1
|
Shen L, Chen Y, Pan J, Yu X, Zhang Y, Guo B, Wang J, Liu Y, Xiao X, Chen S, Bao L. Development of a highly sensitive PbrR-based biosensor via directed evolution and its application for lead detection. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137489. [PMID: 39914342 DOI: 10.1016/j.jhazmat.2025.137489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 03/19/2025]
Abstract
The Whole-cell biosensor (WCB) is a convenient and practical assay that can monitor bioavailable lead (Pb) contamination. However, existing Pb-responsive WCB struggle to meet practical detection needs due to the lack of sensitivity, specificity, and stability. In this study, we developed a Pb WCB using the Pb resistance transcriptional regulatory factor (PbrR) and green fluorescent protein (GFP), and improved its performance by directed evolution in conjunction with fluorescence-activated cell sorting (FACS). After 3 rounds of screening, we acquired a biosensor mutant (PbrR-E3). The evolved biosensor exhibited an approximately 11-fold increase in maximum fluorescence output signal compared to the non-evolved biosensor, resulting in an improvement of its sensitivity and specificity. This biosensor demonstrated a limit of detection (LOD) of 0.045 μg/L. Furthermore, the evolved biosensor showcased outstanding performance in the detection of Pb(II) in tea infusion and also demonstrated good stability in tests with spiked real water samples. These results highlight the potential of the evolved WCB as a viable approach for monitoring Pb.
Collapse
Affiliation(s)
- Liang Shen
- School of Public Health, Wannan Medical College, Wuhu 241002, China; Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yiwen Chen
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Jiajie Pan
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Xin Yu
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Yubo Zhang
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Bingxin Guo
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Jiaqi Wang
- School of Public Health, Wannan Medical College, Wuhu 241002, China
| | - Ying Liu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230039, China
| | - Shaopeng Chen
- School of Public Health, Wannan Medical College, Wuhu 241002, China.
| | - Lingzhi Bao
- School of Public Health, Wannan Medical College, Wuhu 241002, China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230039, China.
| |
Collapse
|
2
|
Borges Farias A, Sganzerla Martinez G, Galán-Vásquez E, Nicolás MF, Pérez-Rueda E. Predicting bacterial transcription factor binding sites through machine learning and structural characterization based on DNA duplex stability. Brief Bioinform 2024; 25:bbae581. [PMID: 39541188 PMCID: PMC11562833 DOI: 10.1093/bib/bbae581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/02/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Transcriptional factors (TFs) in bacteria play a crucial role in gene regulation by binding to specific DNA sequences, thereby assisting in the activation or repression of genes. Despite their central role, deciphering shape recognition of bacterial TFs-DNA interactions remains an intricate challenge. A deeper understanding of DNA secondary structures could greatly enhance our knowledge of how TFs recognize and interact with DNA, thereby elucidating their biological function. In this study, we employed machine learning algorithms to predict transcription factor binding sites (TFBS) and classify them as directed-repeat (DR) or inverted-repeat (IR). To accomplish this, we divided the set of TFBS nucleotide sequences by size, ranging from 8 to 20 base pairs, and converted them into thermodynamic data known as DNA duplex stability (DDS). Our results demonstrate that the Random Forest algorithm accurately predicts TFBS with an average accuracy of over 82% and effectively distinguishes between IR and DR with an accuracy of 89%. Interestingly, upon converting the base pairs of several TFBS-IR into DDS values, we observed a symmetric profile typical of the palindromic structure associated with these architectures. This study presents a novel TFBS prediction model based on a DDS characteristic that may indicate how respective proteins interact with base pairs, thus providing insights into molecular mechanisms underlying bacterial TFs-DNA interaction.
Collapse
Affiliation(s)
- André Borges Farias
- Laboratório Nacional de Computação Científica - LNCC, Avenida Getúlio Vargas, Petrópolis, Rio de Janeiro 25651075, Brazil
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Carretera Sierra Papacal, Mérida 97302, Yucatán, México
| | - Gustavo Sganzerla Martinez
- Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax B3H 4H7, Nova Scotia, Canada
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Escolar S/N, Mexico City 01000, México
| | - Marisa Fabiana Nicolás
- Laboratório Nacional de Computação Científica - LNCC, Avenida Getúlio Vargas, Petrópolis, Rio de Janeiro 25651075, Brazil
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica del Estado de Yucatán, Carretera Sierra Papacal, Mérida 97302, Yucatán, México
| |
Collapse
|
3
|
Pal P, Khan MY, Sharma S, Kumar Y, Mangla N, Kaushal PS, Agarwal N. ResR/McdR-regulated protein translation machinery contributes to drug resilience in Mycobacterium tuberculosis. Commun Biol 2023; 6:708. [PMID: 37433855 DOI: 10.1038/s42003-023-05059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Survival response of the human tuberculosis pathogen, Mycobacterium tuberculosis (Mtb) to a diverse environmental cues is governed through its versatile transcription regulatory mechanisms with the help of a large pool of transcription regulators (TRs). Rv1830 is one such conserved TR, which remains uncharacterized in Mtb. It was named as McdR based on an effect on cell division upon its overexpression in Mycobacterium smegmatis. Recently, it has been implicated in antibiotic resilience in Mtb and reannotated as ResR. While Rv1830 affects cell division by modulating the expression of M. smegmatis whiB2, the underlying cause of its essentiality and regulation of drug resilience in Mtb is yet to be deciphered. Here we show that ResR/McdR, encoded by ERDMAN_2020 in virulent Mtb Erdman, is pivotal for bacterial proliferation and crucial metabolic activities. Importantly, ResR/McdR directly regulates ribosomal gene expression and protein synthesis, requiring distinct disordered N-terminal sequence. Compared to control, bacteria depleted with resR/mcdR exhibit delayed recovery post-antibiotic treatment. A similar effect upon knockdown of rplN operon genes further implicates ResR/McdR-regulated protein translation machinery in attributing drug resilience in Mtb. Overall, findings from this study suggest that chemical inhibitors of ResR/McdR may be proven effective as adjunctive therapy for shortening the duration of TB treatment.
Collapse
Affiliation(s)
- Pramila Pal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, Delhi, India
| | - Mohd Younus Khan
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, Delhi, India
| | - Shivani Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Nikita Mangla
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
- Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, Delhi, India
| | - Prem S Kaushal
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
| |
Collapse
|
4
|
Ghataora JS, Gebhard S, Reeksting BJ. Chimeric MerR-Family Regulators and Logic Elements for the Design of Metal Sensitive Genetic Circuits in Bacillus subtilis. ACS Synth Biol 2023; 12:735-749. [PMID: 36629785 PMCID: PMC10028694 DOI: 10.1021/acssynbio.2c00545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Whole-cell biosensors are emerging as promising tools for monitoring environmental pollutants such as heavy metals. These sensors constitute a genetic circuit comprising a sensing module and an output module, such that a detectable signal is produced in the presence of the desired analyte. The MerR family of metal-responsive regulators offers great potential for the construction of metal sensing circuits, due to their high sensitivity, tight transcription control, and large diversity in metal-specificity. However, the sensing diversity is broadest in Gram-negative systems, while chassis organisms are often selected from Gram-positive species, particularly sporulating bacilli. This can be problematic, because Gram-negative biological parts, such as promoters, are frequently observed to be nonfunctional in Gram-positive hosts. Herein, we combined construction of synthetic genetic circuits and chimeric MerR regulators, supported by structure-guided design, to generate metal-sensitive biosensor modules that are functional in the biotechnological work-horse species Bacillus subtilis. These chimeras consist of a constant Gram-positive derived DNA-binding domain fused to variable metal binding domains of Gram-negative origins. To improve the specificity of the whole-cell biosensor, we developed a modular "AND gate" logic system based on the B. subtilis two-subunit σ-factor, SigO-RsoA, designed to maximize future use for synthetic biology applications in B. subtilis. This work provides insights into the use of modular regulators, such as the MerR family, in the design of synthetic circuits for the detection of heavy metals, with potentially wider applicability of the approach to other systems and genetic backgrounds.
Collapse
Affiliation(s)
- Jasdeep S Ghataora
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Susanne Gebhard
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Bianca J Reeksting
- Life Sciences Department, Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
5
|
Suvorova IA, Gelfand MS. Comparative Analysis of the IclR-Family of Bacterial Transcription Factors and Their DNA-Binding Motifs: Structure, Positioning, Co-Evolution, Regulon Content. Front Microbiol 2021; 12:675815. [PMID: 34177859 PMCID: PMC8222616 DOI: 10.3389/fmicb.2021.675815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
The IclR-family is a large group of transcription factors (TFs) regulating various biological processes in diverse bacteria. Using comparative genomics techniques, we have identified binding motifs of IclR-family TFs, reconstructed regulons and analyzed their content, finding co-occurrences between the regulated COGs (clusters of orthologous genes), useful for future functional characterizations of TFs and their regulated genes. We describe two main types of IclR-family motifs, similar in sequence but different in the arrangement of the half-sites (boxes), with GKTYCRYW3-4RYGRAMC and TGRAACAN1-2TGTTYCA consensuses, and also predict that TFs in 32 orthologous groups have binding sites comprised of three boxes with alternating direction, which implies two possible alternative modes of dimerization of TFs. We identified trends in site positioning relative to the translational gene start, and show that TFs in 94 orthologous groups bind tandem sites with 18-22 nucleotides between their centers. We predict protein-DNA contacts via the correlation analysis of nucleotides in binding sites and amino acids of the DNA-binding domain of TFs, and show that the majority of interacting positions and predicted contacts are similar for both types of motifs and conform well both to available experimental data and to general protein-DNA interaction trends.
Collapse
Affiliation(s)
- Inna A Suvorova
- Institute for Information Transmission Problems of Russian Academy of Sciences (The Kharkevich Institute), Moscow, Russia
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems of Russian Academy of Sciences (The Kharkevich Institute), Moscow, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
6
|
Perlaza-Jiménez L, Walther D. A genome-wide scan for correlated mutations detects macromolecular and chromatin interactions in Arabidopsis thaliana. Nucleic Acids Res 2018; 46:8114-8132. [PMID: 29986106 PMCID: PMC6144803 DOI: 10.1093/nar/gky576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/14/2018] [Indexed: 01/05/2023] Open
Abstract
The concept of exploiting correlated mutations has been introduced and applied successfully to identify interactions within and between biological macromolecules. Its rationale lies in the preservation of physical interactions via compensatory mutations. With the massive increase of available sequence information, approaches based on correlated mutations have regained considerable attention. We analyzed a set of 10 707 430 single nucleotide polymorphisms detected in 1135 accessions of the plant Arabidopsis thaliana. To measure their covariance and to reveal the global genome-wide sequence correlation structure of the Arabidopsis genome, the adjusted mutual information has been estimated for each possible pair of polymorphic sites. We developed a series of filtering steps to account for genetic linkage and lineage relations between Arabidopsis accessions, as well as transitive covariance as possible confounding factors. We show that upon appropriate filtering, correlated mutations prove indeed informative with regard to molecular interactions, and furthermore, appear to reflect on chromosomal interactions. Our study demonstrates that the concept of correlated mutations can also be applied successfully to within-species sequence variation and establishes a promising approach to help unravel the complex molecular interactions in A. thaliana and other species with broad sequence information.
Collapse
Affiliation(s)
- Laura Perlaza-Jiménez
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
7
|
Joyce AP, Havranek JJ. Deciphering the protein-DNA code of bacterial winged helix-turn-helix transcription factors. QUANTITATIVE BIOLOGY 2018; 6:68-84. [PMID: 37990674 PMCID: PMC10662834 DOI: 10.1007/s40484-018-0130-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 10/18/2022]
Abstract
Background Sequence-specific binding by transcription factors (TFs) plays a significant role in the selection and regulation of target genes. At the protein:DNA interface, amino acid side-chains construct a diverse physicochemical network of specific and non-specific interactions, and seemingly subtle changes in amino acid identity at certain positions may dramatically impact TF:DNA binding. Variation of these specificity-determining residues (SDRs) is a major mechanism of functional divergence between TFs with strong structural or sequence homology. Methods In this study, we employed a combination of high-throughput specificity profiling by SELEX and Spec-seq, structural modeling, and evolutionary analysis to probe the binding preferences of winged helix-turn-helix TFs belonging to the OmpR sub-family in Escherichia coli. Results We found that E. coli OmpR paralogs recognize tandem, variably spaced repeats composed of "GT-A" or "GCT"-containing half-sites. Some divergent sequence preferences observed within the "GT-A" mode correlate with amino acid similarity; conversely, "GCT"-based motifs were observed for a subset of paralogs with low sequence homology. Direct specificity profiling of a subset of OmpR homologues (CpxR, RstA, and OmpR) as well as predicted "SDR-swap" variants revealed that individual SDRs may impact sequence preferences locally through direct contact with DNA bases or distally via the DNA backbone. Conclusions Overall, our work provides evidence for a common structural code for sequence-specific wHTH:DNA interactions, and demonstrates that surprisingly modest residue changes can enable recognition of highly divergent sequence motifs. Further examination of SDR predictions will likely reveal additional mechanisms controlling the evolutionary divergence of this important class of transcriptional regulators.
Collapse
Affiliation(s)
- Adam P. Joyce
- Program in Developmental, Regenerative, and Stem Cell Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - James J. Havranek
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Djordjevic M, Djordjevic M, Zdobnov E. Scoring Targets of Transcription in Bacteria Rather than Focusing on Individual Binding Sites. Front Microbiol 2017; 8:2314. [PMID: 29213263 PMCID: PMC5702782 DOI: 10.3389/fmicb.2017.02314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/09/2017] [Indexed: 11/13/2022] Open
Abstract
Reliable identification of targets of bacterial regulators is necessary to understand bacterial gene expression regulation. These targets are commonly predicted by searching for high-scoring binding sites in the upstream genomic regions, which typically leads to a large number of false positives. In contrast to the common approach, here we propose a novel concept, where overrepresentation of the scoring distribution that corresponds to the entire searched region is assessed, as opposed to predicting individual binding sites. We explore two implementations of this concept, based on Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests, which both provide straightforward P-value estimates for predicted targets. This approach is implemented for pleiotropic bacterial regulators, including σ70 (bacterial housekeeping σ factor) target predictions, which is a classical bioinformatics problem characterized by low specificity. We show that KS based approach is both faster and more accurate, departing from the current paradigm of AD being slower, but more accurate. Moreover, KS approach leads to a significant increase in the search accuracy compared to the standard approach, while at the same time straightforwardly assigning well established P-values to each potential target. Consequently, the new KS based method proposed here, which assigns P-values to fixed length upstream regions, provides a fast and accurate approach for predicting bacterial transcription targets.
Collapse
Affiliation(s)
- Marko Djordjevic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | - Evgeny Zdobnov
- Swiss Institute of Bioinformatics and Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Slama P. Two-domain analysis of JmjN-JmjC and PHD-JmjC lysine demethylases: Detecting an inter-domain evolutionary stress. Proteins 2017; 86:3-12. [PMID: 28975662 DOI: 10.1002/prot.25394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 11/09/2022]
Abstract
Residues at different positions of a multiple sequence alignment sometimes evolve together, due to a correlated structural or functional stress at these positions. Co-evolution has thus been evidenced computationally in multiple proteins or protein domains. Here, we wish to study whether an evolutionary stress is exerted on a sequence alignment across protein domains, i.e., on longer sequence separations than within a single protein domain. JmjC-containing lysine demethylases were chosen for analysis, as a follow-up to previous studies; these proteins are important multidomain epigenetic regulators. In these proteins, the JmjC domain is responsible for the demethylase activity, and surrounding domains interact with histones, DNA or partner proteins. This family of enzymes was analyzed at the sequence level, in order to determine whether the sequence of JmjC-domains was affected by the presence of a neighboring JmjN domain or PHD finger in the protein. Multiple positions within JmjC sequences were shown to have their residue distributions significantly altered by the presence of the second domain. Structural considerations confirmed the relevance of the analysis for JmjN-JmjC proteins, while among PHD-JmjC proteins, the length of the linker region could be correlated to the residues observed at the most affected positions. The correlation of domain architecture with residue types at certain positions, as well as that of overall architecture with protein function, is discussed. The present results thus evidence the existence of an across-domain evolutionary stress in JmjC-containing demethylases, and provide further insights into the overall domain architecture of JmjC domain-containing proteins.
Collapse
Affiliation(s)
- Patrick Slama
- Independent researcher, Paris, France; Center for Imaging Science, the Johns Hopkins University, Clark Hall, 3400 N Charles Street, Baltimore, Maryland, 21218
| |
Collapse
|