1
|
Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Platelet-Cancer Interplay: Molecular Mechanisms and New Therapeutic Avenues. Front Oncol 2021; 11:665534. [PMID: 34322381 PMCID: PMC8311658 DOI: 10.3389/fonc.2021.665534] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Although platelets are critically involved in thrombosis and hemostasis, experimental and clinical evidence indicate that platelets promote tumor progression and metastasis through a wide range of physical and functional interactions between platelets and cancer cells. Thrombotic and thromboembolic events are frequent complications in patients with solid tumors. Hence, cancer modulates platelet function by directly inducing platelet-tumor aggregates and triggering platelet granule release and altering platelet turnover. Also, platelets enhance tumor cell dissemination by activating endothelial cell function and recruiting immune cells to primary and metastatic tumor sites. In this review, we summarize current knowledge on the complex interactions between platelets and tumor cells and the host microenvironment. We also critically discuss the potential of anti-platelet agents for cancer prevention and treatment.
Collapse
Affiliation(s)
- Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, Member of the German Center for Lung Research (DZL), Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
2
|
Abstract
Platelets play a crucial role in hemostasis, tissue regeneration and host defense. Based on these settings, platelet-rich plasma (PRP) and its derivatives are therapeutically used to promote wound healing in several scenarios. This review summarizes the biological mechanisms underlying the most traditional as well as innovative applications of PRP in wound healing. These mechanisms involve the combined action of platelet-derived growth factors and cytokines, together with the role of plasma-derived fibrillar, antioxidant and homeostatic factors. In addition, regenerative treatments with PRP consist of personalized and non-standardized methods. Thus, the quality of PRP varies depending on endogenous factors (e.g., age; gender; concomitant medication; disease-associated systemic factors; nutrition) and exogenous factors (anticoagulants and cellular composition). This review also analyses whether these factors affect the biological mechanisms of PRP in wound healing applications.
Collapse
Affiliation(s)
- Paula Oneto
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| | - Julia Etulain
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina
| |
Collapse
|
3
|
D'Esposito V, Lecce M, Marenzi G, Cabaro S, Ambrosio MR, Sammartino G, Misso S, Migliaccio T, Liguoro P, Oriente F, Fortunato L, Beguinot F, Sammartino JC, Formisano P, Gasparro R. Platelet-rich plasma counteracts detrimental effect of high-glucose concentrations on mesenchymal stem cells from Bichat fat pad. J Tissue Eng Regen Med 2020; 14:701-713. [PMID: 32174023 DOI: 10.1002/term.3032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/05/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
Diabetic patients display increased risk of periodontitis and failure in bone augmentation procedures. Mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) represent a relevant advantage in tissue repair process and regenerative medicine. We isolated MSCs from Bichat's buccal fat pad (BFP) and measured the effects of glucose and PRP on cell number and osteogenic differentiation potential. Cells were cultured in the presence of 5.5-mM glucose (low glucose [LG]) or 25-mM glucose (high glucose [HG]). BFP-MSC number was significantly lower when cells were cultured in HG compared with those in LG. Following osteogenic differentiation procedures, calcium accumulation, alkaline phosphatase activity, and expression of osteogenic markers were significantly lower in HG compared with LG. Exposure of BFP-MSC to PRP significantly increased cell number and osteogenic differentiation potential, reaching comparable levels in LG and in HG. Thus, high-glucose concentrations impair BFP-MSC growth and osteogenic differentiation. However, these detrimental effects are largely counteracted by PRP.
Collapse
Affiliation(s)
- Vittoria D'Esposito
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Manuela Lecce
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Gaetano Marenzi
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Serena Cabaro
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Maria Rosaria Ambrosio
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Gilberto Sammartino
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| | - Saverio Misso
- Unit of Transfusion Medicine, ASL-CE, Caserta, Italy
| | - Teresa Migliaccio
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Pasquale Liguoro
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Leonzio Fortunato
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Francesco Beguinot
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | | | - Pietro Formisano
- URT "Genomics of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.,Department of Translational Medicine, "Federico II" University of Naples, Naples, Italy
| | - Roberta Gasparro
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
4
|
Chai X, Yan J, Gao Y, Jin J. Endothelial HNF4α potentiates angiogenic dysfunction via enhancement of vascular endothelial growth factor resistance in T2DM. J Cell Biochem 2019; 120:12989-13000. [PMID: 30873661 DOI: 10.1002/jcb.28570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/24/2022]
Abstract
Although both hyperprocoagulant status, characterized by elevated thrombin levels, and vascular endothelial growth factor (VEGF) resistance, marked by attenuated expression of VEGFR2 (also called FLK1 or KDR), are known to contribute importantly to an increased risk of vascular events in diabetes mellitus type 2 (T2DM), it remains obscure whether these two biological events regulate angiogenic response in a coordinated manner. We show here that endothelial expression of hepatocyte nuclear factor 4α (HNF4α) was significantly upregulated in rodents and humans with T2DM, and HNF4α upregulation by thrombin was dependent on activation of multiple pathways, including protein kinase B, c-Jun N-terminal kinase, p38, oxidative stress, protein kinase C, and AMPK (5'-adenosine monophosphate (AMP)-activated protein kinase). Functionally, HNF4α inhibited VEGF-mediated endothelial proliferation and migration, and blunted VEGF-stimulated in vitro angiogenesis, thus rendering endothelial cells unresponsive to established angiogenic VEGF stimulation. Mechanistically, HNF4α potentiated the endothelial VEGF resistance through the direct transcriptional repression of FLK1 gene. From a therapeutic standpoint, overexpression of the exogenous FLK1 successfully rescued HNF4α-inhibited angiogenic response to VEGF and potentiated VEGF-stimulated in vitro tube formation. Considering a strong association between HNF4A deregulation and increased risk of T2DM, our findings suggest that HNF4α may act as a critical converging point linking hyperprocoagulant condition to VEGF resistance in diabetic ECs, and repression of FLK1 expression by thrombin-induced HNF4α mediates, at least partially, the vascular dysfunction caused by T2DM.
Collapse
Affiliation(s)
- Xubing Chai
- Department of Endocrinology, Xi'an Institute of Rheumatolog, Xi'an No. 5 Hospital, Xi'an, Shaanxi, China
| | - Jun Yan
- Department of Endocrinology, Xi'an Institute of Rheumatolog, Xi'an No. 5 Hospital, Xi'an, Shaanxi, China
| | - Yaya Gao
- Department of Endocrinology, Xi'an Institute of Rheumatolog, Xi'an No. 5 Hospital, Xi'an, Shaanxi, China
| | - Jing Jin
- Department of Geriatric, Xi'an Institute of Rheumatolog, Xi'an No. 5 Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Gajos G, Siniarski A, Natorska J, Ząbczyk M, Siudut J, Malinowski KP, Gołębiowska-Wiatrak R, Rostoff P, Undas A. Polyhedrocytes in blood clots of type 2 diabetic patients with high cardiovascular risk: association with glycemia, oxidative stress and platelet activation. Cardiovasc Diabetol 2018; 17:146. [PMID: 30466424 PMCID: PMC6251112 DOI: 10.1186/s12933-018-0789-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/14/2018] [Indexed: 01/14/2023] Open
Abstract
Background Little is known about factors that affect the composition of contracted blood clots in specific diseases. We investigated the content of polyhedral erythrocytes (polyhedrocytes) formed in blood clots and its determinants in type 2 diabetes (T2D) patients. Methods In 97 patients with long-standing T2D [median HbA1c, 6.4% (interquartile range 5.9–7.8)], we measured in vitro the composition of blood clots, including a clot area covered by polyhedrocytes using scanning electron microscopy and the erythrocyte compression index (ECI), defined as a ratio of the mean polyhedrocyte area to the mean native erythrocyte area. Moreover, plasma fibrin clot permeability (Ks), clot lysis time (CLT), thrombin generation, oxidative stress [total protein carbonyl (total PC), total antioxidant capacity and thiobarbituric acid reactive substances (TBARS)], and platelet activation markers were determined. The impact of glucose concentration on polyhedrocytes formation was assessed in vitro. Results Polyhedrocytes content in contracted clots was positively correlated with glucose (r = 0.24, p = 0.028), glycated hemoglobin (r = 0.40, p = 0.024), total cholesterol (r = 0.22, p = 0.044), TBARS (r = 0.60, p = 0.0027), P-selectin (r = 0.54, p = 0.0078) and platelet factor-4, PF4 (r = 0.59, p = 0.0032), but not with thrombin generation, platelet count, Ks or CLT. Patients who formed more polyhedrocytes (≥ 10th percentile) (n = 83, 85.6%) had higher glucose (+ 15.7%, p = 0.018), fibrinogen (+ 16.6%, p = 0.004), lower red blood cell distribution width (RDW, − 8.8%, p = 0.034), reduced plasma clot density (− 21.8% Ks, p = 0.011) and impaired fibrinolysis (+ 6.5% CLT, p = 0.037) when compared to patients with lesser amount of polyhedrocytes (< 10th percentile). ECI and the content of polyhedrocytes were strongly associated with total PC (r = 0.79, p = 0.036 and r = 0.67, p = 0.0004, respectively). In vitro an increase of glucose concentration by 10 mmol/L was associated with 94% higher polyhedrocytes content (p = 0.033) when compared to the baseline (7.1 mM). After adjustment for age, sex and fibrinogen, multiple regression analysis showed that RDW was the only independent predictor of polyhedrocytes content in T2D (OR = 0.61, 95% CI 0.39–0.92). Conclusions Poor glycemic control, together with enhanced platelet activation and oxidative stress, increase the content of polyhedrocytes in blood clots generated in T2D patients. Electronic supplementary material The online version of this article (10.1186/s12933-018-0789-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Grzegorz Gajos
- Department of Coronary Artery Disease and Heart Failure, Jagiellonian University Medical College, Prądnicka 80 St., 31-202, Kraków, Poland. .,John Paul II Hospital, Prądnicka 80 St., Kraków, Poland.
| | - Aleksander Siniarski
- Department of Coronary Artery Disease and Heart Failure, Jagiellonian University Medical College, Prądnicka 80 St., 31-202, Kraków, Poland.,John Paul II Hospital, Prądnicka 80 St., Kraków, Poland
| | - Joanna Natorska
- Institute of Cardiology, Jagiellonian University Medical College, Prądnicka 80 St., Kraków, Poland.,John Paul II Hospital, Prądnicka 80 St., Kraków, Poland
| | - Michał Ząbczyk
- Institute of Cardiology, Jagiellonian University Medical College, Prądnicka 80 St., Kraków, Poland
| | - Jakub Siudut
- Institute of Cardiology, Jagiellonian University Medical College, Prądnicka 80 St., Kraków, Poland.,John Paul II Hospital, Prądnicka 80 St., Kraków, Poland
| | - Krzysztof Piotr Malinowski
- Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, Grzegórzecka 20 St., Kraków, Poland
| | - Renata Gołębiowska-Wiatrak
- Department of Coronary Artery Disease and Heart Failure, Jagiellonian University Medical College, Prądnicka 80 St., 31-202, Kraków, Poland.,John Paul II Hospital, Prądnicka 80 St., Kraków, Poland
| | - Paweł Rostoff
- Department of Coronary Artery Disease and Heart Failure, Jagiellonian University Medical College, Prądnicka 80 St., 31-202, Kraków, Poland.,John Paul II Hospital, Prądnicka 80 St., Kraków, Poland
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University Medical College, Prądnicka 80 St., Kraków, Poland.,John Paul II Hospital, Prądnicka 80 St., Kraków, Poland
| |
Collapse
|
6
|
An optimised protocol for platelet-rich plasma preparation to improve its angiogenic and regenerative properties. Sci Rep 2018; 8:1513. [PMID: 29367608 PMCID: PMC5784112 DOI: 10.1038/s41598-018-19419-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/02/2018] [Indexed: 01/13/2023] Open
Abstract
Although platelet-rich plasma (PRP) is used as a source of growth factors in regenerative medicine, its effectiveness remains controversial, partially due to the absence of PRP preparation protocols based on the regenerative role of platelets. Here, we aimed to optimise the protocol by analysing PRP angiogenic and regenerative properties. Three optimising strategies were evaluated: dilution, 4 °C pre-incubation, and plasma cryoprecipitate supplementation. Following coagulation, PRP releasates (PRPr) were used to induce angiogenesis in vitro (HMEC-1 proliferation, migration, and tubule formation) and in vivo (chorioallantoic membrane), as well as regeneration of excisional wounds on mouse skin. Washed platelet releasates induced greater angiogenesis than PRPr due to the anti-angiogenic effect of plasma, which was decreased by diluting PRPr with saline. Angiogenesis was also improved by both PRP pre-incubation at 4 °C and cryoprecipitate supplementation. A combination of optimising variables exerted an additive effect, thereby increasing the angiogenic activity of PRPr from healthy donors and diabetic patients. Optimised PRPr induced faster and more efficient mouse skin wound repair compared to that induced by non-optimised PRPr. Acetylsalicylic acid inhibited angiogenesis and tissue regeneration mediated by PRPr; this inhibition was reversed following optimisation. Our findings indicate that PRP pre-incubation at 4 °C, PRPr dilution, and cryoprecipitate supplementation improve the angiogenic and regenerative properties of PRP compared to the obtained by current methods.
Collapse
|