1
|
Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. The potential therapeutic effect of statins in multiple sclerosis: beneficial or detrimental effects. Inflammopharmacology 2023; 31:1671-1682. [PMID: 37160526 DOI: 10.1007/s10787-023-01240-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
Multiple sclerosis (MS) is a chronic progressive disabling disease of the central nervous system (CNS) characterized by demyelination and neuronal injury. Dyslipidemia is observed as one of the imperative risk factors involved in MS neuropathology. Also, chronic inflammation in MS predisposes to the progress of dyslipidemia. Therefore, treatment of dyslipidemia in MS by statins may attenuate dyslipidemia-induced MS and avert MS-induced metabolic changes. Therefore, the present review aimed to elucidate the possible effects of statins on the pathogenesis and outcomes of MS. Statins adversely affect the cognitive function in MS by decreasing brain cholesterol CoQ10, which is necessary for the regulation of neuronal mitochondrial function. However, statins could be beneficial in MS by shifting the immune response from pro-inflammatory Th17 to an anti-inflammatory regulatory T cell (Treg). The protective effect of statins against MS is related to anti-inflammatory and immunomodulatory effects with modulation of fibrinogen and growth factors. In conclusion, the effects of statins on MS neuropathology seem to be conflicting, as statins seem to be protective in the acute phase of MS through anti-inflammatory and antioxidant effects. However, statins lead to detrimental effects in the chronic phase of MS by reducing brain cholesterol and inhibiting the remyelination process.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M. B. Ch. B, FRCP, Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M. B. Ch. B, FRCP, Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Metwally M, Berg T, Tsochatzis EA, Eslam M. Translation Reprogramming as a Novel Therapeutic Target in MAFLD. Adv Biol (Weinh) 2022; 6:e2101298. [PMID: 35240009 DOI: 10.1002/adbi.202101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/19/2022] [Indexed: 01/27/2023]
Abstract
Approved pharmacotherapies for metabolic-dysfunction-associated fatty liver disease (MAFLD) are lacking. Novel approaches and therapeutic targets that are likely to translate to clinical benefit are required. Targeting components of the translation machinery hold promise as a novel therapeutic approach that can overcome the well-known disease heterogeneity, as dysregulation of mRNA translation is a common feature independent of the MAFLD drivers. In this perspective, recent advances in understanding the role of mRNA translation in MAFLD are discussed, with a particular focus on the potential implications and challenges to "translate" these findings to the clinic, and an overview of similar recent efforts in other diseases is provided.
Collapse
Affiliation(s)
- Mayada Metwally
- Department of Internal Medicine, Minia University, Minia, 61111, Egypt
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, NW3 2QG, UK
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, 2145, Australia
| |
Collapse
|
3
|
Salgado JV, Goes MA, Salgado Filho N. FGF21 and Chronic Kidney Disease. Metabolism 2021; 118:154738. [PMID: 33617873 DOI: 10.1016/j.metabol.2021.154738] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023]
Abstract
The global nephrology community recognizes the increasing burden of kidney disease and its poor health outcomes in the general population. Given this, strategies to establish early diagnosis, improve understanding of the natural course and develop novel therapeutic interventions to slow progression and reduce complications are encouraged. Fibroblast growth factor 21 (FGF21), a member of the endocrine FGF subfamily, has emerged as a master homeostasis regulator of local and systemic lipid, glucose and energy metabolism. In addition, FGF21 should be considered an autonomic and endocrine regulator of stress responses in general. Promising results has been shown in both dysmetabolic animal models and metabolic disease patients after pharmacological administration of FGF21 analogs. The association of FGF21 with renal function has been studied for more than ten years. However, the functional role of FGF21 in the kidney is still poorly understood. This review summarizes the biological effects of FGF21 and discusses what is currently known about this hormone and chronic kidney disease, highlighting important gaps that warrant further research.
Collapse
Affiliation(s)
- João Victor Salgado
- Division of Nephrology, Federal University of São Paulo, Brazil; Department of Physiological Sciences, Federal University of Maranhão, Brazil.
| | | | - Natalino Salgado Filho
- Kidney Disease Prevention Centre, University Hospital, Federal University of Maranhão, Brazil; Department of Medicine I, Federal University of Maranhão, Brazil
| |
Collapse
|
4
|
Cholesterol-lowering drugs the simvastatin and atorvastatin change the protease activity of pepsin: An experimental and computational study. Int J Biol Macromol 2020; 167:1414-1423. [PMID: 33202264 DOI: 10.1016/j.ijbiomac.2020.11.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/20/2022]
Abstract
In this study, the effect of long-term use drugs of cholesterol-lowering atorvastatin and simvastatin on the activity and molecular structure of pepsin as important gastric enzyme was investigated by various experimental and computational methods. Based on the results obtained from fluorescence experiments, both drugs can bond to pepsin and quench the fluorescence intensity of protein through the static quenching mechanism. Also analysis of the thermodynamic parameters of binding the drugs to pepsin showed that the main forces in the complex formation for both are hydrophobic interactions and van der Waals forces. The effects of the drugs on the enzymatic activity of pepsin were then investigated and results showed that in the presence of both drugs the catalytic activity of the enzyme was significantly increased in lower (0.3-0.6 mM) concentrations however about the atorvastatin, increasing the concentration (0.9 mM) decreased the protease activity of pepsin. Also as a result of the FTIR studies, it was found that binding of the drugs to protein did not significant alteration in the structure of the protein. In order to obtain the atomic details of drug-protein interactions, the computational calculations were performed. The results in good agreement with those obtained from the experimental for interaction; confirm that the drugs both are bind to a cleft near the active site of the protein without any change in the structure of pepsin. Overall from the results obtained in this study, it can be concluded that both simvastatin and atorvastatin can strongly bond to a location close to the active site of pepsin and the binding change the enzymatic activity of protein.
Collapse
|
5
|
Lu S, Liu G, Chen T, Wang W, Hu J, Tang D, Peng X. Lentivirus-Mediated hFGF21 Stable Expression in Liver of Diabetic Rats Model and Its Antidiabetic Effect Observation. Hum Gene Ther 2020; 31:472-484. [PMID: 32027183 DOI: 10.1089/hum.2019.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The incidence of type 2 diabetes mellitus (T2DM) has been increasing annually, which is a serious threat to human health. Fibroblast growth factor 21 (FGF21) is one of the most popular targets for the treatment of diabetes because it effectively improves glycolipid metabolism. In our experiment, human FGF21 (hFGF21) was injected and stably expressed in the liver tissues of a rat T2DM model with lentivirus system. Based on clinical and histopathological examinations, islet cells were protected and liver tissue lesions were repaired for >4 months. Glucose metabolism and histopathology were controlled perfectly when hFGF21 was stably expressed in partial liver of T2DM rats. The results showed that the liver tissue cell apoptosis was reduced, the lipid droplet content was decreased, the oxidative stress indexes were improved, the glycogen content was increased, and the islet cells were increased too. Besides, insulin sensitivity and glycogen synthesis-related genes expression were increased, but cell apoptosis-related genes caspase3 and NFκB expression were decreased. The effectiveness of results suggested that injecting hFGF21 to rats liver could effectively treat T2DM.
Collapse
Affiliation(s)
- Shuaiyao Lu
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, China
| | - Guanglong Liu
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Tianxing Chen
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Wanpu Wang
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Jingwen Hu
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Donghong Tang
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, China
| | - Xiaozhong Peng
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, China
| |
Collapse
|
6
|
Ong KL, Hui N, Januszewski AS, Kaakoush NO, Xu A, Fayyad R, DeMicco DA, Jenkins AJ, Keech AC, Waters DD, Barter PJ, Rye KA. High plasma FGF21 levels predicts major cardiovascular events in patients treated with atorvastatin (from the Treating to New Targets [TNT] Study). Metabolism 2019; 93:93-99. [PMID: 30452928 DOI: 10.1016/j.metabol.2018.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Higher plasma fibroblast growth factor 21 (FGF21) levels predict incident cardiovascular events in type 2 diabetes patients. However, whether FGF21 levels predict cardiovascular events in statin-treated patients in the general population is unknown. We investigated whether FGF21 levels predict major cardiovascular event (MCVE) in the Treating to New Targets (TNT) trial participants. METHODS After 8-week run-in on atorvastatin 10 mg/day, 10,001 patients with stable coronary disease in the TNT trial were randomized to 10 mg or 80 mg/day of atorvastatin for a median of 4.9 years. We analyzed data from 1996 patients with plasma FGF21 levels measured at randomization. Among them, 1835 patients had FGF21 measured one-year post-randomization. RESULTS Higher ln-transformed FGF21 levels at randomization were associated with higher risk of incident MCVE (adjusted hazards ratio per SD increase = 1.18, P = 0.019). At 1-year post-randomization, FGF21 levels were lower in patients randomized to receive 80 mg versus 10 mg atorvastatin (186.9 versus 207.5 pg/mL respectively, P = 0.006). Higher ln-transformed FGF21 levels at 1-year post-randomization were also associated with higher subsequent risk of MCVEs (adjusted hazards ratio per SD increase = 1.24, P = 0.009). However, changes in FGF21 levels over 1-year were not related to subsequent MCVE risk. FGF21 levels had significant incremental value in net reclassification improvement in MCVE risk prediction. CONCLUSIONS Higher plasma FGF21 levels are associated with higher CVD risk in statin-treated high-risk patients. Higher dose atorvastatin is associated with a reduction in FGF21 levels. FGF21 provides incremental value in CVD risk prediction in statin-treated patients.
Collapse
Affiliation(s)
- Kwok Leung Ong
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Nicholas Hui
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Andrzej S Januszewski
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Nadeem O Kaakoush
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Aimin Xu
- Department of Medicine, University of Hong Kong, Hong Kong, China; State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | | | | | - Alicia J Jenkins
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - Anthony C Keech
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
| | - David D Waters
- Division of Cardiology, San Francisco General Hospital, the University of California at San Francisco, San Francisco, CA, United States
| | - Philip J Barter
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Ong KL, McClelland RL, Allison MA, Kokkinos J, Wu BJ, Barter PJ, Rye KA. Association of elevated circulating fibroblast growth factor 21 levels with prevalent and incident metabolic syndrome: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis 2019; 281:200-206. [PMID: 30446181 PMCID: PMC6399036 DOI: 10.1016/j.atherosclerosis.2018.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/18/2018] [Accepted: 10/16/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Fibroblast growth factor 21 (FGF21) plays an important role in glucose and lipid metabolism. We have investigated the relationship of plasma FGF21 levels with both prevalent and incident metabolic syndrome (MetS) in participants from the Multi-Ethnic Study of Atherosclerosis (MESA). METHODS 5783 participants from four major ethnic groups (non-Hispanic white, African American, Hispanic American, and Chinese American) were included in the cross-sectional analysis. Longitudinal analysis involved 3479 participants without MetS at baseline, of whom 1100 participants developed incident MetS over 9.2 years. RESULTS Elevated FGF21 levels were found in participants with prevalent MetS (median [interquartile range] = 189.4 [114.4-302.1] vs. 123.7 [65.9-210.3] pg/mL, p < 0.001) or incident MetS (145.6 [84.9-240.8] vs 112.0 [57.0-194.5] pg/mL, p < 0.001), compared to those without. After adjusting for baseline demographic, socioeconomic and lifestyle factors, as well as cardiovascular risk factors and biomarkers, and compared to the lowest quartile, the highest FGF21 quartile was associated with prevalent MetS (odds ratio 2.80; 95% confidence interval, 2.30-3.40, p < 0.001). Among participants without MetS at baseline, the highest FGF21 quartile was associated with higher risk of incident MetS (hazards ratio 1.76; 95% confidence interval, 1.46-2.12, p < 0.001). Similar results were obtained when assessing ln-transformed FGF21 levels. Overall, no significant interaction was found with age, sex, and race/ethnicity for both prevalent and incident MetS. CONCLUSIONS Higher FGF21 levels significantly predict the development of MetS in an ethnically diverse population followed long term. Further studies are needed to confirm the potential role of FGF21 as a biomarker for MetS.
Collapse
Affiliation(s)
- Kwok-Leung Ong
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | - Robyn L McClelland
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Matthew A Allison
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, United States
| | - John Kokkinos
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ben J Wu
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Philip J Barter
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Robu AC, Popescu L, Seidler DG, Zamfir AD. Chip-based high resolution tandem mass spectrometric determination of fibroblast growth factor-chondroitin sulfate disaccharides noncovalent interaction. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:624-634. [PMID: 29676520 DOI: 10.1002/jms.4193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Fibroblast growth factor-2 (FGF-2) is involved in wound healing and embryonic development. Glycosaminoglycans (GAGs), the major components of the extracellular matrix (ECM), play fundamental roles at this level. FGF-GAG noncovalent interactions are in the focus of research, due to their influence upon cell proliferation and tissue regeneration. Lately, high resolution mass spectrometry (MS) coupled with chip-nanoelectrospray (nanoESI) contributed a significant progress in glycosaminoglycomics by discoveries related to novel species and their characterization. We have employed a fully automated chip-nanoESI coupled to a quadrupole time-of-flight (QTOF) MS for assessing FGF-GAG noncovalent complexes. For the first time, a CS disaccharide was involved in a binding assay with FGF-2. The experiments were conducted in 10 mM ammonium acetate/formic acid, pH 6.8, by incubating FGF-2 and CS in buffer. The detected complexes were characterized by top-down in tandem MS (MS/MS) using collision induced-dissociation (CID). CID MS/MS provided data showing for the first time that the binding process occurs via the sulfate group located at C4 in GalNAc. This study has demonstrated that chip-MS may generate reliable data upon the formation of GAG-protein complexes and their structure. Biologically, the findings are relevant for studies focused on the identification of the active domains in longer GAG chains.
Collapse
Affiliation(s)
- Adrian C Robu
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, RO-300224, Timisoara, Romania
- Faculty of Physics, West University of Timisoara, Blvd. Vasile Parvan 4, RO-300223, Timisoara, Romania
| | - Laurentiu Popescu
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, RO-300224, Timisoara, Romania
- Faculty of Physics, West University of Timisoara, Blvd. Vasile Parvan 4, RO-300223, Timisoara, Romania
| | - Daniela G Seidler
- Department of Gastroentero-, Hepato-, and Endocrinology I3, Hannover Medical School, EB2/R3110, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Alina D Zamfir
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, RO-300224, Timisoara, Romania
- Department of Chemical and Biological Sciences, "Aurel Vlaicu" University of Arad, Revolutiei Blvd. 77, RO-310130, Arad, Romania
| |
Collapse
|
9
|
Wang JS, Sheu WHH, Lee WJ, Lee IT, Lin SY, Lee WL, Liang KW, Lin SJ. Associations of fibroblast growth factor 21 with cardiovascular risk and β-cell function in patients who had no history of diabetes. Clin Chim Acta 2017; 472:80-85. [DOI: 10.1016/j.cca.2017.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/04/2017] [Accepted: 07/16/2017] [Indexed: 11/27/2022]
|