1
|
Vatovec R, Šarabon N, Voglar M. The effects of spinal flexion exposure on lumbar muscle shear modulus and posture. Eur J Appl Physiol 2025; 125:175-182. [PMID: 39158592 DOI: 10.1007/s00421-024-05586-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE Spinal flexion exposure (SFE) leads to alterations in neuromuscular and mechanical properties of the trunk. While several studies reported changes in intrinsic trunk stiffness following SFE, there is a lack of studies evaluating the effects on lumbar muscle shear modulus (SM). Therefore, the aim of our study was to investigate the effects of SFE on lumbar muscle SM and posture. METHODS Sixteen young volunteers were included in this clinical study. Passive lumbar muscle SM, lumbar lordosis, lumbar flexion range of motion and sitting height were measured prior to and following a 60-min SFE protocol. RESULTS For SM, our results did not show a significant muscle × time interaction effect (p = 0.40). However, we found increased SM (from 6.75 to 15.43% - all p < 0.02) and maximal lumbar flexion (15.91 ± 10.88%; p < 0.01), whereas lumbar lordosis ( - 7.67 ± 13.97%; p = 0.03) and sitting height ( - 0.57 ± 0.32%; p < 0.01) decreased following SFE. Our results showed no significant correlations between the changes in the included outcome measures (p = 0.10-0.83). CONCLUSION We hypothesized that increased lumbar muscle SM following SFE might be a compensation for decreased passive stability due to viscoelastic deformations of connective tissues, which are indicated by increased maximal lumbar flexion and decreased sitting height. However, there were no significant correlations between the changes of the included outcome measures, which implies that increased muscle SM and reduced lumbar lordosis are more likely an independent consequence of SFE.
Collapse
Affiliation(s)
- Rok Vatovec
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia
| | - Nejc Šarabon
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia
- Human Health Department, InnoRenew CoE, Livade 6a, 6310, Izola, Slovenia
- Luđwig Boltzmann Institute for Rehabilitation Research, Neugebäudeplatz 1, 3100, St. Pölten, Austria
| | - Matej Voglar
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia.
| |
Collapse
|
2
|
Preliminary investigation of the effects of sitting with and without short active breaks on muscle stiffness assessed with shear-wave elastography. SPORT SCIENCES FOR HEALTH 2023. [DOI: 10.1007/s11332-023-01051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Abstract
Purpose
The purpose of this preliminary study was to compare the effects of 1-h sitting with and without short active breaks on muscle stiffness as measured by shear-wave elastography (SWE).
Methods
The participants (7 females, 3 males; age: 24.9 ± 1.2 years) completed two (with and without active breaks) 1-h sitting exposures on separate days. Active breaks (2–3 min) were performed at 20 min and 40 min time marks and comprised simple stretching and activation exercises. Before, during (30 min) and after (1 h) of sitting, shear modulus of upper trapezius, lumbar region of erector spinae and rectus femoris muscles was measured with SWE.
Results
Statistically significant effects of sitting exposure in erector spinae muscle stiffness were noted (p = 0.041; η2 = 0.38). There were no other statistically significant effects of sitting exposure or condition (with/without breaks).
Conclusions
Although few statistically significant effects were detected, the trends in this preliminary trial suggest that prolonged sitting increases muscle stiffness and warrants further investigation of short active breaks with larger sample sizes.
Collapse
|
3
|
Kantha P, Hsu WL, Chen PJ, Tsai YC, Lin JJ. A novel balance training approach: Biomechanical study of virtual reality-based skateboarding. Front Bioeng Biotechnol 2023; 11:1136368. [PMID: 36845193 PMCID: PMC9950389 DOI: 10.3389/fbioe.2023.1136368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction: The use of virtual reality (VR) technology in training and rehabilitation gained increasing attention in recent years due to its potential to provide immersive and interactive experiences. We developed a novel VR-based balance training, VR-skateboarding, for improving balance. It is important to investigate the biomechanical aspects of this training, as it would have benefited both health professionals and software engineers. Aims: This study aimed to compare the biomechanical characteristics of VR-skateboarding with those of walking. Materials and Methods: Twenty young participants (10 males and 10 females) were recruited. Participants underwent VR-skateboarding and walking at the comfortable walking speed, with the treadmill set at the same speed for both tasks. The motion capture system and electromyography were used to determine joint kinematics and muscle activity of the trunk and legs, respectively. The force platform was also used to collect the ground reaction force. Results: Participants demonstrated increased trunk flexion angles and muscle activity of trunk extensor during VR-skateboarding than during walking (p < 0.01). For the supporting leg, participants' joint angles of hip flexion and ankle dorsiflexion, as well as muscle activity of knee extensor, were higher during VR-skateboarding than during walking (p < 0.01). For the moving leg, only hip flexion increased in VR-skateboarding when compared to walking (p < 0.01). Furthermore, participants increased weight distribution in the supporting leg during VR-skateboarding (p < 0.01). Conclusion: VR-skateboarding is a novel VR-based balance training that has been found to improve balance through increased trunk and hip flexion, facilitated knee extensor muscles, and increased weight distribution on the supporting leg compared to walking. These differences in biomechanical characteristics have potential clinical implications for both health professionals and software engineers. Health professionals may consider incorporating VR-skateboarding into training protocols to improve balance, while software engineers may use this information to design new features in VR systems. Our study suggests that the impact of VR-skateboarding particularly manifest when focusing on the supporting leg.
Collapse
Affiliation(s)
- Phunsuk Kantha
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Li Hsu
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan,Physical Therapy Center, National Taiwan University Hospital, Taipei, Taiwan,*Correspondence: Wei-Li Hsu,
| | - Po-Jung Chen
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ching Tsai
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jiu-Jenq Lin
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan,Division of Physical Therapy, Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Granacher U, Sarabon N, Babič J, Paillard T. Editorial: Acute and chronic changes in postural control in response to different physiological states and external environmental conditions. Front Hum Neurosci 2023; 17:1152276. [PMID: 36950146 PMCID: PMC10025523 DOI: 10.3389/fnhum.2023.1152276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Affiliation(s)
- Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg, Freiburg, Germany
- *Correspondence: Urs Granacher
| | - Nejc Sarabon
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Jan Babič
- Laboratory for Neuromechanics, and Biorobotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Thierry Paillard
- Université de Pau et des Pays de l'Adour, E2S UPPA, MEPS, Tarbes, France
| |
Collapse
|
5
|
Vatovec R, Kozinc Ž, Voglar M. The Effects of Isometric Fatigue on Trunk Muscle Stiffness: Implications for Shear-Wave Elastography Measurements. SENSORS (BASEL, SWITZERLAND) 2022; 22:9476. [PMID: 36502176 PMCID: PMC9735660 DOI: 10.3390/s22239476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Muscle stiffness has been implicated as a possible factor in low back pain risk. There are few studies on the effects of isometric fatigue on the shear modulus of trunk muscles. This study aimed to investigate the effects of trunk isometric fatigue on the passive and active (during low and high-level contractions) shear moduli of the erector spinae (ES) and superficial and deep multifidus (MF) muscles. We assessed passive and active shear modulus using shear-wave elastography in healthy young participants (n = 22; 11 males, 11 females), before and after an isometric trunk extension fatigue protocol. Maximal voluntary force decreased from 771.2 ± 249.8 N before fatigue to 707.3 ± 204.1 N after fatigue (-8.64%; p = 0.003). Passive shear modulus was significantly decreased after fatigue in the MF muscle (p = 0.006-0.022; Cohen's d = 0.40-46), but not the ES muscle (p = 0.867). Active shear modulus during low-level contraction was not affected by fatigue (p = 0.697-0.701), while it was decreased during high-level contraction for both muscles (p = 0.011; d = 0.29-0.34). Sex-specific analysis indicated the decrease in ES shear modulus was significant in males (p = 0.015; d = 0.31), but not in females (p = 0.140). Conversely, the shear modulus in superficial MF had a statistically significant decrease in females (p = 0.002; d = 0.74) but not in males (p = 0.368). These results have important implications for further investigations of the mechanistic interaction between physical workloads, sex, muscle stiffness (and other variables affecting trunk stability and neuromuscular control), and the development/persistence of low back pain.
Collapse
Affiliation(s)
- Rok Vatovec
- Department of Physiotherapy, Faculty of Health Sciences, University of Primorska Polje 42, SI-6310 Izola, Slovenia
| | - Žiga Kozinc
- Department of Kinesiology, Faculty of Health Sciences, University of Primorska Polje 42, SI-6310 Izola, Slovenia
- Andrej Marušič Institute, University of Primorska, Muzejski trg 2, SI-6000 Koper, Slovenia
| | - Matej Voglar
- Department of Physiotherapy, Faculty of Health Sciences, University of Primorska Polje 42, SI-6310 Izola, Slovenia
| |
Collapse
|
6
|
Voglar M, Kozinc Ž, Kingma I, van Dieën JH, Šarabon N. The Effects of Intermittent Trunk Flexion With and Without Support on Sitting Balance in Young Adults. Front Hum Neurosci 2022; 16:868153. [PMID: 35422691 PMCID: PMC9001929 DOI: 10.3389/fnhum.2022.868153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Prolonged trunk flexion is known to affect passive and active stabilization of the trunk. Previous studies have evaluated changes in spinal range of motion, muscle activity and reflex behavior induced by prolonged trunk flexion, whereas the effect on sitting postural control is vastly underexplored. In this study, we compared the effects of supported and unsupported intermittent trunk flexion on center of pressure (CoP) motion during sitting on an unstable seat. Participants (n = 21; 11 males, 23.2 ± 2.0 years; 10 females, age 24.3 ± 4.0) were exposed to 1-h intermittent (60-s sets with 30 s of rest) trunk flexion (80% of the maximal range of motion) and CoP root mean square distance, velocity and frequency before and after the exposure were assessed. Contrary to our hypothesis, there were no main effects of exposure (pre. vs. post flexion protocol; p = 0.128–0.709), no main effects of condition (supported vs. unsupported; p = 0.134–0.931), and no interaction between exposure and condition (p = 0.163–0.912). Our results indicate that prolonged intermittent flexion does not induce any changes in CoP motion during a seated balance task, regardless of the presence of a trunk support during prolonged intermittent flexion. This suggests a successful compensation of decreased passive stiffness by increased reflex activity.
Collapse
Affiliation(s)
- Matej Voglar
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Žiga Kozinc
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
- Andrej Marušič Institute, University of Primorska, Koper, Slovenia
| | - Idsart Kingma
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, Netherlands
| | - Jaap H. van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, Netherlands
| | - Nejc Šarabon
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
- InnoRenew CoE, Human Health Department, Izola, Slovenia
- Laboratory for Motor Control and Motor Behavior, S2P, Science to Practice, Ltd., Ljubljana, Slovenia
- *Correspondence: Nejc Šarabon, ;
| |
Collapse
|
7
|
Viggiani D, Callaghan JP. Interrelated hypoalgesia, creep, and muscle fatigue following a repetitive trunk flexion exposure. J Electromyogr Kinesiol 2021; 57:102531. [PMID: 33607359 DOI: 10.1016/j.jelekin.2021.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 12/31/2020] [Accepted: 02/05/2021] [Indexed: 11/29/2022] Open
Abstract
Repetitive trunk flexion can damage spinal tissues, however its association with low back pain in the workplace may be confounded by factors related to pain sensitivity. Muscle fatigue, exercise-induced hypoalgesia, and creep-induced neuromuscular changes following repetitive trunk flexion may all affect this assumed exposure-pain relationship. This study's purpose was to determine how mechanical pain sensitivity in the low back is affected by a repetitive trunk flexion exposure and identify factors associated with changes in low back pain sensitivity. Pressure pain thresholds, perceptions of sub-threshold stimuli, and muscle fatigue in the trunk and tibia, as well as lumbar spine creep were tracked in 37 young healthy adults before and up to 40 min after a 10-min repetitive trunk flexion exposure. Pressure pain thresholds (p = 0.033), but not perceptions of sub-threshold stimuli (p > 0.102) were associated with approximately a 12.5% reduction in pain sensitivity 10 min after completing the exposure, while creep and local muscle fatigue effects were only observed immediately following the exposure. Creep and fatigue interactions and the corresponding tibial measure co-varied with individual low back pressure pain thresholds. The net hypoalgesic effects of repetitive trunk flexion have the potential to partially mask possibly injurious loads, which could contribute to the severity or incidence of lower back injuries related to these exposures.
Collapse
Affiliation(s)
- Daniel Viggiani
- Department of Kinesiology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Jack P Callaghan
- Department of Kinesiology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
8
|
Knuttinen MG, Zurcher KS, Wallace A, Doe C, Naidu SG, Money SR, Rochon PJ. Ergonomics in IR. J Vasc Interv Radiol 2020; 32:235-241. [PMID: 33358387 DOI: 10.1016/j.jvir.2020.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/24/2022] Open
Abstract
Ergonomic research in the field of interventional radiology remains limited. Existing literature suggests that operators are at increased risk for work-related musculoskeletal disorders related to the use of lead garments and incomplete knowledge of ergonomic principles. Data from existing surgical literature suggest that musculoskeletal disorders may contribute to physician burnout and female operators are at a higher risk of developing musculoskeletal disorders. This review article aims to summarize the existing ergonomic challenges faced by interventional radiologists, reiterate existing solutions to these challenges, and highlight the need for further ergonomic research in multiple areas, including burnout and gender.
Collapse
Affiliation(s)
| | - Kenneth S Zurcher
- Department of Interventional Radiology, Mayo Clinic, Phoenix, Arizona.
| | - Alex Wallace
- Department of Interventional Radiology, Mayo Clinic, Phoenix, Arizona
| | - Christopher Doe
- Department of Interventional Radiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Sailendra G Naidu
- Department of Interventional Radiology, Mayo Clinic, Phoenix, Arizona
| | - Samuel R Money
- Department of Surgery, Ochsner Clinic, New Orleans, Louisiana
| | - Paul J Rochon
- Department of Interventional Radiology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
9
|
Bae Y. Standing Up from a Chair with an Asymmetrical Initial Foot Position Decreases Trunk and Masticatory Muscle Activities in Healthy Young Men. Healthcare (Basel) 2020; 8:healthcare8040480. [PMID: 33198353 PMCID: PMC7712816 DOI: 10.3390/healthcare8040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to identify the activation of lower extremity, trunk, and masticatory muscle and trunk kinematics of the initial foot position during the sit-to-stand (STS) movement. Sixteen young men participated in this cross-sectional pilot study and performed STS using both symmetrical and asymmetrical foot positions. Activation of the tibialis anterior (TA), gastrocnemius lateral head (GA), rectus femoris (RF), biceps femoris (BF), rectus abdominis, erector spinae (ES), sternocleidomastoid (SCM), upper trapezius (UT), temporalis (TE), and masseter muscles in the dominant side was determined. For trunk kinematics, head and trunk velocities, front-back (For-Back) and mediolateral (Med-Lat) weight translation rates, and trunk inclination were measured. GA, TA, BF, and RF activation significantly increased, whereas ES, SCM, UT, and TE activation significantly decreased when using the asymmetrical foot position. Head velocity, For-Back, Med-Lat, and trunk inclination were also significantly decreased. In conclusion, the asymmetrical foot position increases muscle activation in the lower extremities and decreases trunk inclination. In addition, ES, UT, and TE muscle activity decreases at the initial asymmetrical foot position.
Collapse
Affiliation(s)
- Youngsook Bae
- Department of Physical Therapy, College of Health Science, Gachon University, Incheon 21936, Korea
| |
Collapse
|
10
|
Larson DJ, Menezes PG, Brown SHM. Influence of creep deformation on sub-regional lumbar spine motion during manual lifting. ERGONOMICS 2020; 63:1304-1311. [PMID: 32452285 DOI: 10.1080/00140139.2020.1774666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Prolonged or repetitive spine flexion induces creep deformation of posterior spine tissues allowing for increased intervertebral motion beyond 'normal' limits, which may influence sub-regional (intersegmental) spine motion during subsequent manual lifting tasks. Using spine skin-surface kinematics, intersegmental lumbar spine motion was recorded over 20 minutes of prolonged static spine flexion and a subsequent manual lifting task (2 lifts every 3 minutes, 30 minutes total) in 14 participants. Results demonstrated that mid to lower lumbar intersegmental levels (i.e. L2/L3 to L4/L5) experienced the greatest overall creep deformation and range of motion during both prolonged flexion and manual lifting; however, overall range of motion during manual lifting was unaffected. Additionally, creep deformation did not completely recover within 30 minutes. Future work should continue to investigate the influence of this residual creep, as well as how overall creep deformation impacts spine neuromuscular control and stability, and ultimately the development of low back disorders. Practitioner summary: Mid to lower lumbar spine levels (i.e. L2/L3 to L4/L5) experienced the greatest creep deformation and range of motion during both prolonged flexion and manual lifting. Repeated lifting following prolonged flexion may limit creep recovery; however, overall lifting kinematic motion remained unchanged.
Collapse
Affiliation(s)
- Dennis J Larson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | | | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
11
|
De Martino E, Salomoni SE, Winnard A, McCarty K, Lindsay K, Riazati S, Weber T, Scott J, Green DA, Hides J, Debuse D, Hodges PW, van Dieën JH, Caplan N. Hypogravity reduces trunk admittance and lumbar muscle activation in response to external perturbations. J Appl Physiol (1985) 2020; 128:1044-1055. [PMID: 32163325 PMCID: PMC7191503 DOI: 10.1152/japplphysiol.00756.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reduced paraspinal muscle size and flattening of spinal curvatures have been documented after spaceflight. Assessment of trunk adaptations to hypogravity can contribute to development of specific countermeasures. In this study, parabolic flights were used to investigate spinal curvature and muscle responses to hypogravity. Data from five trials at 0.25 g, 0.50 g, and 0.75 g were recorded from six participants positioned in a kneeling-seated position. During the first two trials, participants maintained a normal, upright posture. In the last three trials, small-amplitude perturbations were delivered in the anterior direction at the T10 level. Spinal curvature was estimated with motion capture cameras. Trunk displacement and contact force between the actuator and participant were recorded. Muscle activity responses were collected by intramuscular electromyography (iEMG) of the deep and superficial lumbar multifidus, iliocostalis lumborum, longissimus thoracis, quadratus lumborum, transversus abdominis, obliquus internus, and obliquus externus muscles. The root mean square iEMG and the average spinal angles were calculated. Trunk admittance and muscle responses to perturbations were calculated as closed-loop frequency-response functions. Compared with 0.75 g, 0.25 g resulted in lower activation of the longissimus thoracis (P = 0.002); lower responses of the superficial multifidus at low frequencies (P = 0.043); lower responses of the superficial multifidus (P = 0.029) and iliocostalis lumborum (P = 0.043); lower trunk admittance (P = 0.037) at intermediate frequencies; and stronger responses of the transversus abdominis at higher frequencies (P = 0.032). These findings indicate that exposure to hypogravity reduces trunk admittance, partially compensated by weaker stabilizing contributions of the paraspinal muscles and coinciding with an apparent increase of deep abdominal muscle activity.NEW & NOTEWORTHY This study presents for the first time novel insights into the adaptations to hypogravity of spinal curvatures, trunk stiffness, and paraspinal muscle activity. We showed that exposure to hypogravity reduces the displacement of the trunk by an applied perturbation, partially compensated by weaker stabilizing contributions of the paraspinal muscles and concomitant increase in abdominal muscle responses. These findings may have relevance for future recommendations for planetary surface explorations.
Collapse
Affiliation(s)
- Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Sauro E Salomoni
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Kristofor McCarty
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Kirsty Lindsay
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Sherveen Riazati
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Tobias Weber
- European Astronaut Centre, Space Medicine Team (HRE-OM), European Space Agency, Cologne, Germany.,KBR, Wyle Laboratories GmbH, Cologne, Germany
| | - Jonathan Scott
- European Astronaut Centre, Space Medicine Team (HRE-OM), European Space Agency, Cologne, Germany.,KBR, Wyle Laboratories GmbH, Cologne, Germany
| | - David A Green
- European Astronaut Centre, Space Medicine Team (HRE-OM), European Space Agency, Cologne, Germany.,KBR, Wyle Laboratories GmbH, Cologne, Germany.,Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Julie Hides
- School of Allied Health Sciences, Griffith University, Nathan Campus, Brisbane, Queensland, Australia
| | - Dorothée Debuse
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Paul W Hodges
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
12
|
Abstract
Individuals with back pain are often diagnosed with spine instability, even though it is unclear whether the spine is susceptible to unstable behavior. The spine is a complex system with many elements that cannot be directly observed, which makes the study of spine function and direct assessment of spine instability difficult. What is known is that trunk muscle activation is adjusted to meet stability demands, which highlights that the central nervous system closely monitors threats to spine stability. The spine appears to be protected by neural coupling and mechanical coupling that prevent erroneous motor control from producing segmental instability; however, this neural and mechanical coupling could be problematic in an injured spine. Finally, instability traditionally contemplated from a mechanical and control perspective could potentially be applied to study processes involved in pain sensitization, and possibly back pain that is iatrogenic in nature. This commentary argues for a more contemporary and broadened view of stability that integrates interdisciplinary knowledge in order to capture the complexity of back pain. J Orthop Sports Phys Ther 2019;49(6):415-424. Epub 25 Apr 2019. doi:10.2519/jospt.2019.8144.
Collapse
|
13
|
Kastelic K, Voglar M, Šarabon N. Acute effect of full time office work in real environment on postural actions and lumbar range of motion. J Electromyogr Kinesiol 2018; 43:82-87. [PMID: 30253335 DOI: 10.1016/j.jelekin.2018.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Prolonged sitting is often proposed as a risk factor for low back pain development. The purpose of this study was to evaluate the acute effect of full time office work on sensorimotor trunk functions. METHODS Seventeen healthy office workers participated in the study. Maximal lumbar flexion range of motion, anticipatory postural adjustments and postural reflex reactions were tested before and after full time office work in a real life environment. RESULTS There were longer onset latencies of postural reflexive reactions and decreased response amplitudes of anticipatory postural adjustments after full time office work, but these were significant only for the obliquus externus abdominis muscle. No changes in lumbar range of motion was found. CONCLUSION To our knowledge this is the first study that evaluates the effect of full time office work on postural actions and lumbar RoM. We found an absence of normal human circadian flexibility in the lumbar spine and some changes in postural actions. We propose that active trunk stiffness increase to compensate for decreased passive stiffness after prolonged seated work. Further studies are needed to confirm this assumption.
Collapse
Affiliation(s)
- Kaja Kastelic
- University of Primorska, Andrej Marušič Institute, Department of Health Study, Koper, Slovenia; S2P, Science to Practice, Ltd., Laboratory for Motor Control and Motor Behavior, Ljubljana, Slovenia
| | - Matej Voglar
- University of Primorska, Faculty of Health Sciences, Izola, Slovenia
| | - Nejc Šarabon
- University of Primorska, Andrej Marušič Institute, Department of Health Study, Koper, Slovenia; University of Primorska, Faculty of Health Sciences, Izola, Slovenia; S2P, Science to Practice, Ltd., Laboratory for Motor Control and Motor Behavior, Ljubljana, Slovenia.
| |
Collapse
|
14
|
Šarabon N, Mekjavić IB, Eiken O, Babič J. The Effect of Bed Rest and Hypoxic Environment on Postural Balance and Trunk Automatic (Re)Actions in Young Healthy Males. Front Physiol 2018; 9:27. [PMID: 29422869 PMCID: PMC5788909 DOI: 10.3389/fphys.2018.00027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
Prolonged inactivity, such as bed rest induces several detrimental changes within a short timeframe. Impaired postural balance and responses of trunk muscles to (un)expected perturbations were both shown to be impaired after bed rest. Certain populations (e.g., astronauts) are exposed to hypoxic environment in addition to inactivity, similar to bed rest. While the isolated negative effects of hypoxia on postural balance have been observed before, no study to date has examined the combined effects of hypoxia and bed rest on postural balance or trunk muscle responses. In this study, we examined the effects of 21-day exposure to three conditions: (i) bed rest in hypoxic environment (HBR), (ii) bed rest in normoxic environment (NBR), and (iii) ambulatory hypoxic environment (HAMB). Fourteen healthy male subjects crossed over between conditions in a randomized order, with a 4-month break between conditions to ensure full recovery. Most body sway parameters indicated a similar deterioration of postural balance following both HBR and NBR. Similarly, both anticipatory and reactive responses of the trunk muscles (m. erector spinae and m. multifidus) were impaired after HBR and NBR to a similar degree and mostly unchanged after HAMB. Certain body sway parameters were impaired after HAMB, confirming that hypoxia alone can undermine postural balance. On the other hand, some trunk responses were improved after HAMB. In conclusion, the results of our study confirmed previous findings on negative effects of bed rest, but showed little or no additional effect of hypoxia during bed rest. Physical activity during bed rest is encouraged to preserve neuromuscular functions of the trunk. While the HBR condition in our study resembled conditions during space missions, our results could be relevant to other populations, such as patients with pulmonary diseases exposed to bed rest.
Collapse
Affiliation(s)
- Nejc Šarabon
- Faculty of Health Sciences, University of Primorska, Koper, Slovenia
- Laboratory for Motor Control and Motor Behaviour, S2P, Science to Practice, Ltd., Ljubljana, Slovenia
| | - Igor B. Mekjavić
- Department for Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Ola Eiken
- Department of Environmental Physiology, Swedish Aerospace Physiology Centre, Royal Institute of Technology, Stockholm, Sweden
| | - Jan Babič
- Department for Automation, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
15
|
Abboud J, Lardon A, Boivin F, Dugas C, Descarreaux M. Effects of Muscle Fatigue, Creep, and Musculoskeletal Pain on Neuromuscular Responses to Unexpected Perturbation of the Trunk: A Systematic Review. Front Hum Neurosci 2017; 10:667. [PMID: 28101013 PMCID: PMC5209383 DOI: 10.3389/fnhum.2016.00667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022] Open
Abstract
Introduction: Trunk neuromuscular responses have been shown to adapt under the influence of muscle fatigue, as well as spinal tissue creep or even with the presence of low back pain (LBP). Despite a large number of studies exploring how these external perturbations affect the spinal stability, characteristics of such adaptations remains unclear. Aim: The purpose of this systematic review was to assess the quality of evidence of studies investigating trunk neuromuscular responses to unexpected trunk perturbation. More specifically, the targeted neuromuscular responses were trunk muscle activity reflex and trunk kinematics under the influence of muscle fatigue, spinal creep, and musculoskeletal pain. Methods: A research of the literature was conducted in Pubmed, Embase, and Sport-Discus databases using terms related to trunk neuromuscular reflex responses, measured by electromyography (baseline activity, reflex latency, and reflex amplitude) and/or trunk kinematic, in context of unexpected external perturbation. Moreover, independent variables must be either trunk muscle fatigue or spinal tissue creep or LBP. All included articles were scored for their electromyography methodology based on the “Surface Electromyography for the Non-Invasive Assessment of Muscles (SENIAM)” and the “International Society of Electrophysiology and Kinesiology (ISEK)” recommendations whereas overall quality of articles was scored using a specific quality checklist modified from the Quality Index. Meta-analysis was performed on reflex latency variable. Results: A final set of 29 articles underwent quality assessments. The mean quality score was 79%. No effect of muscle fatigue on erector spinae reflex latency following an unexpected perturbation, nor any other distinctive effects was found for back muscle fatigue and reflex parameters. As for spinal tissue creep effects, no alteration was found for any of the trunk reflex variables. Finally, the meta-analysis revealed an increased erector spinae reflex latency in patients with chronic LBP in comparison with healthy controls following an unexpected trunk perturbation. Conclusion: The literature provides some evidence with regard to trunk adaptions in a context of spinal instability. However, most of the evidence was inconclusive due to a high methodological heterogeneity between the studies.
Collapse
Affiliation(s)
- Jacques Abboud
- Département D'anatomie, Université du Québec à Trois-Rivières Trois-Rivières, QC, Canada
| | - Arnaud Lardon
- Pôle Recherche Clinique Chiropratique, Institut Franco-Européen de ChiropraxieIvry-Sur-Seine, France; Département des Sciences de L'activité Physique, Université du Québec à Trois-RivièresTrois-Rivières, QC, Canada
| | - Frédéric Boivin
- Département des Sciences de L'activité Physique, Université du Québec à Trois-Rivières Trois-Rivières, QC, Canada
| | - Claude Dugas
- Département des Sciences de L'activité Physique, Université du Québec à Trois-Rivières Trois-Rivières, QC, Canada
| | - Martin Descarreaux
- Département des Sciences de L'activité Physique, Université du Québec à Trois-Rivières Trois-Rivières, QC, Canada
| |
Collapse
|