1
|
Le X, Shen Y. Advances in Antiretroviral Therapy for Patients with Human Immunodeficiency Virus-Associated Tuberculosis. Viruses 2024; 16:494. [PMID: 38675837 PMCID: PMC11054420 DOI: 10.3390/v16040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Tuberculosis is one of the most common opportunistic infections and a prominent cause of death in patients with human immunodeficiency virus (HIV) infection, in spite of near-universal access to antiretroviral therapy (ART) and tuberculosis preventive therapy. For patients with active tuberculosis but not yet receiving ART, starting ART after anti-tuberculosis treatment can complicate clinical management due to drug toxicities, drug-drug interactions and immune reconstitution inflammatory syndrome (IRIS) events. The timing of ART initiation has a crucial impact on treatment outcomes, especially for patients with tuberculous meningitis. The principles of ART in patients with HIV-associated tuberculosis are specific and relatively complex in comparison to patients with other opportunistic infections or cancers. In this review, we summarize the current progress in the timing of ART initiation, ART regimens, drug-drug interactions between anti-tuberculosis and antiretroviral agents, and IRIS.
Collapse
Affiliation(s)
| | - Yinzhong Shen
- Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China;
| |
Collapse
|
2
|
Stek C, Shey M, Mnika K, Schutz C, Thienemann F, Wilkinson RJ, Lynen L, Meintjes G. Relationship Between LTA4H Promotor Polymorphism and Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome and Its Prevention With Prednisone. Open Forum Infect Dis 2023; 10:ofad379. [PMID: 37520416 PMCID: PMC10375423 DOI: 10.1093/ofid/ofad379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
The development of paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) and its prevention using prednisone may potentially be mediated by the LTA4H genotype. We assessed this hypothesis in a clinical trial evaluating prednisone to prevent TB-IRIS. We did not find an association between LTA4H genotype and TB-IRIS incidence or prednisone efficacy.
Collapse
Affiliation(s)
- Cari Stek
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Muki Shey
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Khuthala Mnika
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Charlotte Schutz
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Friedrich Thienemann
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Francis Crick Institute, London, United Kingdom
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Lutgarde Lynen
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Graeme Meintjes
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Leukotriene A4 hydrolase (LTA4H rs17525495) gene polymorphisms and paradoxical reactions in extrapulmonary tuberculosis. Sci Rep 2023; 13:3746. [PMID: 36879040 PMCID: PMC9988831 DOI: 10.1038/s41598-023-30923-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Paradoxical reactions (PRs) are poorly studied complex immunological phenomena, among patients with tuberculosis (TB). When PRs involves critical structures like the central nervous system (CNS), immunomodulatory therapy is often required. Predictors for PRs in TB to pre-empt appropriate treatment strategies in high-risk groups are lacking. TT genotype of Leukotriene A4 hydrolase (LTA4H) promoter region rs17525495 polymorphisms are associated with exaggerated immune responses in Tuberculous meningitis (TBM), the most severe form of extrapulmonary tuberculosis (EPTB). The association of these polymorphisms with PRs is not known. We evaluated this plausibility among 113 patients with EPTB, at high risk of PRs. Majority [81 (71.7%)] had disseminated tuberculosis with prominent CNS [54 (47.8%)] and lymph node involvement [47 (41.6%)]. Human immunodeficiency Virus (HIV) co-infection was seen among 23 (20.3%) patients. PRs were noted in 38.9% patients, at a median duration of 3 months (IQR 2-4). LTA4H rs17525495 single nucleotide polymorphism (SNP) analysis showed 52 (46%) patients had CC, 43 (38.1%) had CT and 18 (15.9%) had TT genotypes. There was no statistically significant difference in occurrence [CC 38.5% vs CT 39.5% vs TT 38.7%] and time of onset [median (IQR)] of PRs across the genotypes [CC 3 (1-4.7), CT 3 (2-5), TT 2 (2-3)]. PRs was shown to be significantly linked with HIV co-infection (RR 0.6, 95% CI 0.29-1.28), culture positivity (RR 0.5, 95% CI 0.28-1.14), TB Lymphadenitis (RR 0.7, 95% CI 0.44-1.19) and CNS involvement RR 2.1, 95% CI 1.27-3.49) in the univariate analysis (p < 0.2). On multivariate analysis, CNS involvement alone was associated with PRs (aRR 3.8 (1.38-10.92); p < 0.01). PRs were associated with CNS involvement but not with LTA4H rs17525495 polymorphisms.
Collapse
|
4
|
Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome-An Extempore Game of Misfiring with Defense Arsenals. Pathogens 2023; 12:pathogens12020210. [PMID: 36839482 PMCID: PMC9964757 DOI: 10.3390/pathogens12020210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/21/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
The lethal combination involving TB and HIV, known as "syndemic" diseases, synergistically act upon one another to magnify the disease burden. Individuals on anti-retroviral therapy (ART) are at risk of developing TB-associated immune reconstitution inflammatory syndrome (TB-IRIS). The underlying inflammatory complication includes the rapid restoration of immune responses following ART, eventually leading to exaggerated inflammatory responses to MTB antigens. TB-IRIS continues to be a cause of morbidity and mortality among HIV/TB coinfected patients initiating ART, and although a significant quantum of knowledge has been acquired on the pathogenesis of IRIS, the underlying pathomechanisms and identification of a sensitive and specific diagnostic marker still remain a grey area of investigation. Here, we reviewed the latest research developments into IRIS immunopathogenesis, and outlined the modalities to prevent and manage strategies for better clinical and diagnostic outcomes for IRIS.
Collapse
|
5
|
de Sá NBR, de Souza NCS, Neira-Goulart M, Ribeiro-Alves M, Da Silva TP, Pilotto JH, Rolla VC, Giacoia-Gripp CBW, de Oliveira Pinto LM, Scott-Algara D, Morgado MG, Teixeira SLM. Inflammasome genetic variants are associated with tuberculosis, HIV-1 infection, and TB/HIV-immune reconstitution inflammatory syndrome outcomes. Front Cell Infect Microbiol 2022; 12:962059. [PMID: 36204643 PMCID: PMC9531132 DOI: 10.3389/fcimb.2022.962059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTuberculosis (TB) and AIDS are the leading causes of infectious diseases death worldwide. Here, we investigated the relationship between from single nucleotide polymorphisms (SNPs) of the NLRP3, CARD8, AIM2, CASP-1, IFI16, and IL-1β inflammasome genes, as well as the profiles of secreted proinflammatory cytokines (e.g., IL-1β, IL-18, IL-33, and IL-6) with the TB clinical profiles, TB-HIV coinfection, and IRIS onset.MethodsThe individuals were divided into four groups: TB-HIV group (n=88; 11 of them with IRIS), HIV-1 group (n=20), TB group (n=24) and healthy volunteers (HC) group (n=10), and were followed up at INI/FIOCRUZ and HGNI (Rio de Janeiro/Brazil) from 2006 to 2016. Real-time PCR was used to determine the genotypes of the Single Nucleotide Polymorphism (SNPs), and ELISA was used to measure the plasma cytokine levels. Unconditional logistic regression models were used to perform risk estimations.ResultsA higher risk for extrapulmonary TB was associated with the TT genotype (aOR=6.76; P=0.026) in the NLRP3 rs4612666 Single Nucleotide Polymorphism (SNP) and the C-C-T-G-C haplotype (aOR=4.99; P= 0.017) in the NLRP3 variants. This same Single Nucleotide Polymorphism (SNP) was associated with lower risk against extrapulmonary TB when the carrier allele C (aOR=0.15; P=0.021) was present. Among those with HIV-1 infections, a higher risk for TB onset was associated with the GA genotype (aOR=5.5; P=0.044) in the IL1-β rs1143634 Single Nucleotide Polymorphism (SNP). In contrast, lower risk against TB onset was associated with the A-G haplotype (aOR=0.17; P= 0.026) in the CARD8 variants. Higher IL-6 and IL-33 levels were observed in individuals with TB. A higher risk for IRIS onset was associated with CD8 counts ≤ 500 cells/mm3 (aOR=12.32; P=0.010), the presence of extrapulmonary TB (aOR=6.6; P=0.038), and the CT genotype (aOR=61.06; P=0.026) or carrier allele T (aOR=61.06; P=0.026) in the AIM2 rs2276405 Single Nucleotide Polymorphism (SNP), whereas lower risk against IRIS onset was associated with the AT genotype (aOR=0.02; P=0.033) or carrier allele T (aOR=0.02; P=0.029) in the CARD8 rs2043211 Single Nucleotide Polymorphism (SNP) and the T-G haplotype (aOR=0.07; P= 0.033) in the CARD8 variants. No other significant associations were observed.ConclusionsOur results depict the involvement of genetic polymorphisms of crucial innate immunity genes and proinflammatory cytokines in the clinical outcomes related to TB-HIV coinfection.
Collapse
Affiliation(s)
- Nathalia Beatriz Ramos de Sá
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- *Correspondence: Mariza Gonçalves Morgado, ; Nathalia Beatriz Ramos de Sá,
| | | | - Milena Neira-Goulart
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcelo Ribeiro-Alves
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectious Diseases Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tatiana Pereira Da Silva
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Jose Henrique Pilotto
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Nova Iguaçu General Hospital, Nova Iguaçu, Rio de Janeiro, Brazil
| | - Valeria Cavalcanti Rolla
- Clinical Research Laboratory on Mycobacteria, National Institute of Infectious Diseases Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | - Daniel Scott-Algara
- Unité de Biologie Cellulaire des Lymphocytes, Institut Pasteur, Paris, France
| | - Mariza Gonçalves Morgado
- 1Laboratory of AIDS & Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- *Correspondence: Mariza Gonçalves Morgado, ; Nathalia Beatriz Ramos de Sá,
| | | |
Collapse
|
6
|
Paradoxical manifestations during tuberculous meningitis treatment among HIV-negative patients: a retrospective descriptive study and literature review. Neurol Sci 2021; 43:2699-2708. [PMID: 34705128 DOI: 10.1007/s10072-021-05693-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Tuberculous meningitis (TBM) is the most frequent, severe, and disabling form of central nervous system (CNS) tuberculosis (TB). TBM paradoxical manifestations are characterized by clinical or paraclinical worsening after 1 month of effective anti-TB treatment in patients who initially responded to treatment despite the use of adjunctive corticosteroids. METHODS Retrospective descriptive study of consecutive HIV-negative adult patients (≥ 18 years) with definitive TBM who developed a paradoxical manifestation following anti-TB in a tertiary-care hospital in Mexico from 2009 to 2019; we also conducted a literature review of published cases/series of paradoxical manifestations in HIV-negative patients from 1980 to 2020. RESULTS We detected 84 cases of definitive TBM; 55 (68.7%) HIV-negative patients and 29 (36.3%) HIV-infected patients. Among HIV-negative patients, four (7.3%), three female and one male (19-49 years old), developed a paradoxical manifestation within 4-14 weeks following treatment initiation despite receiving adequate corticosteroid doses; Mycobacterium bovis was isolated from the cerebrospinal fluid of three cases and Mycobacterium tuberculosis in one more. Two patients developed vasculopathy-related cerebral infarctions, one severe basilar meningitis, and hydrocephalus, one more a tuberculoma. Two were treated with intravenous cyclophosphamide, and two with steroids. One of the patients treated with steroids died; patients who received cyclophosphamide had a good clinical response. CONCLUSIONS This case series illustrates the diverse clinical/radiologic paradoxical manifestations of TBM in HIV-negative patients. Cyclophosphamide may be safe and effective in treating TBM-associated paradoxical manifestations. Specific diagnostic and care protocols for these patients are needed.
Collapse
|
7
|
Zhou LH, Zhao HZ, Wang X, Wang RY, Jiang YK, Huang LP, Yip CW, Cheng JH, Que CX, Zhu LP. Immune reconstitution inflammatory syndrome in non-HIV cryptococcal meningitis: Cross-talk between pathogen and host. Mycoses 2021; 64:1402-1411. [PMID: 34390048 PMCID: PMC9290805 DOI: 10.1111/myc.13361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cryptococcal meningitis (CM)-associated immune reconstitution inflammatory syndrome (IRIS) is associated with high mortality, the epidemiology and pathophysiology of which is poorly understood, especially in non-HIV populations. OBJECTIVES We aim to explore the incidence, clinical risk factors, immunological profiles and potential influence of leukotriene A4 hydroxylase (LTA4H) on non-HIV CM IRIS populations. METHODS In this observational cohort study, 101 previously untreated non-HIV CM patients were included. We obtained data for clinical variables, 27 cerebrospinal fluid (CSF) cytokines levels and LTA4H genotype frequencies. Changes of CSF cytokines levels before and at IRIS occurrence were compared. RESULTS Immune reconstitution inflammatory syndrome was identified in 11 immunocompetent males, generating an incidence of 10.9% in non-HIV CM patients. Patients with higher CrAg titres (> 1:160) were more likely to develop IRIS, and titre of 1:1280 is the optimum level to predict IRIS occurrence. Baseline CSF cytokines were significantly higher in IRIS group, which indicated a severe host immune inflammation response. Four LTA4H SNPs (rs17525488, rs6538697, rs17525495 and rs1978331) exhibited significant genetic susceptibility to IRIS in overall non-HIV CM, while five cytokines were found to be associated with rs1978331, and baseline monocyte chemotactic protein 1 (MCP-1) became the only cytokine correlated with both IRIS and LTA4H SNPs. CONCLUSIONS Our study suggested that non-HIV CM patients with high fungal burden and severe immune inflammation response were more likely to developed IRIS. LTA4H polymorphisms may affect the pathogenesis of IRIS by regulating the level of baseline CSF MCP-1.
Collapse
Affiliation(s)
- Ling-Hong Zhou
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical college, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua-Zhen Zhao
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical college, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuan Wang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical college, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui-Ying Wang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical college, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying-Kui Jiang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical college, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Ping Huang
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical college, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | - Ching-Wan Yip
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical college, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | - Jia-Hui Cheng
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical college, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun-Xing Que
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical college, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Ping Zhu
- Department of Infectious Diseases, Huashan Hospital, Shanghai Medical college, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Vinhaes CL, Araujo-Pereira M, Tibúrcio R, Cubillos-Angulo JM, Demitto FO, Akrami KM, Andrade BB. Systemic Inflammation Associated with Immune Reconstitution Inflammatory Syndrome in Persons Living with HIV. Life (Basel) 2021; 11:life11010065. [PMID: 33477581 PMCID: PMC7831327 DOI: 10.3390/life11010065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Antiretroviral therapy (ART) has represented a major advancement in the care of people living with HIV (PLWHH), resulting in significant reductions in morbidity and mortality through immune reconstitution and attenuation of homeostatic disruption. Importantly, restoration of immune function in PLWH with opportunistic infections occasionally leads to an intense and uncontrolled cytokine storm following ART initiation known as immune reconstitution inflammatory syndrome (IRIS). IRIS occurrence is associated with the severe and rapid clinical deterioration that results in significant morbidity and mortality. Here, we detail the determinants underlying IRIS development in PLWH, compiling the available knowledge in the field to highlight details of the inflammatory responses in IRIS associated with the most commonly reported opportunistic pathogens. This review also highlights gaps in the understanding of IRIS pathogenesis and summarizes therapeutic strategies that have been used for IRIS.
Collapse
Affiliation(s)
- Caian L. Vinhaes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador 40290-000, Brazil
| | - Mariana Araujo-Pereira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
| | - Rafael Tibúrcio
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
| | - Juan M. Cubillos-Angulo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
| | - Fernanda O. Demitto
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
| | - Kevan M. Akrami
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
- Divisions of Infectious Diseases and Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (C.L.V.); (M.A.-P.); (R.T.); (J.M.C.-A.); (K.M.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador 40210-320, Brazil;
- Bahiana School of Medicine and Public Health, Bahia Foundation for the Development of Sciences, Salvador 40290-000, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
- Curso de Medicina, Centro Universitário Faculdade de Tecnologia e Ciências (UniFTC), Salvador 41741-590, Brazil
- Correspondence: ; Tel.: +55-71-3176-2264
| |
Collapse
|
9
|
Host-Derived Lipids from Tuberculous Pleurisy Impair Macrophage Microbicidal-Associated Metabolic Activity. Cell Rep 2020; 33:108547. [PMID: 33378679 DOI: 10.1016/j.celrep.2020.108547] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/18/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) regulates the macrophage metabolic state to thrive in the host, yet the responsible mechanisms remain elusive. Macrophage activation toward the microbicidal (M1) program depends on the HIF-1α-mediated metabolic shift from oxidative phosphorylation (OXPHOS) toward glycolysis. Here, we ask whether a tuberculosis (TB) microenvironment changes the M1 macrophage metabolic state. We expose M1 macrophages to the acellular fraction of tuberculous pleural effusions (TB-PEs) and find lower glycolytic activity, accompanied by elevated levels of OXPHOS and bacillary load, compared to controls. The eicosanoid fraction of TB-PE drives these metabolic alterations. HIF-1α stabilization reverts the effect of TB-PE by restoring M1 metabolism. Furthermore, Mtb-infected mice with stabilized HIF-1α display lower bacillary loads and a pronounced M1-like metabolic profile in alveolar macrophages (AMs). Collectively, we demonstrate that lipids from a TB-associated microenvironment alter the M1 macrophage metabolic reprogramming by hampering HIF-1α functions, thereby impairing control of Mtb infection.
Collapse
|
10
|
Narendran G, Jyotheeswaran K, Senguttuvan T, Vinhaes CL, Santhanakrishnan RK, Manoharan T, Selvaraj A, Chandrasekaran P, Menon PA, Bhavani KP, Reddy D, Narayanan R, Subramanyam B, Sathyavelu S, Krishnaraja R, Kalirajan P, Angamuthu D, Susaimuthu SM, Ganesan RRK, Tripathy SP, Swaminathan S, Andrade BB. Characteristics of paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome and its influence on tuberculosis treatment outcomes in persons living with HIV. Int J Infect Dis 2020; 98:261-267. [PMID: 32623087 DOI: 10.1016/j.ijid.2020.06.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE The influence of tuberculosis (TB)-immune reconstitution inflammatory syndrome (IRIS) on TB treatment outcomes and its risk factors were investigated among people with human immunodeficiency virus (HIV) and co-infected with TB. METHODS Newly diagnosed, culture-confirmed, pulmonary TB patients with HIV and enrolled in a clinical trial (NCT00933790) were retrospectively analysed for IRIS occurrence. Risk factors and TB outcomes (up to 18 months after initiation of anti-TB treatment [ATT]) were compared between people who experienced IRIS (IRIS group) and those who did not (non-IRIS group). RESULTS TB-IRIS occurred in 82 of 292 (28%) participants. Significant baseline risk factors predisposing to TB-IRIS occurrence in univariate analysis were: lower CD4+ T-cell count, CD4/CD8 ratio, haemoglobin levels, presence of extra-pulmonary TB focus, and higher HIV viral load; the last two retained significance in the multivariate analysis. After 2 months of ATT commencement, sputum smear conversion was documented in 45 of 80 (56.2%) vs. 124 of 194 (63.9%) (p=0.23), culture conversion was in 75 of 80 (93.7%) vs. 178 of 194 (91.7%) (p=0.57) and the median decline in viral load (log10copies/mm3) was 2.7 in the IRIS vs. 1.1 in the non-IRIS groups (p<0.0001), respectively. An unfavourable response to TB therapy was detected in 17 of 82 (20.7%) and 28 of 210 (13.3%) in the IRIS and non-IRIS groups, respectively (p=0.14). CONCLUSIONS TB-IRIS frequently occurred in people with advanced HIV infection and in those who presented with extra-pulmonary TB lesions, without influencing subsequent TB treatment outcomes.
Collapse
Affiliation(s)
- Gopalan Narendran
- National Institute for Research in Tuberculosis, Indian Council of Medical Research Chennai, Tamil Nadu, India
| | - Keerthana Jyotheeswaran
- National Institute for Research in Tuberculosis, Indian Council of Medical Research Chennai, Tamil Nadu, India
| | - Thirumaran Senguttuvan
- National Institute for Research in Tuberculosis, Indian Council of Medical Research Chennai, Tamil Nadu, India
| | - Caian L Vinhaes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil; Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil; Curso de Medicina, Faculdade de Tecnologia e Ciências (UniFTC), Salvador, Brazil
| | - Ramesh K Santhanakrishnan
- National Institute for Research in Tuberculosis, Indian Council of Medical Research Chennai, Tamil Nadu, India
| | - Tamizhselvan Manoharan
- National Institute for Research in Tuberculosis, Indian Council of Medical Research Chennai, Tamil Nadu, India
| | - Anbhalagan Selvaraj
- National Institute for Research in Tuberculosis, Indian Council of Medical Research Chennai, Tamil Nadu, India
| | | | - Pradeep A Menon
- National Institute for Research in Tuberculosis, Indian Council of Medical Research Chennai, Tamil Nadu, India
| | - Kannabiran P Bhavani
- National Institute for Research in Tuberculosis, Indian Council of Medical Research Chennai, Tamil Nadu, India
| | - Devarajulu Reddy
- National Institute for Research in Tuberculosis, Indian Council of Medical Research Chennai, Tamil Nadu, India
| | - Ravichandran Narayanan
- Government Hospital of Thoracic Medicine, Tambaram Sanatorium, Chennai, Tamil Nadu, India
| | - Balaji Subramanyam
- National Institute for Research in Tuberculosis, Indian Council of Medical Research Chennai, Tamil Nadu, India
| | - Sekhar Sathyavelu
- Rajiv Gandhi Government General Hospital, Park Town, Chennai, Tamil Nadu, India
| | - Raja Krishnaraja
- Government Hospital of Thoracic Medicine, Tambaram Sanatorium, Chennai, Tamil Nadu, India
| | - Pownraj Kalirajan
- National Institute for Research in Tuberculosis, Indian Council of Medical Research Chennai, Tamil Nadu, India
| | - Dhanalakshmi Angamuthu
- National Institute for Research in Tuberculosis, Indian Council of Medical Research Chennai, Tamil Nadu, India
| | - Stella Mary Susaimuthu
- National Institute for Research in Tuberculosis, Indian Council of Medical Research Chennai, Tamil Nadu, India
| | | | - Srikanth P Tripathy
- National Institute for Research in Tuberculosis, Indian Council of Medical Research Chennai, Tamil Nadu, India
| | | | - Bruno B Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil; Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil; Curso de Medicina, Faculdade de Tecnologia e Ciências (UniFTC), Salvador, Brazil; Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil; Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil; Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
11
|
Association of Leukotriene A4 Hydrolase with Tuberculosis Susceptibility Using Genomic Data in Portugal. Microorganisms 2019; 7:microorganisms7120650. [PMID: 31817174 PMCID: PMC6956305 DOI: 10.3390/microorganisms7120650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 01/03/2023] Open
Abstract
Leukotriene A4 hydrolase (LTA4H) is a key enzyme in the eicosanoid pathway. lta4h locus polymorphisms have previously been linked to tuberculosis (TB) susceptibility and disease outcome in a Vietnamese dataset, but further studies suggested that those results were poorly reproducible. We, therefore, compared the full set of variants (113 SNPs) within the gene in a Portuguese dataset of 112 TB patients and 120 controls, using both the frequency of SNPs and haplotypes, in order to assess their association with TB susceptibility. Although we obtained no significant differences between the TB patients and the control group, linkage analysis showed that an extensively typed polymorphism, rs17525495, was associated with 21 other SNPs, all displaying evidence of association to lower LTA4H expression. While the derived alleles of these SNPs showed a moderately higher frequency in the TB group, differences were not significant. In contrast to Asian populations, where these SNPs are much more frequent, the low frequencies of candidate SNPs in Europeans render them less pertinent in a public health context. Consequently, the typing of specific polymorphisms as a strategy to establish preventive measures and differential TB drug treatments is important but needs to take into consideration that haplotypic background and structure can be substantially different in distinct geographic regions.
Collapse
|
12
|
Silva CAM, Graham B, Webb K, Ashton LV, Harton M, Luetkemeyer AF, Bokatzian S, Almubarak R, Mahapatra S, Hovind L, Kendall MA, Havlir D, Belisle JT, De Groote MA. A pilot metabolomics study of tuberculosis immune reconstitution inflammatory syndrome. Int J Infect Dis 2019; 84:30-38. [PMID: 31009738 PMCID: PMC6613934 DOI: 10.1016/j.ijid.2019.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/10/2019] [Accepted: 04/13/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diagnosis of paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is challenging and new tools are needed for early diagnosis as well as to understand the biochemical events that underlie the pathology in TB-IRIS. METHODS Plasma samples were obtained from participants from a randomized HIV/TB treatment strategy study (AIDS Clinical Trials Group [ACTG] A5221) with (n = 26) and without TB-IRIS (n = 22) for an untargeted metabolomics pilot study by liquid-chromatography mass spectrometry. The metabolic profile of these participants was compared at the study entry and as close to the diagnosis of TB-IRIS as possible (TB-IRIS window). Molecular features with p < 0.05 and log2 fold change ≥0.58 were submitted for pathway analysis through MetaboAnalyst. We also elucidated potential metabolic signatures for TB-IRIS using a LASSO regression model. RESULTS At the study entry, we showed that the arachidonic acid and glycerophospholipid metabolism were altered in the TB-IRIS group. Sphingolipid and linoleic acid metabolism were the most affected pathways during the TB-IRIS window. LASSO modeling selected a set of 8 and 7 molecular features with the potential to predict TB-IRIS at study entry and during the TB-IRIS window, respectively. CONCLUSION This study suggests that the use of plasma metabolites may distinguish HIV-TB patients with and without TB-IRIS.
Collapse
Affiliation(s)
- Carlos A M Silva
- Mycobacterial Research Laboratories, Fort Collins, CO, USA; Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Barbara Graham
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kristofor Webb
- Mycobacterial Research Laboratories, Fort Collins, CO, USA
| | | | - Marisa Harton
- Mycobacterial Research Laboratories, Fort Collins, CO, USA
| | | | | | | | | | - Laura Hovind
- Frontier Science & Technology Research Foundation, Inc., Amherst, NY, USA
| | - Michelle A Kendall
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health Boston, MA, USA
| | - Diane Havlir
- University of California San Francisco, San Francisco, CA, USA
| | - John T Belisle
- Mycobacterial Research Laboratories, Fort Collins, CO, USA
| | | |
Collapse
|
13
|
Dellière S, Guery R, Candon S, Rammaert B, Aguilar C, Lanternier F, Chatenoud L, Lortholary O. Understanding Pathogenesis and Care Challenges of Immune Reconstitution Inflammatory Syndrome in Fungal Infections. J Fungi (Basel) 2018; 4:E139. [PMID: 30562960 PMCID: PMC6308948 DOI: 10.3390/jof4040139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 12/16/2022] Open
Abstract
Immune deficiency of diverse etiology, including human immunodeficiency virus (HIV), antineoplastic agents, immunosuppressive agents used in solid organ recipients, immunomodulatory therapy, and other biologics, all promote invasive fungal infections. Subsequent voluntary or unintended immune recovery may induce an exaggerated inflammatory response defining immune reconstitution inflammatory syndrome (IRIS), which causes significant mortality and morbidity. Fungal-associated IRIS raises several diagnostic and management issues. Mostly studied with Cryptococcus, it has also been described with other major fungi implicated in human invasive fungal infections, such as Pneumocystis, Aspergillus, Candida, and Histoplasma. Furthermore, the understanding of IRIS pathogenesis remains in its infancy. This review summarizes current knowledge regarding the clinical characteristics of IRIS depending on fungal species and existing strategies to predict, prevent, and treat IRIS in this patient population, and tries to propose a common immunological background to fungal IRIS.
Collapse
Affiliation(s)
- Sarah Dellière
- Medical School, Paris-Descartes University, APHP, Necker-Enfants Malades Hospital, Infectious Disease Center Necker-Pasteur, IHU Imagine, 75015 Paris, France.
| | - Romain Guery
- Medical School, Paris-Descartes University, APHP, Necker-Enfants Malades Hospital, Infectious Disease Center Necker-Pasteur, IHU Imagine, 75015 Paris, France.
| | - Sophie Candon
- Medical School, Paris-Descartes University, INSERM U1151-CNRS UMR 8253APHP, Necker-Enfants Malades Hospital, APHP, Clinical Immunology, 75015 Paris, France.
| | - Blandine Rammaert
- Medical School, Poitiers University, Poitiers, France; Poitiers University Hospital, Infectious Disease Unit, Poitiers, France; INSERM U1070, 86022 Poitiers, France.
| | - Claire Aguilar
- Medical School, Paris-Descartes University, APHP, Necker-Enfants Malades Hospital, Infectious Disease Center Necker-Pasteur, IHU Imagine, 75015 Paris, France.
| | - Fanny Lanternier
- Medical School, Paris-Descartes University, APHP, Necker-Enfants Malades Hospital, Infectious Disease Center Necker-Pasteur, IHU Imagine, 75015 Paris, France.
- Pasteur Institute, Molecular Mycology Unit, National Reference Center for Invasive Fungal Disease and Antifungals, CNRS UMR 2000, 75015 Paris, France.
| | - Lucienne Chatenoud
- Medical School, Paris-Descartes University, INSERM U1151-CNRS UMR 8253APHP, Necker-Enfants Malades Hospital, APHP, Clinical Immunology, 75015 Paris, France.
| | - Olivier Lortholary
- Medical School, Paris-Descartes University, APHP, Necker-Enfants Malades Hospital, Infectious Disease Center Necker-Pasteur, IHU Imagine, 75015 Paris, France.
- Pasteur Institute, Molecular Mycology Unit, National Reference Center for Invasive Fungal Disease and Antifungals, CNRS UMR 2000, 75015 Paris, France.
| |
Collapse
|
14
|
Stek C, Allwood B, Walker NF, Wilkinson RJ, Lynen L, Meintjes G. The Immune Mechanisms of Lung Parenchymal Damage in Tuberculosis and the Role of Host-Directed Therapy. Front Microbiol 2018; 9:2603. [PMID: 30425706 PMCID: PMC6218626 DOI: 10.3389/fmicb.2018.02603] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022] Open
Abstract
Impaired lung function is common in people with a history of tuberculosis. Host-directed therapy added to tuberculosis treatment may reduce lung damage and result in improved lung function. An understanding of the pathogenesis of pulmonary damage in TB is fundamental to successfully predicting which interventions could be beneficial. In this review, we describe the different features of TB immunopathology that lead to impaired lung function, namely cavities, bronchiectasis, and fibrosis. We discuss the immunological processes that cause lung damage, focusing on studies performed in humans, and using chest radiograph abnormalities as a marker for pulmonary damage. We highlight the roles of matrix metalloproteinases, neutrophils, eicosanoids and cytokines, like tumor necrosis factor-α and interleukin 1β, as well as the role of HIV co-infection. Finally, we focus on various existing drugs that affect one or more of the immunological mediators of lung damage and could therefore play a role as host-directed therapy.
Collapse
Affiliation(s)
- Cari Stek
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Brian Allwood
- Division of Pulmonology, Department of Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Naomi F Walker
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Imperial College London, London, United Kingdom.,Francis Crick Institute, London, United Kingdom
| | - Lutgarde Lynen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
Ravimohan S, Nfanyana K, Tamuhla N, Tiemessen CT, Weissman D, Bisson GP. Common Variation in NLRP3 Is Associated With Early Death and Elevated Inflammasome Biomarkers Among Advanced HIV/TB Co-infected Patients in Botswana. Open Forum Infect Dis 2018; 5:ofy075. [PMID: 29732382 PMCID: PMC5928406 DOI: 10.1093/ofid/ofy075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
Background Elevated inflammation is associated with early mortality among HIV/tuberculosis (TB) patients starting antiretroviral therapy (ART); however, the sources of immune activation are unclear. We hypothesized that common variation in innate immune genes contributes to excessive inflammation linked to death. As single nucleotide polymorphisms (SNPs) in inflammasome pathway genes can increase risk for inflammatory diseases, we investigated their association with early mortality among a previously described cohort of HIV/TB patients initiating ART in Botswana. Methods We genotyped 8 SNPs within 5 inflammasome pathway genes and determined their association with death. For adjusted analyses, we used a logistic regression model. For SNPs associated with mortality, we explored their relationship with levels of systemic inflammatory markers using a linear regression model. Results Ninety-four patients in the parent study had samples for genetic analysis. Of these, 82 (87%) were survivors and 12 (13%) died within 6 months of starting ART. In a logistic regression model, NLRP3 rs10754558 was independently associated with a 4.1-fold increased odds of death (95% confidence interval, 1.04–16.5). In adjusted linear regression models, the NLRP3 rs10754558-G allele was linked to elevated IL-18 at baseline (Beta, 0.23; SE, 0.10; P = .033) and week 4 post-ART (Beta, 0.24; SE, 0.11; P = .026). This allele was associated with increased MCP-1 at baseline (Beta, 0.24; SE, 0.10; P = .02) and IL-10 (Beta, 0.27; SE, 0.11; P = .013) at week 4 post-ART. Conclusion The NLRP3 rs10754558-G SNP is associated with an increased risk for early mortality in HIV/TB patients initiating ART. These patients may benefit from therapies that decrease inflammasome-mediated inflammation.
Collapse
Affiliation(s)
- Shruthi Ravimohan
- Division of Infectious Diseases, Department of Medicine, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Botswana-UPenn Partnership, Gaborone, Botswana
| | | | - Neo Tamuhla
- Botswana-UPenn Partnership, Gaborone, Botswana
| | - Caroline T Tiemessen
- Centre for HIV-1 and STIs, National Institute for Communicable Diseases, and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Drew Weissman
- Division of Infectious Diseases, Department of Medicine, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Botswana-UPenn Partnership, Gaborone, Botswana
| | - Gregory P Bisson
- Division of Infectious Diseases, Department of Medicine, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Botswana-UPenn Partnership, Gaborone, Botswana.,Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|