1
|
Wyszkowska J, Kobak J, Aonuma H. Electromagnetic field exposure affects the calling song, phonotaxis, and level of biogenic amines in crickets. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93255-93268. [PMID: 37507567 PMCID: PMC10447283 DOI: 10.1007/s11356-023-28981-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
The electromagnetic field (EMF) is ubiquitous in the environment, constituting a well-known but poorly understood stressor. Few studies have been conducted on insect responses to EMF, although they are an excellent experimental model and are of great ecological importance. In our work, we tested the effects of EMF (50 Hz, 7 mT) on the cricket Gryllus bimaculatus: the male calling song pattern, female mate choice, and levels of biogenic amines in the brain. Exposure of males to EMF increased the number and shortened the period of chips in their calling song (by 2.7% and 5% relative to the control song, respectively), but not the sound frequency. Aged (3-week-old) females were attracted to both natural and EMF-modified male signals, whereas young (1-week-old, virgin) females responded only to the modified signal, suggesting its higher attractance. Stress response of males to EMF may be responsible for the change in the calling song, as suggested by the changes in the amine levels in their brains: an increase in dopamine (by 50% relative to the control value), tyramine (65%), and serotonin (25%) concentration and a decrease in octopamine level (by 25%). These findings indicate that G. bimaculatus responds to EMF, like stressful conditions, which may change the condition and fitness of exposed individuals, disrupt mate selection, and, in consequence, affect the species' existence.
Collapse
Affiliation(s)
- Joanna Wyszkowska
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland.
| | - Jarosław Kobak
- Department of Invertebrate Zoology and Parasitology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| |
Collapse
|
2
|
Agrawal N, Verma K, Baghel D, Chauhan A, Prasad DN, Sharma SK, Kohli E. Effects of extremely low-frequency electromagnetic field on different developmental stages of Drosophila melanogaster. Int J Radiat Biol 2021; 97:1606-1616. [PMID: 34402374 DOI: 10.1080/09553002.2021.1969465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The model biological organism Drosophila melanogaster has been utilized to assess the effect of extremely low-frequency electromagnetic field (ELF-EMF) on locomotion, longevity, developmental dynamics, cell viability and oxidative stress. MATERIALS AND METHOD Developmental stages of Drosophila melanogaster (Oregon R strain) individually exposed to ELF-EMF (75 Hz, 550 µT) for 6 h once for acute exposure. For chronic exposure, complete life cycle of fly, that is, egg to adult fly was exposed to ELF-EMF for 6 h daily. The effect of exposure on their crawling and climbing ability, longevity, development dynamics, cellular damage and oxidative stress (generation of reactive oxygen species (ROS)) was evaluated. RESULTS The crawling ability of larvae was significantly (p < .05) reduced on acute (third stage instar larvae) as well as chronic exposure (F0 and F1 larvae). When locomotion of flies was tested using climbing assay, no alteration was observed in their climbing ability under both acute and chronic exposure; however, when their speed of climbing was compared, a significant decrease in speed of F1 flies was observed (p = .0027) on chronic exposure. The survivability of flies was significantly affected under chronic and acute exposure (at third stage instar larvae). In case of acute exposure of the third stage instar larvae, although all the flies were eclosed by the 17th day, there was a significant decline in the number of flies (p = .007) in comparison to control. While in case of chronic exposure apart from low number of flies eclosed in comparison to control, there was delay in eclosion by one day (p = .0004). Using trypan blue assay, the internal gut damage of third stage instar larvae was observed. Under acute exposure condition at third stage instar larvae, 30% larvae has taken up trypan blue, while only 10% larvae from acute exposure at adult stage. On chronic exposure, 50% larvae of the F1 generation have taken up trypan blue. On evaluation of oxidative stress, there is a significant rise in ROS in case of acute exposure at third stage instar larvae (p = .0004), adult fly stage (p = .0004) and chronic exposure (p = .0001). CONCLUSION ELF-EMF has maximum effects on acute exposure of third stage instar larvae and chronic exposure (egg to adult fly stage). These results suggest that electromagnetic radiations, though, have become indispensible part of our lives but they plausibly affect our health.
Collapse
Affiliation(s)
- Neha Agrawal
- Department of Neurobiology, Defense Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Kalyani Verma
- Department of Neurobiology, Defense Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Doli Baghel
- Department of Neurobiology, Defense Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Amitabh Chauhan
- Department of Neurobiology, Defense Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Dipti N Prasad
- Department of Neurobiology, Defense Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Sanjeev K Sharma
- Department of Biomedical Instrumentation, Defense Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| | - Ekta Kohli
- Department of Neurobiology, Defense Institute of Physiology and Allied Sciences, DRDO, Delhi, India
| |
Collapse
|
3
|
Alterations in the activity and sleep of Drosophila melanogaster under simulated microgravity. NPJ Microgravity 2021; 7:27. [PMID: 34294729 PMCID: PMC8298474 DOI: 10.1038/s41526-021-00157-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
This study aimed to investigate alterations in the activity and sleep of Drosophila melanogaster under simulated microgravity, which was implemented through the random positioning machine, while different light conditions (normal photoperiod and constant dark) were set. Fruit flies of different strains and sexes were treated for 3 days, and activity and sleep were monitored using the Drosophila Activity Monitoring System. After 3 days of treatment, fruit flies were sampled to detect the relative expression levels of the major clock genes and some neurotransmitter-related genes. The results showed that for the normal photoperiod (LD) condition, the activity increased and sleep decreased under simulated microgravity, while for the constant dark (DD) condition, the activity and sleep rhythms appeared disordered and the activity increased, thus decreasing the likelihood of waking up during the day. Light conditions, strains, and sexes, individually or in combination, had impacts on the simulated microgravity effects on behaviors. The clock genes and neurotransmitter-related genes had different degrees of response among sexes and strains, although the overall changes were slight. The results indicated that the normal photoperiod could ease the effects of simulated microgravity on fruit flies' activity and sleep and possible unidentified pathways involved in the regulatory mechanism need further exploration. This study is expected to provide ideas and references for studying the effects of microgravity on space life science.
Collapse
|
4
|
Sun Y, Shi Z, Wang Y, Tang C, Liao Y, Yang C, Cai P. Coupling of oxidative stress responses to tricarboxylic acid cycle and prostaglandin E2 alterations in Caenorhabditis elegans under extremely low-frequency electromagnetic field. Int J Radiat Biol 2018; 94:1159-1166. [DOI: 10.1080/09553002.2019.1524943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yongyan Sun
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Zhenhua Shi
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Environmental Bioelectrochemistry Center, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Yahong Wang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Chao Tang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Yanyan Liao
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Chuanjun Yang
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| | - Peng Cai
- Physical Environment Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, P. R. China
- Xiamen Key Laboratory of Physical Environment, Xiamen, P. R. China
| |
Collapse
|
5
|
Maliszewska J, Marciniak P, Kletkiewicz H, Wyszkowska J, Nowakowska A, Rogalska J. Electromagnetic field exposure (50 Hz) impairs response to noxious heat in American cockroach. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:605-611. [PMID: 29721708 PMCID: PMC5966488 DOI: 10.1007/s00359-018-1264-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 11/29/2022]
Abstract
Exposure to electromagnetic field (EMF) induces physiological changes in organism that are observed at different levels—from biochemical processes to behavior. In this study, we evaluated the effect of EMF exposure (50 Hz, 7 mT) on cockroach’s response to noxious heat, measured as the latency to escape from high ambient temperature. We also measured the levels of lipid peroxidation and glutathione content as markers of oxidative balance in cockroaches exposed to EMF. Our results showed that exposure to EMF for 24, 72 h and 7 days significantly increases the latency to escape from noxious heat. Malondialdehyde (MDA) levels increased significantly after 24-h EMF exposure and remained elevated up to 7 days of exposure. Glutathione levels significantly declined in cockroaches exposed to EMF for 7 days. These results demonstrate that EMF exposure is a considerable stress factor that affects oxidative state and heat perception in American cockroach.
Collapse
Affiliation(s)
- Justyna Maliszewska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland.
| | | | - Hanna Kletkiewicz
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland
| | - Joanna Wyszkowska
- Department of Biophysics, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Anna Nowakowska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland
| | - Justyna Rogalska
- Department of Animal Physiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, ul. Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
6
|
Zeni O, Simkó M, Scarfi MR, Mattsson MO. Cellular Response to ELF-MF and Heat: Evidence for a Common Involvement of Heat Shock Proteins? Front Public Health 2017; 5:280. [PMID: 29094036 PMCID: PMC5651525 DOI: 10.3389/fpubh.2017.00280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/02/2017] [Indexed: 11/13/2022] Open
Abstract
It has been shown that magnetic fields in the extremely low frequency range (ELF-MF) can act as a stressor in various in vivo or in vitro systems, at flux density levels below those inducing excitation of nerve and muscle cells, which are setting the limits used by most generally accepted exposure guidelines, such as the ones published by the International Commission on Non-Ionizing Radiation Protection. In response to a variety of physiological and environmental factors, including heat, cells activate an ancient signaling pathway leading to the transient expression of heat shock proteins (HSPs), which exhibit sophisticated protection mechanisms. A number of studies suggest that also ELF-MF exposure can activate the cellular stress response and cause increased HSPs expression, both on the mRNA and the protein levels. In this review, we provide some of the presently available data on cellular responses, especially regarding HSP expression, due to single and combined exposure to ELF-MF and heat, with the aim to compare the induced effects and to detect possible common modes of action. Some evidence suggest that MF and heat can act as costressors inducing a kind of thermotolerance in cell cultures and in organisms. The MF exposure might produce a potentiated or synergistic biological response such as an increase in HSPs expression, in combination with a well-defined stress, and in turn exert beneficial effects during certain circumstances.
Collapse
Affiliation(s)
- Olga Zeni
- Institute for Electromagnetic Sensing of the Environment (IREA), National Research Council, Naples, Italy
| | | | - Maria Rosaria Scarfi
- Institute for Electromagnetic Sensing of the Environment (IREA), National Research Council, Naples, Italy
| | - Mats-Olof Mattsson
- AIT Austrian Institute of Technology, Center for Energy, Environmental Resources and Technologies, Tulln, Austria
| |
Collapse
|
7
|
Manta AK, Papadopoulou D, Polyzos AP, Fragopoulou AF, Skouroliakou AS, Thanos D, Stravopodis DJ, Margaritis LH. Mobile-phone radiation-induced perturbation of gene-expression profiling, redox equilibrium and sporadic-apoptosis control in the ovary of Drosophila melanogaster. Fly (Austin) 2016; 11:75-95. [PMID: 27960592 DOI: 10.1080/19336934.2016.1270487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The daily use by people of wireless communication devices has increased exponentially in the last decade, begetting concerns regarding its potential health hazards. Drosophila melanogaster four days-old adult female flies were exposed for 30 min to radiation emitted by a commercial mobile phone at a SAR of 0.15 W/kg and a SAE of 270 J/kg. ROS levels and apoptotic follicles were assayed in parallel with a genome-wide microarrays analysis. ROS cellular contents were found to increase by 1.6-fold (x), immediately after the end of exposure, in follicles of pre-choriogenic stages (germarium - stage 10), while sporadically generated apoptotic follicles (germarium 2b and stages 7-9) presented with an averaged 2x upregulation in their sub-population mass, 4 h after fly's irradiation with mobile device. Microarray analysis revealed 168 genes being differentially expressed, 2 h post-exposure, in response to radiofrequency (RF) electromagnetic field-radiation exposure (≥1.25x, P < 0.05) and associated with multiple and critical biological processes, such as basic metabolism and cellular subroutines related to stress response and apoptotic death. Exposure of adult flies to mobile-phone radiation for 30 min has an immediate impact on ROS production in animal's ovary, which seems to cause a global, systemic and non-targeted transcriptional reprogramming of gene expression, 2 h post-exposure, being finally followed by induction of apoptosis 4 h after the end of exposure. Conclusively, this unique type of pulsed radiation, mainly being derived from daily used mobile phones, seems capable of mobilizing critical cytopathic mechanisms, and altering fundamental genetic programs and networks in D. melanogaster.
Collapse
Affiliation(s)
- Areti K Manta
- a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Deppie Papadopoulou
- b Basic Research Center , Biomedical Research Foundation of the Academy of Athens , Athens , Greece
| | - Alexander P Polyzos
- b Basic Research Center , Biomedical Research Foundation of the Academy of Athens , Athens , Greece
| | - Adamantia F Fragopoulou
- a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Aikaterini S Skouroliakou
- c Department of Energy Technology Engineering , Technological Educational Institute of Athens , Athens , Greece
| | - Dimitris Thanos
- b Basic Research Center , Biomedical Research Foundation of the Academy of Athens , Athens , Greece
| | - Dimitrios J Stravopodis
- a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| | - Lukas H Margaritis
- a Section of Cell Biology and Biophysics, Department of Biology , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|