1
|
Choi KM, Kim KH, Kang G, Woo WS, Sohn MY, Son HJ, Park CI. Ferredoxin: A novel antimicrobial peptide derived from the black scraper (Thamnaconus modestus). FISH & SHELLFISH IMMUNOLOGY 2024; 152:109796. [PMID: 39074519 DOI: 10.1016/j.fsi.2024.109796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 07/31/2024]
Abstract
Ferredoxin (FDX) is a highly conserved iron-sulfur protein that participates in redox reactions and plays an important role as an electron transport protein in biological processes. However, its function in marine fish remains unclear. We identified two ferrodoxin proteins, FDX1 and FDX2, from black scraper (Thamnaconus modestus) to confirm their genetic structures and expression profiles and to investigate their antimicrobial activity properties by fabricating them with antimicrobial peptides based on sequences. The two TmFDXs mRNAs were most abundant in peripheral blood leukocytes of healthy T. modestus. After artificial infection with Vibrio anguillarum, a major pathogen of T. modestus, TmFDX1 mRNA was significantly upregulated in the gills, heart, intestines, kidneys, liver, and spleen, but was consistently downregulated in the brain. The expression levels of TmFDX2 mRNA were significantly upregulated in the heart, intestines, kidneys, liver, and spleen; however, no significant changes in expression were observed in the brain or gills. Based on the 2Fe-2S ferredoxin-type iron-sulfur-binding domain sequence, two peptides (pFDX1 and pFDX2) were synthesized. The bactericidal effect, biofilm formation inhibition, and gDNA-binding activity of these peptides were investigated. These findings highlight the potential as a natural peptide candidate for TmFDXs.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology (KIOST), Geoje, 53201, Republic of Korea; Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Kyung-Ho Kim
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Gyoungsik Kang
- Department of Aquatic Life Medicine, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Won-Sik Woo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min-Young Sohn
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Ha-Jeong Son
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
4
|
Istrate C, Marques J, Bule P, Correia S, Aires-da-Silva F, Duarte M, Reis AL, Machuqueiro M, Leitão A, Victor BL. In Silico Characterization of African Swine Fever Virus Nucleoprotein p10 Interaction with DNA. Viruses 2022; 14:v14112348. [PMID: 36366446 PMCID: PMC9694697 DOI: 10.3390/v14112348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 02/01/2023] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a highly contagious, hemorrhagic infectious swine disease, with a tremendous sanitary and economic impact on a global scale. Currently, there are no globally available vaccines or treatments. The p10 protein, a structural nucleoprotein encoded by ASFV, has been previously described as capable of binding double-stranded DNA (dsDNA), which may have implications for viral replication. However, the molecular mechanism that governs this interaction is still unknown, mostly due to the lack of a structural model for this protein. In this work, we have generated an ab initio model of the p10 protein and performed extensive structural characterization, using molecular dynamics simulations to identify the motifs and residues regulating DNA recognition. The helix-turn-helix motif identified at the C-terminal region of the protein was shown to be crucial to the dsDNA-binding efficiency. As with other DNA-binding proteins, two distinct serine and lysine-rich regions found in the two helices were identified as key players in the binding to DNA, whose importance was later validated using experimental binding assays. Altogether, these findings may contribute to a better understanding of the p10 function in ASFV replication.
Collapse
Affiliation(s)
- Claudia Istrate
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Jéssica Marques
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Pedro Bule
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Sílvia Correia
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Frederico Aires-da-Silva
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Marlene Duarte
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Luísa Reis
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Miguel Machuqueiro
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Alexandre Leitão
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
- Correspondence: (A.L.); (B.L.V.)
| | - Bruno L. Victor
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
- Correspondence: (A.L.); (B.L.V.)
| |
Collapse
|
8
|
Priolo M, Schanze D, Tatton-Brown K, Mulder PA, Tenorio J, Kooblall K, Acero IH, Alkuraya FS, Arias P, Bernardini L, Bijlsma EK, Cole T, Coubes C, Dapia I, Davies S, Di Donato N, Elcioglu NH, Fahrner JA, Foster A, González NG, Huber I, Iascone M, Kaiser AS, Kamath A, Liebelt J, Lynch SA, Maas SM, Mammì C, Mathijssen IB, McKee S, Menke LA, Mirzaa GM, Montgomery T, Neubauer D, Neumann TE, Pintomalli L, Pisanti MA, Plomp AS, Price S, Salter C, Santos-Simarro F, Sarda P, Segovia M, Shaw-Smith C, Smithson S, Suri M, Valdez RM, Van Haeringen A, Van Hagen JM, Zollino M, Lapunzina P, Thakker RV, Zenker M, Hennekam RC. Further delineation of Malan syndrome. Hum Mutat 2018; 39:1226-1237. [PMID: 29897170 PMCID: PMC6175110 DOI: 10.1002/humu.23563] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 01/02/2023]
Abstract
Malan syndrome is an overgrowth disorder described in a limited number of individuals. We aim to delineate the entity by studying a large group of affected individuals. We gathered data on 45 affected individuals with a molecularly confirmed diagnosis through an international collaboration and compared data to the 35 previously reported individuals. Results indicate that height is > 2 SDS in infancy and childhood but in only half of affected adults. Cardinal facial characteristics include long, triangular face, macrocephaly, prominent forehead, everted lower lip, and prominent chin. Intellectual disability is universally present, behaviorally anxiety is characteristic. Malan syndrome is caused by deletions or point mutations of NFIX clustered mostly in exon 2. There is no genotype‐phenotype correlation except for an increased risk for epilepsy with 19p13.2 microdeletions. Variants arose de novo, except in one family in which mother was mosaic. Variants causing Malan and Marshall‐Smith syndrome can be discerned by differences in the site of stop codon formation. We conclude that Malan syndrome has a well recognizable phenotype that usually can be discerned easily from Marshall–Smith syndrome but rarely there is some overlap. Differentiation from Sotos and Weaver syndrome can be made by clinical evaluation only.
Collapse
Affiliation(s)
- Manuela Priolo
- Unità Operativa di Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Katrin Tatton-Brown
- Division of Genetics and Epidemiology, Institute of Cancer Research, London and South West Thames Regional Genetics Service, St. George's University Hospitals NHS Foundation Trust, London, UK
| | - Paul A Mulder
- Autism Team Northern-Netherlands, Jonx Department of Youth Mental Health, Lentis Psychiatric Institute, Groningen, The Netherlands
| | - Jair Tenorio
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, and CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Kreepa Kooblall
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Fowzan S Alkuraya
- Saudi Human Genome Project, King Abdulaziz City for Science and Technology, and Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Pedro Arias
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, and CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Laura Bernardini
- Cytogenetics Unit, Casa Sollievo della Sofferenza Foundation, San Giovanni Rotondo, Italy
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Trevor Cole
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Christine Coubes
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, CHRU Montpellier, Montpellier, France
| | - Irene Dapia
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, and CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Sally Davies
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | | | - Nursel H Elcioglu
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul, and Eastern Mediterranean University, Mersin, Turkey
| | - Jill A Fahrner
- McKusick-Nathans Institute of Genetic Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alison Foster
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Ann-Sophie Kaiser
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Arveen Kamath
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Jan Liebelt
- South Australian Clinical Genetics Services, SA Pathology, North Adelaide, Australia
| | - Sally Ann Lynch
- UCD Academic Centre on Rare Diseases, School of Medicine and Medical Sciences, University College Dublin, and Clinical Genetics, Temple Street Children's University Hospital, Dublin, Ireland
| | - Saskia M Maas
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Corrado Mammì
- Unità Operativa di Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Inge B Mathijssen
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Shane McKee
- Belfast HSC Trust, Northern Ireland Regional Genetics Service, Belfast, Northern Ireland
| | - Leonie A Menke
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ghayda M Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, and Department of Human Genetics, University of Washington, Seattle, Washington
| | - Tara Montgomery
- Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Dorothee Neubauer
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | | | - Letizia Pintomalli
- Unità Operativa di Genetica Medica, Grande Ospedale Metropolitano Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | | | - Astrid S Plomp
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Sue Price
- Department of Clinical Genetics, Northampton General Hospital NHS Trust, Northampton, UK
| | - Claire Salter
- Wessex Clinical Genetics Service, Princess Ann Hospital, Southampton, UK
| | - Fernando Santos-Simarro
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, and CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Pierre Sarda
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, CHRU Montpellier, Montpellier, France
| | - Mabel Segovia
- CENAGEM, Centro Nacional de Genética, Buenos Aires, Argentina
| | | | | | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rita Maria Valdez
- Genetics Unit, Hospital Militar Central "Cirujano Mayor Dr. Cosme Argerich,", Buenos Aires, Argentina
| | - Arie Van Haeringen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Johanna M Van Hagen
- Department of Clinical Genetics, VU University Medical Centre, Amsterdam, The Netherlands
| | - Marcela Zollino
- Department of Laboratory Medicine, Institute of Medical Genetics, Catholic University, Rome, Italy
| | - Pablo Lapunzina
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma de Madrid, and CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Raoul C Hennekam
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Wasmuth EV, Lima CD. The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome. Nucleic Acids Res 2016; 45:846-860. [PMID: 27899565 PMCID: PMC5314766 DOI: 10.1093/nar/gkw1152] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic RNA exosome is an essential, multi-subunit complex that catalyzes RNA turnover, maturation, and quality control processes. Its non-catalytic donut-shaped core includes 9 subunits that associate with the 3′ to 5′ exoribonucleases Rrp6, and Rrp44/Dis3, a subunit that also catalyzes endoribonuclease activity. Although recent structures and biochemical studies of RNA bound exosomes from S. cerevisiae revealed that the Exo9 central channel guides RNA to either Rrp6 or Rrp44 using partially overlapping and mutually exclusive paths, several issues related to RNA recruitment remain. Here, we identify activities for the highly basic Rrp6 C-terminal tail that we term the ‘lasso’ because it binds RNA and stimulates ribonuclease activities associated with Rrp44 and Rrp6 within the 11-subunit nuclear exosome. Stimulation is dependent on the Exo9 central channel, and the lasso contributes to degradation and processing activities of exosome substrates in vitro and in vivo. Finally, we present evidence that the Rrp6 lasso may be a conserved feature of the eukaryotic RNA exosome.
Collapse
Affiliation(s)
- Elizabeth V Wasmuth
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA .,Howard Hughes Medical Institute, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|