1
|
Lundgren JG, Flynn MG, List K. GPI-anchored serine proteases: essential roles in development, homeostasis, and disease. Biol Chem 2025; 406:1-28. [PMID: 40094301 DOI: 10.1515/hsz-2024-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
The glycosylphosphatidylinositol (GPI)-anchored serine proteases, prostasin and testisin, have essential roles in diverse physiological functions including development, reproduction, homeostasis and barrier function of epithelia, angiogenesis, coagulation, and fibrinolysis. Important functions in pathological conditions such as cancer, kidney disease and cardiovascular disease have also been reported. In this review, we summarize current knowledge of the cellular and in vivo roles of prostasin and testisin in physiology and pathophysiology and explore the underlying molecular mechanisms. We discuss how new insights of their role in cancer and cardiovascular disease may facilitate translation into clinical settings in the future.
Collapse
Affiliation(s)
- Joseph G Lundgren
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University, Detroit, MI 48201, USA
| | - Michael G Flynn
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Zammarchi I, Santacroce G, Puga‐Tejada M, Hayes B, Crotty R, O’Driscoll E, Majumder S, Kaczmarczyk W, Maeda Y, McCarthy J, Sugrue K, O’Sullivan C, Burke L, Ghosh S, Iacucci M. Epithelial neutrophil localization and tight junction Claudin-2 expression are innovative outcome predictors in inflammatory bowel disease. United European Gastroenterol J 2024; 12:1155-1166. [PMID: 39361538 PMCID: PMC11578851 DOI: 10.1002/ueg2.12677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/08/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) in clinical and endoscopic remission may still experience disease relapse. Therefore, there is a need to identify outcome predictors. Recently, the role of neutrophils in predicting outcomes in ulcerative colitis (UC) has been highlighted. Furthermore, the impairment of intestinal barrier plays a key role in forecasting disease outcomes in IBD. OBJECTIVE This observational study aimed to assess the predictive role of neutrophils according to tissue localization and intestinal barrier protein expression in IBD. METHODS IBD patients in clinical remission who underwent colonoscopy between January 2020 and June 2022 at two tertiary referral centres were enrolled. Patients with Mayo Endoscopic Score ≤1 (UC) and Simple Endoscopic Score ≤6 (Crohn's disease) were included. Histological activity was assessed using validated scores. Experienced pathologists evaluated neutrophil localization in the epithelium and lamina propria and immunohistochemical expression of Claudin-2 and junctional adhesion molecule A (JAM-A). RESULTS Of 60 UC and 76 CD patients, 59.7% had histological activity. 25.8% of patients developed an adverse outcome within 12 months. Neutrophils in the epithelium predicted adverse outcomes for UC (hazard ratio [HR] 5.198, p = 0.01) and CD (HR 4.377, p = 0.03) patients in endoscopic remission. Claudin-2 expression correlated with endoscopic and histological activity and predicted outcomes in UC. Similar results were found for JAM-A in CD despite this protein showing less specificity as a barrier predictor of outcome. CONCLUSION This study highlights the potential role of epithelial neutrophil localization and Claudin-2 'leaky gut' expression as tools for predicting IBD outcomes and guiding further patient-tailored therapy.
Collapse
Affiliation(s)
- Irene Zammarchi
- APC Microbiome IrelandCollege of Medicine and HealthUniversity College of CorkCorkIreland
| | - Giovanni Santacroce
- APC Microbiome IrelandCollege of Medicine and HealthUniversity College of CorkCorkIreland
| | - Miguel Puga‐Tejada
- APC Microbiome IrelandCollege of Medicine and HealthUniversity College of CorkCorkIreland
- Instituto Ecuatoriano de Enfermedades Digestivas (IECED)GuayaquilEcuador
| | - Brian Hayes
- Department of HistopathologyCork University HospitalCorkIreland
- Department of PathologyUniversity College CorkCorkIreland
| | - Rory Crotty
- Department of HistopathologyCork University HospitalCorkIreland
| | | | - Snehali Majumder
- APC Microbiome IrelandCollege of Medicine and HealthUniversity College of CorkCorkIreland
| | | | - Yasuharu Maeda
- APC Microbiome IrelandCollege of Medicine and HealthUniversity College of CorkCorkIreland
| | - Jane McCarthy
- Department of GastroenterologyMercy University HospitalCorkIreland
| | - Kathleen Sugrue
- Department of GastroenterologyMercy University HospitalCorkIreland
| | | | - Louise Burke
- Department of HistopathologyCork University HospitalCorkIreland
- Department of PathologyUniversity College CorkCorkIreland
| | - Subrata Ghosh
- APC Microbiome IrelandCollege of Medicine and HealthUniversity College of CorkCorkIreland
| | - Marietta Iacucci
- APC Microbiome IrelandCollege of Medicine and HealthUniversity College of CorkCorkIreland
| |
Collapse
|
3
|
Chua KJ, Ling H, Hwang IY, Lee HL, March JC, Lee YS, Chang MW. An Engineered Probiotic Produces a Type III Interferon IFNL1 and Reduces Inflammations in in vitro Inflammatory Bowel Disease Models. ACS Biomater Sci Eng 2023; 9:5123-5135. [PMID: 36399014 PMCID: PMC10498420 DOI: 10.1021/acsbiomaterials.2c00202] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
The etiology of inflammatory bowel diseases (IBDs) frequently results in the uncontrolled inflammation of intestinal epithelial linings and the local environment. Here, we hypothesized that interferon-driven immunomodulation could promote anti-inflammatory effects. To test this hypothesis, we engineered probiotic Escherichia coli Nissle 1917 (EcN) to produce and secrete a type III interferon, interferon lambda 1 (IFNL1), in response to nitric oxide (NO), a well-known colorectal inflammation marker. We then validated the anti-inflammatory effects of the engineered EcN strains in two in vitro models: a Caco-2/Jurkat T cell coculture model and a scaffold-based 3D coculture IBD model that comprises intestinal epithelial cells, myofibroblasts, and T cells. The IFNL1-expressing EcN strains upregulated Foxp3 expression in T cells and thereafter reduced the production of pro-inflammatory cytokines such as IL-13 and -33, significantly ameliorating inflammation. The engineered strains also rescued the integrity of the inflamed epithelial cell monolayer, protecting epithelial barrier integrity even under inflammation. In the 3D coculture model, IFNL1-expressing EcN treatment enhanced the population of regulatory T cells and increased anti-inflammatory cytokine IL-10. Taken together, our study showed the anti-inflammatory effects of IFNL1-expressing probiotics in two in vitro IBD models, demonstrating their potential as live biotherapeutics for IBD immunotherapy.
Collapse
Affiliation(s)
- Koon Jiew Chua
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore,117596, Singapore
- Wilmar-NUS
Corporate Laboratory, National University
of Singapore, 117599, Singapore
| | - Hua Ling
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore,117596, Singapore
- Wilmar-NUS
Corporate Laboratory, National University
of Singapore, 117599, Singapore
| | - In Young Hwang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore,117596, Singapore
- Wilmar-NUS
Corporate Laboratory, National University
of Singapore, 117599, Singapore
| | - Hui Ling Lee
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore,117596, Singapore
- Wilmar-NUS
Corporate Laboratory, National University
of Singapore, 117599, Singapore
| | - John C. March
- Department
of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yung Seng Lee
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
- Department
of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
| | - Matthew Wook Chang
- NUS
Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 117456, Singapore
- Synthetic
Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore,117596, Singapore
- Wilmar-NUS
Corporate Laboratory, National University
of Singapore, 117599, Singapore
| |
Collapse
|
4
|
Wada H, Miyoshi J, Kuronuma S, Nishinarita Y, Oguri N, Hibi N, Takeuchi O, Akimoto Y, Lee STM, Matsuura M, Kobayashi T, Hibi T, Hisamatsu T. 5-Aminosalicylic acid alters the gut microbiota and altered microbiota transmitted vertically to offspring have protective effects against colitis. Sci Rep 2023; 13:12241. [PMID: 37507482 PMCID: PMC10382598 DOI: 10.1038/s41598-023-39491-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023] Open
Abstract
Although many therapeutic options are available for inflammatory bowel disease (IBD), 5-aminosalicylic acid (5-ASA) is still the key medication, particularly for ulcerative colitis (UC). However, the mechanism of action of 5-ASA remains unclear. The intestinal microbiota plays an important role in the pathophysiology of IBD, and we hypothesized that 5-ASA alters the intestinal microbiota, which promotes the anti-inflammatory effect of 5-ASA. Because intestinal inflammation affects the gut microbiota and 5-ASA can change the severity of inflammation, assessing the impact of inflammation and 5-ASA on the gut microbiota is not feasible in a clinical study of patients with UC. Therefore, we undertook a translational study to demonstrate a causal link between 5-ASA administration and alterations of the intestinal microbiota. Furthermore, by rigorously controlling environmental confounders and excluding the effect of 5-ASA itself with a vertical transmission model, we observed that the gut microbiota altered by 5-ASA affected host mucosal immunity and decreased susceptibility to dextran sulfate sodium-induce colitis. Although the potential intergenerational transmission of epigenetic changes needs to be considered in this study, these findings suggested that alterations in the intestinal microbiota induced by 5-ASA directed the host immune system towards an anti-inflammatory state, which underlies the mechanism of 5-ASA efficacy.
Collapse
Affiliation(s)
- Haruka Wada
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Satoshi Kuronuma
- Department of Research, BioMedical Laboratory, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Yuu Nishinarita
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Noriaki Oguri
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Noritaka Hibi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Osamu Takeuchi
- Department of Research, BioMedical Laboratory, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Yoshihiro Akimoto
- Department of Microscopic Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Sonny T M Lee
- Division of Biology, Kansas State University, 136 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA
| | - Minoru Matsuura
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8642, Japan
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
5
|
Lama Tamang R, Juritsch AF, Ahmad R, Salomon JD, Dhawan P, Ramer-Tait AE, Singh AB. The diet-microbiota axis: a key regulator of intestinal permeability in human health and disease. Tissue Barriers 2023; 11:2077069. [PMID: 35603609 PMCID: PMC10161950 DOI: 10.1080/21688370.2022.2077069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/07/2022] [Indexed: 01/21/2023] Open
Abstract
The intestinal barrier orchestrates selective permeability to nutrients and metabolites while excluding noxious stimuli. Recent scientific advances establishing a causal role for the gut microbiota in human health outcomes have generated a resurgent interest toward intestinal permeability. Considering the well-established role of the gut barrier in protection against foreign antigens, there is mounting evidence for a causal link between gut permeability and the microbiome in regulating human health. However, an understanding of the dynamic host-microbiota interactions that govern intestinal barrier functions remains poorly defined. Furthermore, the system-level mechanisms by which microbiome-targeted therapies, such as probiotics and prebiotics, simultaneously promote intestinal barrier function and host health remain an area of active investigation. This review summarizes the recent advances in understanding the dynamics of intestinal permeability in human health and its integration with gut microbiota. We further summarize mechanisms by which probiotics/prebiotics influence the gut microbiota and intestinal barrier functions.
Collapse
Affiliation(s)
- Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anthony F. Juritsch
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jeffrey D. Salomon
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| |
Collapse
|
6
|
Breitrück A, Weigel M, Hofrichter J, Sempert K, Kerkhoff C, Mohebali N, Mitzner S, Hain T, Kreikemeyer B. Smectite as a Preventive Oral Treatment to Reduce Clinical Symptoms of DSS Induced Colitis in Balb/c Mice. Int J Mol Sci 2021; 22:8699. [PMID: 34445403 PMCID: PMC8395406 DOI: 10.3390/ijms22168699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
Natural smectites have demonstrated efficacy in the treatment of diarrhea. The present study evaluated the prophylactic effect of a diosmectite (FI5pp) on the clinical course, colon damage, expression of tight junction (TJ) proteins and the composition of the gut microbiota in dextran sulfate sodium (DSS) colitis. Diosmectite was administered daily to Balb/c mice from day 1 to 7 by oral gavage, followed by induction of acute DSS-colitis from day 8 to 14 ("Control", n = 6; "DSS", n = 10; "FI5pp + DSS", n = 11). Mice were sacrificed on day 21. Clinical symptoms (body weight, stool consistency and occult blood) were checked daily after colitis induction. Colon tissue was collected for histological damage scoring and quantification of tight junction protein expression. Stool samples were collected for microbiome analysis. Our study revealed prophylactic diosmectite treatment attenuated the severity of DSS colitis, which was apparent by significantly reduced weight loss (p = 0.022 vs. DSS), disease activity index (p = 0.0025 vs. DSS) and histological damage score (p = 0.023 vs. DSS). No significant effects were obtained for the expression of TJ proteins (claudin-2 and claudin-3) after diosmectite treatment. Characterization of the microbial composition by 16S amplicon NGS showed that diosmectite treatment modified the DSS-associated dysbiosis. Thus, diosmectites are promising candidates for therapeutic approaches to target intestinal inflammation and to identify possible underlying mechanisms of diosmectites in further studies.
Collapse
Affiliation(s)
- Anne Breitrück
- Extracorporeal Immunomodulation Unit (EXIM), Fraunhofer Institute for Cell Therapy and Immunology (IZI), 18057 Rostock, Germany; (J.H.); (S.M.)
- Division of Nephrology, Department of Internal Medicine, University Medicine Rostock, 18057 Rostock, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus Liebig University, 35392 Giessen, Germany;
| | - Jacqueline Hofrichter
- Extracorporeal Immunomodulation Unit (EXIM), Fraunhofer Institute for Cell Therapy and Immunology (IZI), 18057 Rostock, Germany; (J.H.); (S.M.)
| | - Kai Sempert
- Queensland Brain Institute, The University of Queensland, 4072 St Lucia, Brisbane 4000, Australia;
| | - Claus Kerkhoff
- Department of Human Sciences, School of Human Sciences, University of Osnabrück, 49076 Osnabrück, Germany;
| | - Nooshin Mohebali
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| | - Steffen Mitzner
- Extracorporeal Immunomodulation Unit (EXIM), Fraunhofer Institute for Cell Therapy and Immunology (IZI), 18057 Rostock, Germany; (J.H.); (S.M.)
- Division of Nephrology, Department of Internal Medicine, University Medicine Rostock, 18057 Rostock, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University, 35392 Giessen, Germany;
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| |
Collapse
|
7
|
Gruver AM, Westfall MD, Ackermann BL, Hill S, Morrison RD, Bodo J, Lai KK, Gemperline DC, Hsi ED, Liebler DC, Schmitz J, Benschop RJ. Proteomic characterisations of ulcerative colitis endoscopic biopsies associate with clinically relevant histological measurements of disease severity. J Clin Pathol 2021; 75:636-642. [PMID: 34353876 PMCID: PMC9411881 DOI: 10.1136/jclinpath-2021-207718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/10/2021] [Indexed: 12/03/2022]
Abstract
Aims and methods Accurate protein measurements using formalin-fixed biopsies are needed to improve disease characterisation. This feasibility study used targeted and global mass spectrometry (MS) to interrogate a spectrum of disease severities using 19 ulcerative colitis (UC) biopsies. Results Targeted assays for CD8, CD19, CD132 (interleukin-2 receptor subunit gamma/common cytokine receptor gamma chain), FOXP3 (forkhead box P3) and IL17RA (interleukin 17 receptor A) were successful; however, assays for IL17A (interleukin 17A), IL23 (p19) (interleukin 23, alpha subunit p19) and IL23R (interleukin 23 receptor) did not permit target detection. Global proteome analysis (4200 total proteins) was performed to identify pathways associated with UC progression. Positive correlation was observed between histological scores indicating active colitis and neutrophil-related measurements (R2=0.42–0.72); inverse relationships were detected with cell junction targets (R2=0.49–0.71) and β-catenin (R2=0.51–0.55) attributed to crypt disruption. An exploratory accuracy assessment with Geboes Score and Robarts Histopathology Index cut-offs produced sensitivities/specificities of 72.7%/75.0% and 100.0%/81.8%, respectively. Conclusions Pathologist-guided MS assessments provide a complementary approach to histological scoring systems. Additional studies are indicated to verify the utility of this novel approach.
Collapse
Affiliation(s)
- Aaron M Gruver
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Bradley L Ackermann
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | | - Juraj Bodo
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Keith K Lai
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - David C Gemperline
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Eric D Hsi
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Jochen Schmitz
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Robert J Benschop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| |
Collapse
|
8
|
Marincola Smith P, Choksi YA, Markham NO, Hanna DN, Zi J, Weaver CJ, Hamaamen JA, Lewis KB, Yang J, Liu Q, Kaji I, Means AL, Beauchamp RD. Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice. Am J Physiol Gastrointest Liver Physiol 2021; 320:G936-G957. [PMID: 33759564 PMCID: PMC8285585 DOI: 10.1152/ajpgi.00053.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 01/31/2023]
Abstract
Defective barrier function is a predisposing factor in inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Although TGFβ signaling defects have been associated with IBD and CAC, few studies have examined the relationship between TGFβ and intestinal barrier function. Here, we examine the role of TGFβ signaling via SMAD4 in modulation of colon barrier function. The Smad4 gene was conditionally deleted in the intestines of adult mice and intestinal permeability assessed using an in vivo 4 kDa FITC-Dextran (FD4) permeability assay. Mouse colon was isolated for gene expression (RNA-sequencing), Western blot, and immunofluorescence analysis. In vitro colon organoid culture was utilized to assess junction-related gene expression by qPCR and transepithelial resistance (TER). In silico analyses of human IBD and colon cancer databases were performed. Mice lacking intestinal expression of Smad4 demonstrate increased colonic permeability to FD4 without gross mucosal damage. mRNA/protein expression analyses demonstrate significant increases in Cldn2/Claudin 2 and Cldn8/Claudin 8, and decreases in Cldn3, Cldn4, and Cldn7/Claudin 7 with intestinal SMAD4 loss in vivo without changes in Claudin protein localization. TGFβ1/BMP2 treatment of polarized SMAD4+ colonoids increases TER. Cldn2, Cldn4, Cldn7, and Cldn8 are regulated by canonical TGFβ signaling, and TGFβ-dependent regulation of these genes is dependent on nascent RNA transcription (Cldn2, Cldn4, Cldn8) but not nascent protein translation (Cldn4, Cldn8). Human IBD/colon cancer specimens demonstrate decreased SMAD4, CLDN4, CLDN7, and CLDN8 and increased CLDN2 compared with healthy controls. Canonical TGFβ signaling modulates the expression of tight junction proteins and barrier function in mouse colon.NEW & NOTEWORTHY We demonstrate that canonical TGFβ family signaling modulates the expression of critical tight junction proteins in colon epithelial cells, and that expression of these tight junction proteins is associated with maintenance of colon epithelial barrier function in mice.
Collapse
Affiliation(s)
- Paula Marincola Smith
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Graduate Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Yash A Choksi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Nicholas O Markham
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David N Hanna
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jinghuan Zi
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Connie J Weaver
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jalal A Hamaamen
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keeli B Lewis
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jing Yang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Izumi Kaji
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anna L Means
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Graduate Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - R Daniel Beauchamp
- Section of Surgical Sciences, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Graduate Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
9
|
Pistol GC, Bulgaru CV, Marin DE, Oancea AG, Taranu I. Dietary Grape Seed Meal Bioactive Compounds Alleviate Epithelial Dysfunctions and Attenuates Inflammation in Colon of DSS-Treated Piglets. Foods 2021; 10:foods10030530. [PMID: 33806347 PMCID: PMC7999447 DOI: 10.3390/foods10030530] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory Bowel Diseases (IBD) are chronic inflammations associated with progressive degradation of intestinal epithelium and impairment of the local innate immune response. Restoring of epithelial integrity and of the mucosal barrier function, together with modulation of inflammatory and innate immune markers, represent targets for alternative strategies in IBD. The aim of our study was to evaluate the effects of a diet including 8% grape seed meal (GSM), rich in bioactive compounds (polyphenols, polyunsaturated fatty acids (PUFAs), fiber) on the markers of colonic epithelial integrity, mucosal barrier function, pro-inflammatory, and innate immunity in DSS-treated piglets used as animal models of intestinal inflammation. Our results have demonstrated the beneficial effects of bioactive compounds from dietary GSM, exerted at three complementary levels: (a) restoration of the epithelial integrity and mucosal barrier reinforcement by modulation of claudins, Occludin (OCCL) and Zonula-1 (ZO-1) tight junction genes and proteins, myosin IXB (MYO9B) and protein tyrosine phosphatase (PTPN) tight junction regulators and mucin-2 (MUC2) gene; (b) reduction of pro-inflammatory MMP-2 (matrix metalloproteinase-2) and MMP-9 (matrix metalloproteinase-9) genes and activities; and (c) suppression of the innate immune TLR-2 (Toll-like receptor-2) and TLR-4 (Toll-like receptor-4) genes and attenuation of the expression of MyD88 (Myeloid Differentiation Primary Response 88)/MD-2 (Myeloid differentiation factor-2) signaling molecules. These beneficial effects of GSM could further attenuate the transition of chronic colitis to carcinogenesis, by modulating the in-depth signaling mediators belonging to the Wnt pathway.
Collapse
Affiliation(s)
- Gina Cecilia Pistol
- Laboratory of Animal Biology, INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, 077015 Balotesti, Romania; (C.V.B.); (D.E.M.); (I.T.)
- Correspondence: ; Tel.: +40-21-351-2082
| | - Cristina Valeria Bulgaru
- Laboratory of Animal Biology, INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, 077015 Balotesti, Romania; (C.V.B.); (D.E.M.); (I.T.)
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, 077015 Balotesti, Romania; (C.V.B.); (D.E.M.); (I.T.)
| | - Alexandra Gabriela Oancea
- Laboratory of Chemistry and Nutrition Physiology, INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, 077015 Balotesti, Romania;
| | - Ionelia Taranu
- Laboratory of Animal Biology, INCDBNA-IBNA, National Institute of Research and Development for Biology and Animal Nutrition, 077015 Balotesti, Romania; (C.V.B.); (D.E.M.); (I.T.)
| |
Collapse
|
10
|
Caron TJ, Scott KE, Sinha N, Muthupalani S, Baqai M, Ang LH, Li Y, Turner JR, Fox JG, Hagen SJ. Claudin-18 Loss Alters Transcellular Chloride Flux but not Tight Junction Ion Selectivity in Gastric Epithelial Cells. Cell Mol Gastroenterol Hepatol 2020; 11:783-801. [PMID: 33069918 PMCID: PMC7847960 DOI: 10.1016/j.jcmgh.2020.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Tight junctions form a barrier to the paracellular passage of luminal antigens. Although most tight junction proteins reside within the apical tight junction complex, claudin-18 localizes mainly to the basolateral membrane where its contribution to paracellular ion transport is undefined. Claudin-18 loss in mice results in gastric neoplasia development and tumorigenesis that may or may not be due to tight junction dysfunction. The aim here was to investigate paracellular permeability defects in stomach mucosa from claudin-18 knockout (Cldn18-KO) mice. METHODS Stomach tissue from wild-type, heterozygous, or Cldn18-KO mice were stripped of the external muscle layer and mounted in Ussing chambers. Transepithelial resistance, dextran 4 kDa flux, and potential difference (PD) were calculated from the chambered tissues after identifying differences in tissue histopathology that were used to normalize these measurements. Marker expression for claudins and ion transporters were investigated by transcriptomic and immunostaining analysis. RESULTS No paracellular permeability defects were evident in stomach mucosa from Cldn18-KO mice. RNAseq identified changes in 4 claudins from Cldn18-KO mice, particularly the up-regulation of claudin-2. Although claudin-2 localized to tight junctions in cells at the base of gastric glands, its presence did not contribute overall to mucosal permeability. Stomach tissue from Cldn18-KO mice also had no PD versus a lumen-negative PD in tissues from wild-type mice. This difference resulted from changes in transcellular Cl- permeability with the down-regulation of Cl- loading and Cl- secreting anion transporters. CONCLUSIONS Our findings suggest that Cldn18-KO has no effect on tight junction permeability in the stomach from adult mice but rather affects anion permeability. The phenotype in these mice may thus be secondary to transcellular anion transporter expression/function in the absence of claudin-18.
Collapse
Affiliation(s)
- Tyler J Caron
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kathleen E Scott
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Nishita Sinha
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Mahnoor Baqai
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Lay-Hong Ang
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Yue Li
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Jerrold R Turner
- Harvard Medical School, Boston, Massachusetts; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Susan J Hagen
- Department of Surgery/Division of General Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
11
|
Measurement of mRNA therapeutics: method development and validation challenges. Bioanalysis 2019; 11:2003-2010. [DOI: 10.4155/bio-2019-0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The progression of chemically modified mRNA therapeutics through development pipelines is accelerating for many disease indications and the need to assess these analytes is becoming more routine for the pharmaceutical industry and contract research organizations. This article describes some of the challenges and strategies for performing regulated bioanalysis of modified mRNA therapeutics by comparing the two main analytical approaches – quantitative reverse transcription PCR and branched DNA.
Collapse
|
12
|
Friedrich M, Gerbeth L, Gerling M, Rosenthal R, Steiger K, Weidinger C, Keye J, Wu H, Schmidt F, Weichert W, Siegmund B, Glauben R. HDAC inhibitors promote intestinal epithelial regeneration via autocrine TGFβ1 signalling in inflammation. Mucosal Immunol 2019; 12:656-667. [PMID: 30674988 DOI: 10.1038/s41385-019-0135-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 02/04/2023]
Abstract
Intact epithelial barrier function is pivotal for maintaining intestinal homeostasis. Current therapeutic developments aim at restoring the epithelial barrier in inflammatory bowel disease. Histone deacetylase (HDAC) inhibitors are known to modulate immune responses and to ameliorate experimental colitis. However, their direct impact on epithelial barrier function and intestinal wound healing is unknown. In human and murine colonic epithelial cell lines, the presence of the HDAC inhibitors Givinostat and Vorinostat not only improved transepithelial electrical resistance under inflammatory conditions but also attenuated the passage of macromolecules across the epithelial monolayer. Givinostat treatment mediated an accelerated wound closure in scratch assays. In vivo, Givinostat treatment resulted in improved barrier recovery and epithelial wound healing in dextran sodium sulphate-stressed mice. Mechanistically, these regenerative effects could be linked to an increased secretion of transforming growth factor beta1 and interleukin 8, paralleled by differential expression of the tight junction proteins claudin-1, claudin-2 and occludin. Our data reveal a novel tissue regenerative property of the pan-HDAC inhibitors Givinostat and Vorinostat in intestinal inflammation, which may have beneficial implications by repurposing HDAC inhibitors for therapeutic strategies for inflammatory bowel disease.
Collapse
Affiliation(s)
- Marie Friedrich
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Lorenz Gerbeth
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department Medical Biotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Marco Gerling
- Department of Biosciences and Nutrition, Center of Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Rita Rosenthal
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Carl Weidinger
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Clinical Scientist Program, Berlin Institute of Health (BIH), Berlin, Germany
| | - Jacqueline Keye
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Hao Wu
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Franziska Schmidt
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Berlin, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Britta Siegmund
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Rainer Glauben
- Medical Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
13
|
Monoclonal antibody targeting of fibroblast growth factor receptor 1c causes cardiac valvulopathy in rats. Toxicol Appl Pharmacol 2018; 355:147-155. [PMID: 30008375 DOI: 10.1016/j.taap.2018.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/21/2018] [Accepted: 06/30/2018] [Indexed: 11/23/2022]
Abstract
Fibroblast Growth Factors (FGFs) and their receptors (FGFRs) have been proposed as potential drug targets for the treatment of obesity. The aim of this study was to assess the potential toxicity in rats of three anti-FGFR1c mAbs with differential binding activity prior to clinical development. Groups of male rats received weekly injections of either one of two FGFR1c-specific mAbs or an FGFR1c/FGFR4-specific mAb at 10 mg/kg for up to 4 weeks. All three mAbs caused significant reductions in food intake and weight loss leading to some animals being euthanized early for welfare reasons. In all three groups given these mAbs, microscopic changes were seen in the bones and heart valves. In the bones of the femoro-tibial joint, thickening of the diaphyseal cortex of long bones, due to deposition of well organized new lamellar bone, indicated that an osteogenic effect was observed. In the heart, valvulopathy described as an endocardial myxomatous change affecting the mitral, pulmonary, tricuspid and aortic valves was observed in all mAb-treated animals. The presence of FGFR1 mRNA expression in the heart valves was confirmed using in situ hybridization. Targeting the FGF-FGFR1c pathway with anti-FGFR1c mAbs leads to drug induced valvulopathy in rats. In effect, this precluded the development of these mAbs as potential anti-obesity drugs. The valvulopathy observed was similar to that described for fenfluramine and dexafenfluramine. The pathogenesis of the drug-induced valvulopathy is considered FGFR1c-mediated, based on the specificity of the mAbs and FGFR1 mRNA expression in the heart valves.
Collapse
|
14
|
Wang Y, Mumm JB, Herbst R, Kolbeck R, Wang Y. IL-22 Increases Permeability of Intestinal Epithelial Tight Junctions by Enhancing Claudin-2 Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3316-3325. [PMID: 28939759 DOI: 10.4049/jimmunol.1700152] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022]
Abstract
Dysfunction of the epithelial barrier is a hallmark of inflammatory intestinal diseases. The intestinal epithelial barrier is maintained by expression of tight junctions that connect adjacent epithelial cells and seal the paracellular space. IL-22 is critical for the maintenance of intestinal barrier function through promoting antipathogen responses and regeneration of epithelial tissues in the gut. However, little is known about the effects of IL-22 on the regulation of tight junctions in the intestinal epithelium. In this study we report that IL-22 signals exclusively through the basolateral side of polarized Caco-2 cell monolayers. IL-22 treatment does not affect the flux of uncharged macromolecules across cell monolayers but significantly reduces transepithelial electrical resistance (TEER), indicating an increase of paracellular permeability for ions. IL-22 treatment on Caco-2 monolayers and on primary human intestinal epithelium markedly induces the expression of Claudin-2, a cation-channel-forming tight junction protein. Furthermore, treatment of IL-22 in mice upregulates Claudin-2 protein in colonic epithelial cells. Knocking down Claudin-2 expression with small interfering RNA reverses the reduction of TEER in IL-22-treated cells. Moreover, IL-22-mediated upregulation of Claudin-2 and loss of TEER can be suppressed with the treatment of JAK inhibitors. In summary, our results reveal that IL-22 increases intestinal epithelial permeability by upregulating Claudin-2 expression through the JAK/STAT pathway. These results provide novel mechanistic insights into the role of IL-22 in the regulation and maintenance of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Yaya Wang
- Department of Oncology Research, MedImmune, Gaithersburg, MD 20878; and
| | - John Brian Mumm
- Department of Oncology Research, MedImmune, Gaithersburg, MD 20878; and
| | - Ronald Herbst
- Department of Oncology Research, MedImmune, Gaithersburg, MD 20878; and
| | - Roland Kolbeck
- Department of Respiratory, Inflammation and Autoimmune Research, MedImmune, Gaithersburg, MD 20878
| | - Yue Wang
- Department of Oncology Research, MedImmune, Gaithersburg, MD 20878; and
| |
Collapse
|
15
|
Qingchang Wenzhong Decoction Attenuates DSS-Induced Colitis in Rats by Reducing Inflammation and Improving Intestinal Barrier Function via Upregulating the MSP/RON Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4846876. [PMID: 29234405 PMCID: PMC5660811 DOI: 10.1155/2017/4846876] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Ulcerative colitis (UC) is a chronic, nonspecific, inflammatory disease for which an effective treatment is lacking. Our previous study found that Qingchang Wenzhong Decoction (QCWZD) can significantly improve the clinical symptoms of UC and ameliorate dextran sulphate sodium- (DSS-) induced ulcerative colitis in rats by downregulating the IP10/CXCR3 axis-mediated inflammatory response. The purpose of the present study was to further explore the mechanism of QCWZD for UC in rats models, which were established by 7-day administration of 4.5% dextran sulphate sodium solution. QCWZD was administered daily for 7 days; then we determined the serum macrophage-stimulating protein concentration (MSP) and recepteur d'origine nantais (RON) expression and its downstream proteins (protein kinase B [Akt], phosphorylated [p] Akt, occludin, zona occluden- [ZO-] 1, and claudin-2) in colon tissue using Western blotting and quantitative polymerase chain reaction. In DSS-induced UC, QCWZD significantly alleviated colitis-associated inflammation, upregulated serum MSP expression and RON expression in the colon, reduced the pAkt levels, promoted colonic occluding and ZO-1 expression, and depressed claudin-2 expression. In conclusion, the MSP/RON signalling pathway plays an important role in the pathogenesis of UC by involving the inflammatory response and improving intestinal barrier function. QCWZD appears to attenuate DSS-induced UC in rats by upregulating the MSP/RON signalling pathway.
Collapse
|
16
|
Naz A, Obaid A, Awan FM, Ikram A, Ahmad J, Ali A. Petri Net-Based Model of Helicobacter pylori Mediated Disruption of Tight Junction Proteins in Stomach Lining during Gastric Carcinoma. Front Microbiol 2017; 8:1682. [PMID: 28932213 PMCID: PMC5592237 DOI: 10.3389/fmicb.2017.01682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
Tight junctions help prevent the passage of digestive enzymes and microorganisms through the space between adjacent epithelial cells lining. However, Helicobacter pylori encoded virulence factors negatively regulate these tight junctions and contribute to dysfunction of gastric mucosa. Here, we have predicted the regulation of important tight junction proteins, such as Zonula occludens-1, Claudin-2 and Connexin32 in the presence of pathogenic proteins. Molecular events such as post translational modifications and crosstalk between phosphorylation, O-glycosylation, palmitoylation and methylation are explored which may compromise the integrity of these tight junction proteins. Furthermore, the signaling pathways disrupted by dysregulated kinases, proteins and post-translational modifications are reviewed to design an abstracted computational model showing the situation-dependent dynamic behaviors of these biological processes and entities. A qualitative hybrid Petri Net model is therefore constructed showing the altered host pathways in the presence of virulence factor cytotoxin-associated gene A, leading to the disruption of tight junction proteins. The model is qualitative logic-based, which does not depend on any kinetic parameter and quantitative data and depends on knowledge derived from experiments. The designed model provides insights into the tight junction disruption and disease progression. Model is then verified by the available experimental data, nevertheless formal in vitro experimentation is a promising way to ensure its validation. The major findings propose that H. pylori activated kinases are responsible to trigger specific post translational modifications within tight junction proteins, at specific sites. These modifications may favor alterations in gastric barrier and provide a route to bacterial invasion into host cells.
Collapse
Affiliation(s)
- Anam Naz
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and TechnologyIslamabad, Pakistan
| | - Ayesha Obaid
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and TechnologyIslamabad, Pakistan
| | - Faryal M. Awan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and TechnologyIslamabad, Pakistan
| | - Aqsa Ikram
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and TechnologyIslamabad, Pakistan
| | - Jamil Ahmad
- Research Center for Modeling & Simulation, National University of Sciences and TechnologyIslamabad, Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and TechnologyIslamabad, Pakistan
| |
Collapse
|
17
|
Buzza MS, Johnson TA, Conway GD, Martin EW, Mukhopadhyay S, Shea-Donohue T, Antalis TM. Inflammatory cytokines down-regulate the barrier-protective prostasin-matriptase proteolytic cascade early in experimental colitis. J Biol Chem 2017; 292:10801-10812. [PMID: 28490634 DOI: 10.1074/jbc.m116.771469] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/02/2017] [Indexed: 12/17/2022] Open
Abstract
Compromised gastrointestinal barrier function is strongly associated with the progressive and destructive pathologies of the two main forms of irritable bowel disease (IBD), ulcerative colitis (UC), and Crohn's disease (CD). Matriptase is a membrane-anchored serine protease encoded by suppression of tumorigenicity-14 (ST14) gene, which is critical for epithelial barrier development and homeostasis. Matriptase barrier-protective activity is linked with the glycosylphosphatidylinositol (GPI)-anchored serine protease prostasin, which is a co-factor for matriptase zymogen activation. Here we show that mRNA and protein expression of both matriptase and prostasin are rapidly down-regulated in the initiating inflammatory phases of dextran sulfate sodium (DSS)-induced experimental colitis in mice, and, significantly, the loss of these proteases precedes the appearance of clinical symptoms, suggesting their loss may contribute to disease susceptibility. We used heterozygous St14 hypomorphic mice expressing a promoter-linked β-gal reporter to show that inflammatory colitis suppresses the activity of the St14 gene promoter. Studies in colonic T84 cell monolayers revealed that barrier disruption by the colitis-associated Th2-type cytokines, IL-4 and IL-13, down-regulates matriptase as well as prostasin through phosphorylation of the transcriptional regulator STAT6 and that inhibition of STAT6 with suberoylanilide hydroxamic acid (SAHA) restores protease expression and reverses cytokine-induced barrier dysfunction. Both matriptase and prostasin are significantly down-regulated in colonic tissues from human subjects with active ulcerative colitis or Crohn's disease, implicating the loss of this barrier-protective protease pathway in the pathogenesis of irritable bowel disease.
Collapse
Affiliation(s)
- Marguerite S Buzza
- From the Center for Vascular and Inflammatory Diseases and Department of Physiology and
| | - Tierra A Johnson
- From the Center for Vascular and Inflammatory Diseases and Department of Physiology and
| | - Gregory D Conway
- From the Center for Vascular and Inflammatory Diseases and Department of Physiology and
| | - Erik W Martin
- From the Center for Vascular and Inflammatory Diseases and Department of Physiology and
| | | | - Terez Shea-Donohue
- the Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Toni M Antalis
- From the Center for Vascular and Inflammatory Diseases and Department of Physiology and
| |
Collapse
|