1
|
Ni H, Guo Z, Wang J, Zhu Z, Xia C, Xu M, Zhang G, Wang D. Impairment of theta oscillations in the hippocampal CA1 region may mediate age-dependent movement alternations in the 5xFAD mouse model of Alzheimer's disease. Sci Rep 2025; 15:10975. [PMID: 40164762 PMCID: PMC11958695 DOI: 10.1038/s41598-025-95585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
Clinical evidences indicate that multifaceted gait abnormalities may manifest in Alzheimer's disease (AD) patients, which are associated with cognitive decline. Although the correlation between hippocampal theta power and locomotion has been known for a long time, the mechanisms by how hippocampal impairment participates in the altered gait seen in AD is not fully understood. To explore the manifestations of gait disorders in AD, we characterized gait performance in 3-, 6-, and 9-month-old male 5xFAD and control mice in the semi-automated, highly sensitive, Catwalk XT system. The 5xFAD mice displayed a decrease in kinetic parameters (average speed and cadence), and spatial parameters (paw area), while the temporal parameters (stance and swing time) were significantly increased. The parameters of interlimb coordination also displayed deficits. The majority of impairment variables related to the slow speed in 5xFAD mice at 9-month-old. We further explored the theta oscillations in the brain by in vivo tetrode recording of the hippocampal CA1. The results showed that the theta oscillations reduced in the hippocampal CA1 of 5xFAD mice, which related to the gait impairments. In conclusion, gait impairments started at 6 months of age, manifested at 9 months of age in 5xFAD mice. A reduction in theta oscillation power of the hippocampal CA1 may be responsible for the gait impairments.
Collapse
Affiliation(s)
- Hong Ni
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Rehabilitation department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200437, China
| | - Zhongzhao Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Rehabilitation Medicine, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Wang
- Department of Chinese Medicine & Integrative Medicine, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, 2560 Chunshen Road, Shanghai, 201104, China
| | - Zilu Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chenyi Xia
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ming Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guohui Zhang
- Rehabilitation department, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200437, China.
| | - Deheng Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Wu Y, Lu L, Qing T, Shi S, Fang G. Transient Increases in Neural Oscillations and Motor Deficits in a Mouse Model of Parkinson's Disease. Int J Mol Sci 2024; 25:9545. [PMID: 39273491 PMCID: PMC11394686 DOI: 10.3390/ijms25179545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor symptoms like tremors and bradykinesia. PD's pathology involves the aggregation of α-synuclein and loss of dopaminergic neurons, leading to altered neural oscillations in the cortico-basal ganglia-thalamic network. Despite extensive research, the relationship between the motor symptoms of PD and transient changes in brain oscillations before and after motor tasks in different brain regions remain unclear. This study aimed to investigate neural oscillations in both healthy and PD model mice using local field potential (LFP) recordings from multiple brain regions during rest and locomotion. The histological evaluation confirmed the significant dopaminergic neuron loss in the injection side in 6-OHDA lesioned mice. Behavioral tests showed motor deficits in these mice, including impaired coordination and increased forelimb asymmetry. The LFP analysis revealed increased delta, theta, alpha, beta, and gamma band activity in 6-OHDA lesioned mice during movement, with significant increases in multiple brain regions, including the primary motor cortex (M1), caudate-putamen (CPu), subthalamic nucleus (STN), substantia nigra pars compacta (SNc), and pedunculopontine nucleus (PPN). Taken together, these results show that the motor symptoms of PD are accompanied by significant transient increases in brain oscillations, especially in the gamma band. This study provides potential biomarkers for early diagnosis and therapeutic evaluation by elucidating the relationship between specific neural oscillations and motor deficits in PD.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lidi Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tao Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Suxin Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Guangzhan Fang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
3
|
Wu KW, Yu CH, Huang TH, Lu SH, Tsai YL, Wang TM, Lu TW. Children with Duchenne muscular dystrophy display specific kinematic strategies during obstacle-crossing. Sci Rep 2023; 13:17094. [PMID: 37816796 PMCID: PMC10564917 DOI: 10.1038/s41598-023-44270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle weakness with increased neuromechanical challenge and fall risks, especially during obstructed locomotion. This study aimed to identify the kinematic strategies for obstacle-crossing in DMD via synthesizing the changes in the joint kinematics and associated end-point control. Fourteen boys with DMD (age: 9.0 ± 2.5 years) and fourteen typically developed controls (age: 9.0 ± 2.8 years) each crossed obstacles of three different heights (10%, 20% and 30% of leg length) while the angular motions of the trunk-pelvis-leg apparatus and foot-obstacle clearances were measured. Two-way analyses of variance were used to analyze group and obstacle height effects. Compared to the controls, the DMD group crossed obstacles with significantly increased step width, but decreased crossing speed, crossing step length, trailing toe-obstacle clearance and leading heel-obstacle horizontal distance (p < 0.05). When the leading toe was above the obstacle, the patients showed significantly increased pelvic hiking, pelvic and trunk anterior tilt and ankle plantarflexion, but decreased hip flexion in both limbs (p < 0.05). Similar kinematic changes were found during trailing-limb crossing, except for an additional increase in swing-hip abduction and decrease in contralateral trunk side-bending and stance-knee flexion. Patients with DMD crossed obstacles via a specific kinematic strategy with altered end-point control, predisposing them to a greater risk of tripping during trailing-limb crossing. These results suggest that crossing kinematics in DMD should be monitored-especially in the proximal segments of the pelvis-leg apparatus-that may lead to an increased risk of falling.
Collapse
Affiliation(s)
- Kuan-Wen Wu
- Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taipei, Taiwan, ROC
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Cheng-Hao Yu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, ROC
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Tse-Hua Huang
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Shiuan-Huei Lu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Yu-Lin Tsai
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Ting-Ming Wang
- Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taipei, Taiwan, ROC
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Tung-Wu Lu
- Department of Orthopaedic Surgery, School of Medicine, National Taiwan University, Taipei, Taiwan, ROC.
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
4
|
Nyul-Toth A, DelFavero J, Mukli P, Tarantini A, Ungvari A, Yabluchanskiy A, Csiszar A, Ungvari Z, Tarantini S. Early manifestation of gait alterations in the Tg2576 mouse model of Alzheimer's disease. GeroScience 2021; 43:1947-1957. [PMID: 34160781 PMCID: PMC8492885 DOI: 10.1007/s11357-021-00401-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
There is strong clinical evidence that multifaceted gait abnormalities may be manifested at early stages of Alzheimer's disease (AD), are related to cognitive decline, and can be used as an early biomarker to identify patients at risk of progressing to full-blown dementia. Despite their importance, gait abnormalities have not been investigated in mouse models of AD, which replicate important aspects of the human disease. The Tg2576 is frequently used in AD research to test therapeutic interventions targeting cellular mechanisms contributing to the genesis of AD. This transgenic mouse strain overexpresses a mutant form of the 695 amino acid isoform of human amyloid precursor protein with K670N and M671L mutations (APPK670/671L) linked to early-onset familial AD. Tg2576 mice exhibit impaired cognitive functions and increased cortical and hippocampal soluble β-amyloid levels starting from 5 months of age and increased insoluble β-amyloid levels and amyloid plaques that resemble senile plaques associated with human AD by 13 months of age. To demonstrate early manifestations of gait dysfunction in this relevant preclinical model, we characterized gait and motor performance in 10-month-old Tg2576 mice and age-matched littermate controls using the semi-automated, highly sensitive, Catwalk XT system. We found that Tg2576 mice at the pre-plaque stage exhibited significantly altered duty cycle and step patterns and decreased stride length and stride time. Base-of-support, stride time variability, stride length variability, cadence, phase dispersions and gait symmetry indices were unaltered. The presence of measurable early gait abnormalities during the pre-plaque stages of AD in this relevant preclinical mouse model has direct translational relevance and supports the view that longitudinal monitoring of gait performance could be used in addition to behavioral testing to evaluate progression of the disease and to assess treatment efficacy.
Collapse
Affiliation(s)
- Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Jordan DelFavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
| | - Peter Mukli
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Amber Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
| | - Anna Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street - BRC 1303, Oklahoma City, OK, 73104, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
5
|
Garrick JM, Costa LG, Cole TB, Marsillach J. Evaluating Gait and Locomotion in Rodents with the CatWalk. Curr Protoc 2021; 1:e220. [PMID: 34370398 PMCID: PMC8363132 DOI: 10.1002/cpz1.220] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Motor deficits can significantly affect the completion of daily life activities and have a negative impact on quality of life. Consequently, motor function is an important behavioral endpoint to measure for in vivo pathophysiologic studies in a variety of research areas, such as toxicant exposure, drug development, disease characterization, and transgenic phenotyping. Evaluation of motor function is also critical to the interpretation of cognitive behavioral assays, as many rely on intact motor abilities to derive meaningful data. As such, gait analysis is an important component of behavioral research and can be achieved by manual or video-assisted methods. Manual gait analysis methods, however, are prone to observer bias and are unable to capture many critical parameters. In contrast, automated video-assisted gait analysis can quickly and reliably assess gait and locomotor abnormalities that were previously difficult to collect manually. Here, we describe the evaluation of gait and locomotion in rodents using the automated Noldus CatWalk XT system. We include a step-by-step guide for running an experiment using the CatWalk XT system and discuss theory and considerations when evaluating rodent gait. The protocol and discussion provided here act as a supplemental resource to the manual for this commercially available system and can assist CatWalk users in their experimental design and implementation. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Jacqueline M. Garrick
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Lucio G. Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
- Dept. of Medicine and Surgery, University of Parma, Italy
| | - Toby B. Cole
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
- Center on Human Development and Disabilities, University of Washington, United States
| | - Judit Marsillach
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Fang F, Schwartz AG, Moore ER, Sup ME, Thomopoulos S. Primary cilia as the nexus of biophysical and hedgehog signaling at the tendon enthesis. SCIENCE ADVANCES 2020; 6:6/44/eabc1799. [PMID: 33127677 PMCID: PMC7608799 DOI: 10.1126/sciadv.abc1799] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/17/2020] [Indexed: 05/10/2023]
Abstract
The tendon enthesis is a fibrocartilaginous tissue critical for transfer of muscle forces to bone. Enthesis pathologies are common, and surgical repair of tendon to bone is plagued by high failure rates. At the root of these failures is a gap in knowledge of how the tendon enthesis is formed and maintained. We tested the hypothesis that the primary cilium is a hub for transducing biophysical and hedgehog (Hh) signals to regulate tendon enthesis formation and adaptation to loading. Primary cilia were necessary for enthesis development, and cilia assembly was coincident with Hh signaling and enthesis mineralization. Cilia responded inversely to loading; increased loading led to decreased cilia and decreased loading led to increased cilia. Enthesis responses to loading were dependent on Hh signaling through cilia. Results imply a role for tendon enthesis primary cilia as mechanical responders and Hh signal transducers, providing a therapeutic target for tendon enthesis pathologies.
Collapse
Affiliation(s)
- Fei Fang
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Andrea G Schwartz
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Emily R Moore
- School of Dental Medicine, Harvard University, Cambridge, MA, 02138, USA
| | - McKenzie E Sup
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
7
|
Casas-Fraile L, Cornelis FM, Costamagna D, Rico A, Duelen R, Sampaolesi MM, López de Munain A, Lories RJ, Sáenz A. Frizzled related protein deficiency impairs muscle strength, gait and calpain 3 levels. Orphanet J Rare Dis 2020; 15:119. [PMID: 32448375 PMCID: PMC7245871 DOI: 10.1186/s13023-020-01372-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/31/2020] [Indexed: 01/24/2023] Open
Abstract
Background Limb-girdle muscular dystrophy recessive 1 calpain3-related (LGMDR1), previously known as LGMD2A, is a disease caused by mutations in the CAPN3 gene. It is characterized by progressive weakness and muscle degeneration. Frizzled related protein (FRZB), upregulated in LGMDR1, was identified as a key regulator of the crosstalk between Wnt and integrin signalling pathways. FRZB gene silencing showed a recovery in the expression of some of the costamere protein levels in myotubes. Results Here, we performed a comprehensive characterization of Frzb−/− mice muscles to study the absence of Frzb in skeletal muscle and eventual links with the molecular characteristics of LGMDR1 patient muscles. Frzb−/− mice showed reduced muscle size and strength. Gait analysis showed that Frzb−/− mice moved more slowly but no impaired regeneration capacity was observed after muscle injury. Additionally, Frzb−/− mice muscle showed an increased number of mesoangioblasts. Lack of Frzb gene in Frzb−/− mice and its increased expression in LGMDR1 patients, showed contrary regulation of Rora, Slc16a1, Tfrc and Capn3 genes. The reciprocal regulation of Frzb and Capn3 genes further supports this axis as a potential target for LGMDR1 patients. Conclusions Our data confirm a role for Frzb in the regulation of Rora, Slc16a1, Tfrc, and Capn3 genes in muscle cells. In vivo, reduced muscle strength and gait in the Frzb−/− mice are intriguing features. The reciprocal relationship between FRZB and CAPN3 further supports a key role for this axis in patients with LGMDR1.
Collapse
Affiliation(s)
- Leire Casas-Fraile
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain.,Spanish Ministry of Economy & Competitiveness, Carlos III Health Institute, CIBER, Madrid, Spain.,Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Frederique M Cornelis
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Domiziana Costamagna
- Department of Development and Regeneration, Stem Cell Institute, Laboratory of Translational Cardiomyology, KU Leuven, Leuven, Belgium
| | - Anabel Rico
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain
| | - Robin Duelen
- Department of Development and Regeneration, Stem Cell Institute, Laboratory of Translational Cardiomyology, KU Leuven, Leuven, Belgium
| | - Maurilio M Sampaolesi
- Department of Development and Regeneration, Stem Cell Institute, Laboratory of Translational Cardiomyology, KU Leuven, Leuven, Belgium.,Department of Public Health, Experimental and Forensic Medicine, Human Anatomy Unit, University of Pavia, Pavia, Italy
| | - Adolfo López de Munain
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain.,Spanish Ministry of Economy & Competitiveness, Carlos III Health Institute, CIBER, Madrid, Spain.,Department of Neurology, Donostia University Hospital, Donostia, Spain.,Department of Neurosciences, University of the Basque Country, Leioa, Spain
| | - Rik J Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Amets Sáenz
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain. .,Spanish Ministry of Economy & Competitiveness, Carlos III Health Institute, CIBER, Madrid, Spain.
| |
Collapse
|
8
|
Wertman V, Gromova A, La Spada AR, Cortes CJ. Low-Cost Gait Analysis for Behavioral Phenotyping of Mouse Models of Neuromuscular Disease. J Vis Exp 2019. [PMID: 31380846 DOI: 10.3791/59878] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Measurement of animal locomotion is a common behavioral tool used to describe the phenotype of a given disease, injury, or drug model. The low-cost method of gait analysis demonstrated here is a simple but effective measure of gait abnormalities in murine models. Footprints are analyzed by painting a mouse's feet with non-toxic washable paint and allowing the subject to walk through a tunnel on a sheet of paper. The design of the testing tunnel takes advantage of natural mouse behavior and their affinity for small dark places. The stride length, stride width, and toe spread of each mouse is easily measured using a ruler and a pencil. This is a well-established and reliable method, and it generates several metrics that are analogous to digital systems. This approach is sensitive enough to detect changes in stride early in phenotype presentation, and due to its non-invasive approach, it allows for testing of groups across life-span or phenotypic presentation.
Collapse
Affiliation(s)
- Virginia Wertman
- Department of Neurology, Duke University School of Medicine; Duke Center for Neurodegeneration & Neurotherapeutics, Duke University School of Medicine
| | - Anastasia Gromova
- Department of Neurology, Duke University School of Medicine; Duke Center for Neurodegeneration & Neurotherapeutics, Duke University School of Medicine; Biomedical Sciences Graduate Program, University of California San Diego
| | - Albert R La Spada
- Department of Neurology, Duke University School of Medicine; Duke Center for Neurodegeneration & Neurotherapeutics, Duke University School of Medicine; Department of Neurobiology, Duke University School of Medicine; Department of Cell Biology, Duke University School of Medicine
| | - Constanza J Cortes
- Department of Neurology, Duke University School of Medicine; Duke Center for Neurodegeneration & Neurotherapeutics, Duke University School of Medicine;
| |
Collapse
|
9
|
Fenwick AJ, Awinda PO, Yarbrough-Jones JA, Eldridge JA, Rodgers BD, Tanner BCW. Demembranated skeletal and cardiac fibers produce less force with altered cross-bridge kinetics in a mouse model for limb-girdle muscular dystrophy 2i. Am J Physiol Cell Physiol 2019; 317:C226-C234. [PMID: 31091146 DOI: 10.1152/ajpcell.00524.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Limb-girdle muscular dystrophy 2i (LGMD2i) is a dystroglycanopathy that compromises myofiber integrity and primarily reduces power output in limb muscles but can influence cardiac muscle as well. Previous studies of LGMD2i made use of a transgenic mouse model in which a proline-to-leucine (P448L) mutation in fukutin-related protein severely reduces glycosylation of α-dystroglycan. Muscle function is compromised in P448L mice in a manner similar to human patients with LGMD2i. In situ studies reported lower maximal twitch force and depressed force-velocity curves in medial gastrocnemius (MG) muscles from male P448L mice. Here, we measured Ca2+-activated force generation and cross-bridge kinetics in both demembranated MG fibers and papillary muscle strips from P448L mice. Maximal activated tension was 37% lower in MG fibers and 18% lower in papillary strips from P448L mice than controls. We also found slightly faster rates of cross-bridge recruitment and detachment in MG fibers from P448L than control mice. These increases in skeletal cross-bridge cycling could reduce the unitary force output from individual cross bridges by lowering the ratio of time spent in a force-bearing state to total cycle time. This suggests that the decreased force production in LGMD2i may be due (at least in part) to altered cross-bridge kinetics. This finding is notable, as the majority of studies germane to muscular dystrophies have focused on sarcolemma or whole muscle properties, whereas our findings suggest that the disease pathology is also influenced by potential downstream effects on cross-bridge behavior.
Collapse
Affiliation(s)
- Axel J Fenwick
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Peter O Awinda
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Jacob A Yarbrough-Jones
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Jennifer A Eldridge
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - Buel D Rodgers
- Washington Center for Muscle Biology, Washington State University , Pullman, Washington.,AAVogen, Inc. , Rockville, Maryland
| | - Bertrand C W Tanner
- Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| |
Collapse
|
10
|
Rehwaldt JD, Rodgers BD, Lin DC. Skeletal muscle contractile properties in a novel murine model for limb girdle muscular dystrophy 2i. J Appl Physiol (1985) 2017; 123:1698-1707. [PMID: 28860175 DOI: 10.1152/japplphysiol.00744.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Limb-girdle muscular dystrophy (LGMD) 2i results from mutations in fukutin-related protein and aberrant α-dystroglycan glycosylation. Although this significantly compromises muscle function and ambulation, the comprehensive characteristics of contractile dysfunction are unknown. Therefore, we quantified the in situ contractile properties of the medial gastrocnemius in young adult P448L mice, an affected muscle of a novel model of LGMD2i. Normalized maximal twitch force, tetanic force, and power were significantly smaller in P448L mice, compared with sex-matched, wild-type mice. These differences were consistent with the replacement of contractile fibers by passive tissue. The shape of the active force-length relationships were similar in both groups, regardless of sex, consistent with an intact sarcomeric structure in P448L mice. Passive force-length curves normalized to maximal isometric force were steeper in P448L mice, and passive elements contribute disproportionately more to total contractile force in P448L mice. Sex differences were mostly noted in the force-velocity curves, as normalized values for maximal and optimal velocities were significantly slower in P448L males, compared with wild-type, but not in P448L females. This suggests that the dystrophic phenotype, which may include possible changes in cross-bridge kinetics and fiber-type proportions, progresses more quickly in P448L males. These results together indicate that active force and power generation are compromised in both sexes of P448L mice, while passive forces increase. More importantly, the results identified several functional markers of disease pathophysiology that could aid in developing and assessment of novel therapeutics for LGMD2i and possibly other dystroglycanopathies as well. NEW & NOTEWORTHY Comprehensive assessments of muscle contractile function have, until now, never been performed in an animal model for any dystroglycanopathy. This study suggests that skeletal muscle contractile properties are significantly compromised in a recently developed model for limb-girdle muscular dystrophy 2i, the P448L mouse. It further identifies novel pathological markers of muscle function that are suitable for developing therapeutics and for better understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Jordan D Rehwaldt
- Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington
| | - Buel D Rodgers
- Department of Animal Sciences, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - David C Lin
- Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington.,Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| |
Collapse
|
11
|
Maricelli JW, Kagel DR, Bishaw YM, Nelson OL, Lin DC, Rodgers BD. Sexually dimorphic skeletal muscle and cardiac dysfunction in a mouse model of limb girdle muscular dystrophy 2i. J Appl Physiol (1985) 2017; 123:1126-1138. [PMID: 28663375 DOI: 10.1152/japplphysiol.00287.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
The fukutin-related protein P448L mutant mouse replicates many pathologies common to limb girdle muscular dystrophy 2i (LGMD2i) and is a potentially strong candidate for relevant drug screening studies. Because striated muscle function remains relatively uncharacterized in this mouse, we sought to identify metabolic, functional and histological metrics of exercise and cardiac performance. This was accomplished by quantifying voluntary exercise on running wheels, forced exercise on respiratory treadmills and cardiac output with echocardiography and isoproterenol stress tests. Voluntary exercise revealed few differences between wild-type and P448L mice. By contrast, peak oxygen consumption (VO2peak) was either lower in P448L mice or reduced with repeated low intensity treadmill exercise while it increased in wild-type mice. P448L mice fatigued quicker and ran shorter distances while expending 2-fold more calories/meter. They also received over 6-fold more motivational shocks with repeated exercise. Differences in VO2peak and resting metabolic rate were consistent with left ventricle dysfunction, which often develops in human LGMD2i patients and was more evident in female P448L mice, as indicated by lower fractional shortening and ejection fraction values and higher left ventricle systolic volumes. Several traditional markers of dystrophinopathies were expressed in P448L mice and were exacerbated by exercise, some in a muscle-dependent manner. These include elevated serum creatine kinase and muscle central nucleation, smaller muscle fiber cross-sectional area and more striated muscle fibrosis. These studies together identified several markers of disease pathology that are shared between P448L mice and human subjects with LGMD2i. They also identified novel metrics of exercise and cardiac performance that could prove invaluable in preclinical drug trials.NEW & NOTEWORTHY Limb-girdle muscular dystrophy 2i is a rare dystroglycanopathy that until recently lacked an appropriate animal model. Studies with the FKRP P448L mutant mouse began assessing muscle structure and function as well as running gait. Our studies further characterize systemic muscle function using exercise and cardiac performance. They identified many markers of respiratory, cardiac and skeletal muscle function that could prove invaluable to better understanding the disease and more importantly, to preclinical drug trials.
Collapse
Affiliation(s)
- Joseph W Maricelli
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Denali R Kagel
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Yemeserach M Bishaw
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - O Lynne Nelson
- Veterinary Clinical Sciences, Washington State University, Pullman, Washington
| | - David C Lin
- Voiland School of Chemical Engineering and Bioengineering, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington; and
| | - Buel D Rodgers
- School of Molecular Biosciences, Washington State University, Pullman, Washington; .,Department of Animal Sciences; Washington Center for Muscle Biology, Washington State University, Pullman, Washington
| |
Collapse
|