubiquitous feature of DMG and drives devastating transcriptional programs for which there are no treatments. H3-alterations co-segregate with various other somatic driver mutations, highlighting the high-level of intertumoral heterogeneity of DMG. Furthermore, DMG is also characterized by very high-level intratumoral diversity with tumors harboring multiple subclones within each primary tumor. Each subclone contains their own combinations of driver and passenger lesions that continually evolve, making precision-based medicine challenging to successful execute. Whilst the intertumoral heterogeneity of DMG has been extensively investigated, this is yet to translate to an increase in patient survival. Conversely, our understanding of the non-genomic factors that drive the rapid growth and fatal nature of DMG, including endogenous and exogenous microenvironmental influences, neurological cues, and the posttranscriptional and posttranslational architecture of DMG remains enigmatic or at best, immature. However, these factors are likely to play a significant role in the complex biological sequelae that drives the disease. Here we summarize the heterogeneity of DMG and emphasize how analysis of the posttranslational architecture may improve treatment paradigms. We describe factors that contribute to treatment response and disease progression, as well as highlight the potential for pharmaco-proteogenomics (i.e., the integration of genomics, proteomics and pharmacology) in the management of this uniformly fatal cancer.
Collapse
|
8
|
Qian Y, Wang H, Zhang Y, Wang JW, Fan YC, Gao S, Wang K. Hypermethylation of Cyclin D2 Predicts Poor Prognosis of Hepatitis B Virus-Associated Hepatocellular Carcinoma after Hepatectomy. TOHOKU J EXP MED 2021; 254:233-243. [PMID: 34334537 DOI: 10.1620/tjem.254.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prognosis of patients with hepatocellular carcinoma remains poor because of progression of hepatocellular carcinoma and high recurrence rates. Cyclin D2 (CCND2) plays a vital role in regulating the cell cycle; indeed, aberrant methylation of CCND2 is involved in the development of hepatocellular carcinoma. Therefore, we aimed to investigate levels of CCND2 methylation in patients with hepatitis B virus (HBV)-associated hepatocellular carcinoma and to evaluate its prognostic significance after hepatectomy. In total, 257 subjects were enrolled (166 hepatocellular carcinoma patients undergoing surgical resection, 61 chronic hepatitis B (CHB) patients, and 30 healthy controls). CCND2 methylation in peripheral blood mononuclear cells was measured quantitatively using MethyLight. We found that CCND2 methylation levels in patients with HBV-associated hepatocellular carcinoma were significantly higher than in CHB patients (P < 0.001) or healthy controls (P < 0.001). Within the hepatocellular carcinoma group, CCND2 methylation levels were higher in patients with portal vein invasion, early tumor recurrence, TNM III/IV stage, and tumor size ≥ 5 cm (P < 0.05). Furthermore, higher levels of CCND2 methylation were associated with worse overall survival and disease-free survival (P = 0.005 and P < 0.001, respectively). Multivariate analysis identified CCND2 methylation as an independent prognostic factor for early tumor recurrence (P = 0.021), overall survival (P = 0.022), and disease-free survival (P < 0.001) in hepatocellular carcinoma patients after resection. In conclusion, hypermethylation of CCND2 may have clinical utility for predicting a high risk of poor prognosis and early tumor recurrence in patients with HBV-associated hepatocellular carcinoma after hepatectomy.
Collapse
Affiliation(s)
- Yu Qian
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - He Wang
- Department of Hepatopathy, Qingdao Sixth People's Hospital
| | - Ying Zhang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Jing-Wen Wang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Institute of Hepatology, Shandong University
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Institute of Hepatology, Shandong University
| | - Kai Wang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Institute of Hepatology, Shandong University
| |
Collapse
|
9
|
Balc-Okcanoğlu T, Yilma-Susluer S, Kayabasi C, Ozme-Yelken B, Biray-Avci C, Gunduz C. The effect of caffeic acid phenethyl ester on cell cycle control gene expressions in breast cancer cells. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2021; 10:39-43. [PMID: 33681396 PMCID: PMC7936384 DOI: 10.22099/mbrc.2020.38811.1563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We aimed to find the effect of caffeic acid phenethyl ester (CAPE) on the expression profiles of cell cycle control genes in breast cancer cell line (MCF-7). The cytotoxic effect of CAPE on MCF-7 cell line was found with an XTT analysis. Total RNA was isolated from the cells exposed to IC50 dose and untreated control cells. Expressions of genes related to cell cycle control (CCND2, RB1, ATM, CDC34, CDK5RAP1) were evaluated by qRT-PCR by the LightCycler 480 System (Roche). GAPDH and ACTB housekeeping genes were used for the normalization of gene expressions. IC50 value of CAPE in MCF-7 cells was calculated as 75µM. It was shown that IC50 dose of CAPE induced significant upregulation in expressions of cell cycle control genes, compared to control cells. CAPE increases the expression of genes that are important in cell cycle control, suggesting that this component can be used as an effective chemopreventive agent in breast cancer cells.
Collapse
Affiliation(s)
- Tuğçe Balc-Okcanoğlu
- Vocational School of Health Sciences, Near East University, Nicosia, TRNC, Cyprus
| | - Sunde Yilma-Susluer
- Faculty of Medicine, Department of Medical Biology, Ege University, Bornova, Izmir, Turkey
| | - Cagla Kayabasi
- Faculty of Medicine, Department of Medical Biology, Ege University, Bornova, Izmir, Turkey
| | - Besra Ozme-Yelken
- Faculty of Medicine, Department of Medical Biology, Ege University, Bornova, Izmir, Turkey
| | - Cigir Biray-Avci
- Faculty of Medicine, Department of Medical Biology, Ege University, Bornova, Izmir, Turkey
| | - Cumhur Gunduz
- Faculty of Medicine, Department of Medical Biology, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
10
|
Lin L, Chou H, Chang S, Liao E, Tsai Y, Wei Y, Chen H, Lin M, Wang Y, Chien Y, Yu X, Chan H. Targeting UDP-glucose dehydrogenase inhibits ovarian cancer growth and metastasis. J Cell Mol Med 2020; 24:11883-11902. [PMID: 32893977 PMCID: PMC7578908 DOI: 10.1111/jcmm.15808] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
More than 70% of patients with ovarian cancer are diagnosed in advanced stages. Therefore, it is urgent to identify a promising prognostic marker and understand the mechanism of ovarian cancer metastasis development. By using proteomics approaches, we found that UDP-glucose dehydrogenase (UGDH) was up-regulated in highly metastatic ovarian cancer TOV21G cells, characterized by high invasiveness (TOV21GHI ), in comparison to its parental control. Previous reports demonstrated that UGDH is involved in cell migration, but its specific role in cancer metastasis remains unclear. By performing immunohistochemical staining with tissue microarray, we found overexpression of UGDH in ovarian cancer tissue, but not in normal adjacent tissue. Silencing using RNA interference (RNAi) was utilized to knockdown UGDH, which resulted in a significant decrease in metastatic ability in transwell migration, transwell invasion and wound healing assays. The knockdown of UGDH caused cell cycle arrest in the G0 /G1 phase and induced a massive decrease of tumour formation rate in vivo. Our data showed that UGDH-depletion led to the down-regulation of epithelial-mesenchymal transition (EMT)-related markers as well as MMP2, and inactivation of the ERK/MAPK pathway. In conclusion, we found that the up-regulation of UGDH is related to ovarian cancer metastasis and the deficiency of UGDH leads to the decrease of cell migration, cell invasion, wound healing and cell proliferation ability. Our findings reveal that UGDH can serve as a prognostic marker and that the inhibition of UGDH is a promising strategy for ovarian cancer treatment.
Collapse
Affiliation(s)
- Li‐Hsun Lin
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Hsiu‐Chuan Chou
- Institute of Analytical and Environmental SciencesNational Tsing Hua UniversityHsinchuTaiwan
| | - Shing‐Jyh Chang
- Department of Obstetrics and GynecologyHsinchu MacKay Memorial HospitalHsinchuTaiwan
| | - En‐Chi Liao
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Yi‐Ting Tsai
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Yu‐Shan Wei
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Hsin‐Yi Chen
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Meng‐Wei Lin
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Yi‐Shiuan Wang
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Yu‐An Chien
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
| | - Xin‐Ru Yu
- Institute of Analytical and Environmental SciencesNational Tsing Hua UniversityHsinchuTaiwan
| | - Hong‐Lin Chan
- Institute of Bioinformatics and Structural BiologyNational Tsing Hua UniversityHsinchuTaiwan
- Department of Medical SciencesNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
11
|
Żarski D, Le Cam A, Nynca J, Klopp C, Ciesielski S, Sarosiek B, Montfort J, Król J, Fontaine P, Ciereszko A, Bobe J. Domestication modulates the expression of genes involved in neurogenesis in high-quality eggs of Sander lucioperca. Mol Reprod Dev 2020; 87:934-951. [PMID: 32864792 DOI: 10.1002/mrd.23414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
Pikeperch, Sander lucioperca, is a species of high interest to the aquaculture. The expansion of its production can only be achieved by furthering domestication level. However, the mechanisms driving the domestication process in finfishes are poorly understood. Transcriptome profiling of eggs was found to be a useful tool allowing understanding of the domestication process in teleosts. In this study, using next-generation sequencing, the first pikeperch transcriptome has been generated as well as pikeperch-specific microarray comprising 35,343 unique probes. Next, we performed transcriptome profiling of eggs obtained from wild and domesticated populations. We found 710 differentially expressed genes that were linked mostly to nervous system development. These results provide new insights into processes that are directly involved in the domestication of finfishes. It can be suggested that all the identified processes were predetermined by the maternally derived set of genes contained in the unfertilized eggs. This allows us to suggest that fish behavior, along with many other processes, can be predetermined at the cellular level and may have significant implications on the adaptation of cultured fish to the natural environment. This also allows to suggest that fish behavior should be considered as a very important pikeperch aquaculture selection trait.
Collapse
Affiliation(s)
- Daniel Żarski
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Aurelie Le Cam
- Fish Physiology and Genomics, UR1037 (LPGP), INRAE, Rennes, France
| | - Joanna Nynca
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Sławomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Beata Sarosiek
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Jerome Montfort
- Fish Physiology and Genomics, UR1037 (LPGP), INRAE, Rennes, France
| | - Jarosław Król
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | | | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Julien Bobe
- Fish Physiology and Genomics, UR1037 (LPGP), INRAE, Rennes, France
| |
Collapse
|
12
|
Charostad J, Astani A, Goudarzi H, Faghihloo E. DNA methyltransferases in virus-associated cancers. Rev Med Virol 2018; 29:e2022. [PMID: 30511446 DOI: 10.1002/rmv.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
Human tumor viruses are either casually linked or contribute in the development of human cancers. Viruses can stimulate oncogenesis through affecting diverse biological pathways in human cells. Growing data have demonstrated frequent involvement of one of the most characteristic parts of cellular epigenetic machinery, DNA methylation, in the oncogenesis. DNA methylation of cellular genes is catalyzed by DNA methyltransferases (DNMTs) as a key effector enzyme in this process. Dysregulation of DNMTs can cause aberrant gene methylation in promoter of cancer-related genes including tumor suppressor genes, resulting in gene silencing. In this regard, the role of tumor viruses is remarkable. Here, in this review, we used published information to elucidate whether tumor viruses are able to manipulate DNMT regulation, and if so, what are its consequences in the process of oncogenesis. This essay also aims to shed light on which cellular pathways have been engaged by viruses to induce DNMTs.
Collapse
Affiliation(s)
- Javad Charostad
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Astani
- Zoonotic Diseases Research Center, School of Public Health, Sahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Microbiology, Shahid Sadoghi University of Medical Science, Yazd, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Yoon S, Wu X, Armstrong B, Habib N, Rossi JJ. An RNA Aptamer Targeting the Receptor Tyrosine Kinase PDGFRα Induces Anti-tumor Effects through STAT3 and p53 in Glioblastoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:131-141. [PMID: 30594071 PMCID: PMC6307106 DOI: 10.1016/j.omtn.2018.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 01/02/2023]
Abstract
Human glioblastoma (GBM) is the most aggressive malignancy of the CNS, with less than 5% survival. Despite great efforts to find effective therapeutics, current options remain very limited. To develop a targeted cancer therapeutic, we selected RNA aptamers against platelet-derived growth factor receptor α (PDGFRα), which is a receptor tyrosine kinase. One RNA aptamer (PDR3) with high affinity (0.25 nM) showed PDGFRα specificity and was internalized in U251-MG cells. Following treatment with the PDR3 aptamer, expression of the transcription factor STAT3 (signal transducer and activator of transcription 3) was inhibited, whereas the expression of the histone demethylase JMJD3 and the tumor suppressor p53 were upregulated. PDR3 also upregulated serine phosphorylation of p53, which subsequently mediated apoptosis through the death receptors: tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptors 1/2 (TRAIL-R1/R2), Fas-associated via death domain (FADD), and Fas. PDR3 significantly decreased cell viability in a dose-dependent manner. Furthermore, translocation of PDR3 into the nucleus induced hypomethylation at the promoters of cyclin D2. To assess the feasibility of targeted delivery, we conjugated PDR3 aptamer with STAT3-siRNA for a chimera. The PDR3-siSTAT3 chimera successfully inhibited the expression of target genes and showed significant inhibition of cell viability. In summary, our results show that well-tailored RNA aptamers targeting the PDGFRα-STAT3 axis have the potential to act as anti-cancer therapeutics in GBM.
Collapse
Affiliation(s)
- Sorah Yoon
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xiwei Wu
- Integrative Genomic Core, City of Hope, Duarte, CA 91010, USA
| | | | - Nagy Habib
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
14
|
Kejík Z, Kaplánek R, Havlík M, Bříza T, Jakubek M, Králová J, Mikula I, Martásek P, Král V. Optical probes and sensors as perspective tools in epigenetics. Bioorg Med Chem 2017; 25:2295-2306. [PMID: 28285925 DOI: 10.1016/j.bmc.2017.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/13/2016] [Accepted: 01/11/2017] [Indexed: 12/23/2022]
Abstract
Modifications of DNA cytosine bases and histone posttranslational modifications play key roles in the control of gene expression and specification of cell states. Such modifications affect many important biological processes and changes to these important regulation mechanisms can initiate or significantly contribute to the development of many serious pathological states. Therefore, recognition and determination of chromatin modifications is an important goal in basic and clinical research. Two of the most promising tools for this purpose are optical probes and sensors, especially colourimetric and fluorescence devices. The use of optical probes and sensors is simple, without highly expensive instrumentation, and with excellent sensitivity and specificity for target structural motifs. Accordingly, the application of various probes and sensors in the recognition and determination of cytosine modifications and structure of histones and histone posttranslational modifications, are discussed in detail in this review.
Collapse
Affiliation(s)
- Zdeněk Kejík
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Robert Kaplánek
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Martin Havlík
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Tomáš Bříza
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Milan Jakubek
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Jarmila Králová
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Ivan Mikula
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Pavel Martásek
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic
| | - Vladimír Král
- First Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague 2, Czech Republic.
| |
Collapse
|