1
|
Zhao Y, Wu R, Wu X, Zhou N, Ren J, Liu W, Yu R, Zhang S, Yang J, Li H, Liu H. Modulation of physiological functions and metabolome of Vibrio alginolyticus by quorum-regulatory sRNA, Qrr1. Lett Appl Microbiol 2024; 77:ovae126. [PMID: 39657312 DOI: 10.1093/lambio/ovae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/05/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Vibrio alginolyticus, the causative agent of aquatic vertebrates and invertebrates, can cause severe infections (e.g. septicemia, gill necrosis, and surface ulcers) and high mortality in aquatic organisms, leading to serious economic losses in global aquaculture. Small non-coding RNAs (sRNAs), emerging modulators of gene expression, played vital regulatory roles in virulence, pathogenicity, and physiological metabolism of bacteria. In this work, the modulation of physiological functions and metabolome of V. alginolyticus by the quorum-regulatory sRNA, Qrr1, was figured out. We found that the deletion of qrr1 induced significant cell shape elongation. Meanwhile, Qrr1 could inhibit the production of alkaline serine protease by weakening the expression of main regulator LuxR in the quorum sensing (QS) system. Moreover, the untargeted metabolomics and lipidomics approaches showed that most of nucleotides, organic acids, carbohydrates, and lipidome (both lipid content and category) were significantly altered in response to the qrr1 deletion. Spearman correlation analysis demonstrated that most of the intermediates involved in glutamate metabolism, sphingolipid metabolism, and glycerolipid metabolism displayed high correlations with cell virulence factors. These findings illuminate the mechanism of bacterial virulence regulation and further exploit potential therapeutic targets for virulence prevention in V. alginolyticus.
Collapse
Affiliation(s)
- Yanni Zhao
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Ruobing Wu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xuan Wu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Ningning Zhou
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jiamin Ren
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wang Liu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Rui Yu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Senhu Zhang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jinfang Yang
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hua Li
- SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huan Liu
- School of Food Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| |
Collapse
|
2
|
Zhang W, Huang C, Chen Z, Song D, Zhang Y, Yang S, Wang N, Jian J, Pang H. Vibrio alginolyticus Reprograms CIK Cell Metabolism via T3SS Effector VopS to Promote Host Cell Ferroptosis. Animals (Basel) 2024; 14:3250. [PMID: 39595303 PMCID: PMC11591379 DOI: 10.3390/ani14223250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Vibrio alginolyticus is a Gram-negative pathogen of both marine animals and humans, resulting in significant losses for the aquaculture industry. Emerging evidence indicates that V. alginolyticus manipulates cell death for its pathogenicity, but the underlying molecular mechanisms remain unclear. Here, a gene designated vopS in V. alginolyticus HY9901 was identified, which was predicted to encode the T3SS effector protein. To determine whether VopS contributes to the pathogenesis of V. alginolyticus, the ΔvopS mutant strain was constructed and phenotypically characterized. The deletion of VopS not only reduced the ability to secrete extracellular proteases and virulence but also affected the expression of the T3SS genes. Furthermore, VopS was cytotoxic and induced apoptosis, as confirmed by elevated LDH and the activation of caspase-3. Metabolomic analysis revealed considerable metabolomic disruptions upon V. alginolyticus infection. The VopS effector induced host cell ferroptosis by promoting the synthesis of adrenic acid, depleting cellular glutathione, and subsequently increasing the accumulation of ferrous (Fe2+). Taken together, our findings provide that the VopS effector is an essential virulence factor of V. alginolyticus, which can lead to ferroptosis.
Collapse
Affiliation(s)
- Weijie Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Chao Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Zhihang Chen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Dawei Song
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Yujia Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Shuai Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Na Wang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China;
| | - Jichang Jian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| | - Huanying Pang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (W.Z.); (C.H.); (Z.C.); (D.S.); (Y.Z.); (S.Y.); (J.J.)
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture & Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
| |
Collapse
|
3
|
Akgul A, Kalindamar S, Kordon AO, Abdelhamed H, Ibrahim I, Tekedar HC, Karsi A. The RNA chaperone Hfq has a multifaceted role in Edwardsiella ictaluri. Front Cell Infect Microbiol 2024; 14:1394008. [PMID: 39099884 PMCID: PMC11294321 DOI: 10.3389/fcimb.2024.1394008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
Edwardsiella ictaluri is a Gram-negative, facultative intracellular bacterium that causes enteric septicemia in catfish (ESC). The RNA chaperone Hfq (host factor for phage Qβ replication) facilitates gene regulation via small RNAs (sRNAs) in various pathogenic bacteria. Despite its significance in other bacterial species, the role of hfq in E. ictaluri remains unexplored. This study aimed to elucidate the role of hfq in E. ictaluri by creating an hfq mutant (EiΔhfq) through in-frame gene deletion and characterization. Our findings revealed that the Hfq protein is highly conserved within the genus Edwardsiella. The deletion of hfq resulted in a significantly reduced growth rate during the late exponential phase. Additionally, EiΔhfq displayed a diminished capacity for biofilm formation and exhibited increased motility. Under acidic and oxidative stress conditions, EiΔhfq demonstrated impaired growth, and we observed elevated hfq expression when subjected to in vitro and in vivo stress conditions. EiΔhfq exhibited reduced survival within catfish peritoneal macrophages, although it had no discernible effect on the adherence and invasion of epithelial cells. The infection model revealed that hfq is needed for bacterial persistence in catfish, and its absence caused significant virulence attenuation in catfish. Finally, the EiΔhfq vaccination completely protected catfish against subsequent EiWT infection. In summary, these results underscore the pivotal role of hfq in E. ictaluri, affecting its growth, motility, biofilm formation, stress response, and virulence in macrophages and within catfish host.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Attila Karsi
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
4
|
Comprehensive insights into the metabolism characteristics of small RNA Qrr4 in Vibrio alginolyticus. Appl Microbiol Biotechnol 2023; 107:1887-1902. [PMID: 36795140 DOI: 10.1007/s00253-023-12435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
Vibrio alginolyticus is an important foodborne pathogen that can infect both humans and marine animals and cause massive economic losses in aquaculture. Small noncoding RNAs (sRNAs) are emerging posttranscriptional regulators that affect bacterial physiology and pathological processes. In the present work, a new cell density-dependent sRNA, Qrr4, was characterized in V. alginolyticus based on a previously reported RNA-seq analysis and bioinformatics approach. The effects of Qrr4 actions on the physiology, virulence, and metabolism of V. alginolyticus were comprehensively investigated based on molecular biology and metabolomics approaches. The results showed that qrr4 deletion markedly inhibited growth, motility and extracellular protease activities. Additionally, nontargeted metabolism and lipidomics analyses revealed that qrr4 deletion induced significant disturbance of multiple metabolic pathways. The key metabolic remodelling that occurred in response to qrr4 deletion was found to involve phospholipid, nucleotide, carbohydrate and amino acid metabolic pathways, providing novel clues about a potential mechanism via which mutation of qrr4 could interfere with cellular energy homeostasis, modulate membrane phospholipid composition and inhibit nucleic acid and protein syntheses to regulate the motility, growth and virulence characteristics of V. alginolyticus. Overall, this study provides a comprehensive understanding of the regulatory roles of the new cell density-dependent sRNA Qrr4 in V. alginolyticus. KEY POINTS: • A novel cell density-dependent sRNA, Qrr4, was cloned in V. alginolyticus. •Qrr4 regulated growth and virulence factors of V. alginolyticus. • Phospholipid, nucleotide and energy metabolisms were modulated obviously by Qrr4.
Collapse
|
5
|
GcvB Regulon Revealed by Transcriptomic and Proteomic Analysis in Vibrio alginolyticus. Int J Mol Sci 2022; 23:ijms23169399. [PMID: 36012664 PMCID: PMC9409037 DOI: 10.3390/ijms23169399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023] Open
Abstract
Vibrio alginolyticus is a widely distributed marine bacterium that is a threat to the aquaculture industry as well as human health. Evidence has revealed critical roles for small RNAs (sRNAs) in bacterial physiology and cellular processes by modulating gene expression post-transcriptionally. GcvB is one of the most conserved sRNAs that is regarded as the master regulator of amino acid uptake and metabolism in a wide range of Gram-negative bacteria. However, little information about GcvB-mediated regulation in V. alginolyticus is available. Here we first characterized GcvB in V. alginolyticus ZJ-T and determined its regulon by integrated transcriptome and quantitative proteome analysis. Transcriptome analysis revealed 40 genes differentially expressed (DEGs) between wild-type ZJ-T and gcvB mutant ZJ-T-ΔgcvB, while proteome analysis identified 50 differentially expressed proteins (DEPs) between them, but only 4 of them displayed transcriptional differences, indicating that most DEPs are the result of post-transcriptional regulation of gcvB. Among the differently expressed proteins, 21 are supposed to be involved in amino acid biosynthesis and transport, and 11 are associated with type three secretion system (T3SS), suggesting that GcvB may play a role in the virulence besides amino acid metabolism. RNA-EMSA showed that Hfq binds to GcvB, which promotes its stability.
Collapse
|
6
|
Mechanisms underlying interactions between two abundant oral commensal bacteria. THE ISME JOURNAL 2022; 16:948-957. [PMID: 34732850 PMCID: PMC8940909 DOI: 10.1038/s41396-021-01141-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/21/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
Complex polymicrobial biofilm communities are abundant in nature particularly in the human oral cavity where their composition and fitness can affect health. While the study of these communities during disease is essential and prevalent, little is known about interactions within the healthy plaque community. Here we describe interactions between two of the most abundant species in this healthy microbiome, Haemophilus parainfluenzae and Streptococcus mitis. We discovered that H. parainfluenzae typically exists adjacent to mitis group streptococci in vivo with which it is also positively correlated based on microbiome data. By comparing in vitro coculture data to ex vivo microscopy we revealed that this co-occurrence is density dependent and further influenced by H2O2 production. We discovered that H. parainfluenzae utilizes a more redundant, multifactorial response to H2O2 than related microorganisms and that this system's integrity enhances streptococcal fitness. Our results indicate that mitis group streptococci are likely the in vivo source of NAD for H. parainfluenzae and also evoke patterns of carbon utilization in vitro for H. parainfluenzae similar to those observed in vivo. Our findings describe mechanistic interactions between two of the most abundant and prevalent members of healthy supragingival plaque that contribute to their in vivo survival.
Collapse
|
7
|
Trouillon J, Han K, Attrée I, Lory S. The core and accessory Hfq interactomes across Pseudomonas aeruginosa lineages. Nat Commun 2022; 13:1258. [PMID: 35273147 PMCID: PMC8913705 DOI: 10.1038/s41467-022-28849-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/14/2022] [Indexed: 01/16/2023] Open
Abstract
The major RNA-binding protein Hfq interacts with mRNAs, either alone or together with regulatory small noncoding RNAs (sRNAs), affecting mRNA translation and degradation in bacteria. However, studies tend to focus on single reference strains and assume that the findings may apply to the entire species, despite the important intra-species genetic diversity known to exist. Here, we use RIP-seq to identify Hfq-interacting RNAs in three strains representing the major phylogenetic lineages of Pseudomonas aeruginosa. We find that most interactions are in fact not conserved among the different strains. We identify growth phase-specific and strain-specific Hfq targets, including previously undescribed sRNAs. Strain-specific interactions are due to different accessory gene sets, RNA abundances, or potential context- or sequence- dependent regulatory mechanisms. The accessory Hfq interactome includes most mRNAs encoding Type III Secretion System (T3SS) components and secreted toxins in two strains, as well as a cluster of CRISPR guide RNAs in one strain. Conserved Hfq targets include the global virulence regulator Vfr and metabolic pathways involved in the transition from fast to slow growth. Furthermore, we use rGRIL-seq to show that RhlS, a quorum sensing sRNA, activates Vfr translation, thus revealing a link between quorum sensing and virulence regulation. Overall, our work highlights the important intra-species diversity in post-transcriptional regulatory networks in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Julian Trouillon
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Kook Han
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ina Attrée
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
| | - Stephen Lory
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Tepavčević J, Yarrington K, Fung B, Lin X, Visick KL. sRNA chaperone Hfq controls bioluminescence and other phenotypes through Qrr1-dependent and -independent mechanisms in Vibrio fischeri. Gene X 2022; 809:146048. [PMID: 34756963 PMCID: PMC8673744 DOI: 10.1016/j.gene.2021.146048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/26/2021] [Indexed: 02/01/2023] Open
Abstract
Colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri depends on bacterial biofilm formation, motility, and bioluminescence. Previous work has demonstrated an inhibitory role for the small RNA (sRNA) Qrr1 in quorum-induced bioluminescence of V. fischeri, but the contribution of the corresponding sRNA chaperone, Hfq, was not examined. We thus hypothesized that V. fischeri Hfq similarly functions to inhibit bacterial bioluminescence as well as regulate other key steps of symbiosis, including bacterial biofilm formation and motility. Surprisingly, deletion of hfq increased luminescence of V. fischeri beyond what was observed for the loss of qrr1 sRNA. Epistasis experiments revealed that, while Hfq contributes to the Qrr1-dependent regulation of light production, it also functions independently of Qrr1 and its downstream target, LitR. This Hfq-dependent, Qrr1-independent regulation of bioluminescence is also independent of the major repressor of light production in V. fischeri, ArcA. We further determined that Hfq is required for full motility of V. fischeri in a mechanism that partially depends on the Qrr1/LitR regulators. Finally, Hfq also appears to function in the control of biofilm formation: loss of Hfq delayed the timing and diminished the extent of wrinkled colony development, but did not eliminate the production of SYP-polysaccharide-dependent cohesive colonies. Furthermore, loss of Hfq enhanced production of cellulose and resulted in increased Congo red binding. Together, these findings point to Hfq as an important regulator of multiple phenotypes relevant to symbiosis between V. fischeri and its squid host.
Collapse
Affiliation(s)
- Jovanka Tepavčević
- Department of Biology, Wheaton College, Wheaton, Illinois, USA,Corresponding author
| | - Kaiti Yarrington
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Brittany Fung
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | - Xijin Lin
- Department of Biology, Wheaton College, Wheaton, Illinois, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
9
|
Zhang Y, Deng Y, Feng J, Guo Z, Chen H, Wang B, Hu J, Lin Z, Su Y. Functional characterization of VscCD, an important component of the type Ⅲ secretion system of Vibrio harveyi. Microb Pathog 2021; 157:104965. [PMID: 34015493 DOI: 10.1016/j.micpath.2021.104965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/23/2021] [Accepted: 05/11/2021] [Indexed: 11/19/2022]
Abstract
Vibrio harveyi is a Gram-negative bacterium that occurs widely in the ocean and a kind of pathogenic bacteria associated with vibriosis in grouper. We investigated whether the VscCD protein of the type Ⅲ secretion system (T3SS) was important for pathogenicity of V. harveyi. Mutations to the vscC and vscD genes (ΔvscCD) and complementation of the ΔvscCD mutant (C-ΔvscCD) were created. Moreover, the biological characteristics of the wild-type (WT) and mutant strains of V. harveyi 345 were compared. The results showed that deletion of the vscCD genes had no effect on bacterial growth, swimming/swarming ability, secretion of extracellular protease, or biofilm formation. However, as compared with the V. harveyi 345: pMMB207 (WT+) and complementary (C-ΔvscCD) strains, the ΔvscCD: pMMB207 (ΔvscCD+) mutant displayed decreased resistance to acid stress, H2O2, and antibiotics. In addition, infection of the pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatu) showed that as compared with the WT+ and C-ΔvscCD strains, the ΔvscCD+ strain significantly reduced cumulative mortality of the host. The colonization ability of the ΔvscCD+ mutant in the spleen and liver tissues of the pearl gentian grouper was significantly lower than that of the WT+ and C-ΔvscCD strains. In the early stage of infection with the ΔvscCD+ strain, the expression levels of IL-1β, IL-16, TLR3, TNF-α, MHC-Iα, and CD8α were up-regulated to varying degrees. As compared with the WT+ and C-ΔvscCD strains, luxR expression was significantly up-regulated in the ΔvscCD+ strain, while the expression of vcrH and vp1668 was significantly down-regulated. As an important component of the T3SS, VscCD seemed to play a significant role in the pathogenesis of V. harveyi.
Collapse
Affiliation(s)
- Yaqiu Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Haoxiang Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Baotun Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jianmei Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Ziyang Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| |
Collapse
|
10
|
Water Conservation and Plant Survival Strategies of Rhizobacteria under Drought Stress. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10111683] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Drylands are stressful environment for plants growth and production. Plant growth-promoting rhizobacteria (PGPR) acts as a rampart against the adverse impacts of drought stress in drylands and enhances plant growth and is helpful in agricultural sustainability. PGPR improves drought tolerance by implicating physio-chemical modifications called rhizobacterial-induced drought endurance and resilience (RIDER). The RIDER response includes; alterations of phytohormonal levels, metabolic adjustments, production of bacterial exopolysaccharides (EPS), biofilm formation, and antioxidant resistance, including the accumulation of many suitable organic solutes such as carbohydrates, amino acids, and polyamines. Modulation of moisture status by these PGPRs is one of the primary mechanisms regulating plant growth, but studies on their effect on plant survival are scarce in sandy/desert soil. It was found that inoculated plants showed high tolerance to water-deficient conditions by delaying dehydration and maintaining the plant’s water status at an optimal level. PGPR inoculated plants had a high recovery rate after rewatering interms of similar biomass at flowering compared to non-stressed plants. These rhizobacteria enhance plant tolerance and also elicit induced systemic resistance of plants to water scarcity. PGPR also improves the root growth and root architecture, thereby improving nutrient and water uptake. PGPR promoted accumulation of stress-responsive plant metabolites such as amino acids, sugars, and sugar alcohols. These metabolites play a substantial role in regulating plant growth and development and strengthen the plant’s defensive system against various biotic and abiotic stresses, in particular drought stress.
Collapse
|
11
|
The small RNA chaperone Hfq is a critical regulator for bacterial biosynthesis of selenium nanoparticles and motility in Rahnella aquatilis. Appl Microbiol Biotechnol 2020; 104:1721-1735. [DOI: 10.1007/s00253-019-10231-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
|
12
|
Liu H, Liu W, He X, Chen X, Yang J, Wang Y, Li Y, Ren J, Xu W, Zhao Y. Characterization of a cell density-dependent sRNA, Qrr, and its roles in the regulation of the quorum sensing and metabolism in Vibrio alginolyticus. Appl Microbiol Biotechnol 2020; 104:1707-1720. [PMID: 31907574 DOI: 10.1007/s00253-019-10278-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/08/2019] [Accepted: 11/23/2019] [Indexed: 12/25/2022]
Abstract
Vibrio alginolyticus is an important fish pathogen causing pandemic diseases in marine animals. Small noncoding RNAs (sRNAs) are important posttranscriptional modulators of gene expression and involved in the pathogenesis of bacterial pathogens. Thus far, no cell density-dependent sRNA has been reported in V. alginolyticus. In this study, a cell density-dependent sRNA, Qrr, predicted based on the previous RNA-Seq analysis of V. alginolyticus cultured at low cell density (LCD) and high cell density (HCD), was characterized. The Qrr mutant showed significantly impaired growth and decreased swimming and swarming ability, and increased biofilm formation, extracellular polysaccharide content, serine protease production, and LD50 values during zebrafish infection in contrast to the wild-type strain. Qrr modulates the master regulators LuxR and AphA in quorum sensing (QS) pathways possibly at the posttranscriptional level by base pairing with the 5'-untranslated regions (5'-UTRs). Meanwhile, both LuxR and AphA could directly bind to the promoter of qrr to activate or repress its transcription, respectively. Moreover, our unbiased metabolic approaches revealed that Qrr modulates a large quantity of metabolic and lipidomic pathways, including amino acids, purine and pyrimidine derivatives, tricarboxylic acid cycle (TCA cycle) intermediates, and lipids. Collectively, this work contributes to a systematic understanding of regulatory roles of the cell density-dependent sRNA, Qrr, in V. alginolyticus.
Collapse
Affiliation(s)
- Huan Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wang Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xiaoxian He
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Jinfang Yang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yi Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Yue Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Jiamin Ren
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Wensheng Xu
- Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Faculty of Food Science and Engineering, Beijing University of Agriculture, Beijing, 102206, China.
| | - Yanni Zhao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
13
|
Ryan MP, Slattery S, Pembroke JT. A Novel Arsenate-Resistant Determinant Associated with ICEpMERPH, a Member of the SXT/R391 Group of Mobile Genetic Elements. Genes (Basel) 2019; 10:genes10121048. [PMID: 31888308 PMCID: PMC6947025 DOI: 10.3390/genes10121048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
ICEpMERPH, the first integrative conjugative element (ICE) of the SXT/R391 family isolated in the United Kingdom and Europe, was analyzed to determine the nature of its adaptive functions, its genetic structure, and its homology to related elements normally found in pathogenic Vibrio or Proteus species. Whole genome sequencing of Escherichia coli (E. coli) isolate K802 (which contains the ICEpMERPH) was carried out using Illumina sequencing technology. ICEpMERPH has a size of 110 Kb and 112 putative open reading frames (ORFs). The “hotspot regions” of the element were found to contain putative restriction digestion systems, insertion sequences, and heavy metal resistance genes that encoded resistance to mercury, as previously reported, but also surprisingly to arsenate. A novel arsenate resistance system was identified in hotspot 4 of the element, unrelated to other SXT/R391 elements. This arsenate resistance system was potentially linked to two genes: orf69, encoding an organoarsenical efflux major facilitator superfamily (MFS) transporter-like protein related to ArsJ, and orf70, encoding nicotinamide adenine dinucleotide (NAD)-dependent glyceraldehyde-3-phosphate dehydrogenase. Phenotypic analysis using isogenic strains of Escherichia coli strain AB1157 with and without the ICEpMERPH revealed resistance to low levels of arsenate in the range of 1–5 mM. This novel, low-level resistance may have an important adaptive function in polluted environments, which often contain low levels of arsenate contamination. A bioinformatic analysis on the novel determinant and the phylogeny of ICEpMERPH was presented.
Collapse
|
14
|
Valenzuela-Valderrama M, González IA, Palavecino CE. Photodynamic treatment for multidrug-resistant Gram-negative bacteria: Perspectives for the treatment of Klebsiella pneumoniae infections. Photodiagnosis Photodyn Ther 2019; 28:256-264. [PMID: 31505296 DOI: 10.1016/j.pdpdt.2019.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022]
Abstract
The emergence of multi-drug resistance for pathogenic bacteria is one of the most pressing global threats to human health in the 21st century. Hence, the availability of new treatment becomes indispensable to prevent morbidity and mortality caused by infectious agents. This article reviews the antimicrobial properties of photodynamic therapy (PDT), which is based on the use of photosensitizers compounds (PSs). The PSs are non-toxic small molecules, which induce oxidative stress only under excitation with light. Then, the PDT has the advantage to be locally activated using phototherapy devices. We focus on PDT for the Klebsiella pneumoniae, as an example of Gram-negative bacteria, due to its relevance as an agent of health-associated infections (HAI) and a multi-drug resistant bacteria. K. pneumoniae is a fermentative bacillus, member of the Enterobacteriaceae family, which is most commonly associated with producing infection of the urinary tract (UTI) and pneumonia. K. pneumoniae infections may occur in deep organs such as bladder or lungs tissues; therefore, activating light must get access or penetrate tissues with sufficient power to produce effective PDT. Consequently, the rationale for selecting the most appropriate PSs, as well as photodynamic devices and photon fluence doses, were reviewed. Also, the mechanisms by which PDT activates the immune system and its importance to eradicate the infection successfully, are discussed.
Collapse
Affiliation(s)
- Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile; Centro de Estudios Avanzados en Enfermedades Crónicas (ACCDiS), Independencia, Santiago 8380000, Chile.
| | - Iván Alonzo González
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| | - Christian Erick Palavecino
- Laboratorio de Microbiología Celular, Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile.
| |
Collapse
|
15
|
Deng Y, Su Y, Liu S, Bei L, Guo Z, Li H, Chen C, Feng J. A novel sRNA srvg17985 identified in Vibrio alginolyticus involving into metabolism and stress response. Microbiol Res 2019; 229:126295. [PMID: 31450184 DOI: 10.1016/j.micres.2019.126295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 11/28/2022]
Abstract
Vibrio alginolyticus is an opportunistic pathogen that is a threat to the aquaculture industry. Evidence has revealed critical roles for small RNAs (sRNAs) in bacterial physiology and pathology by modulating gene expression post transcription. However, little information about sRNA-mediated regulation in V. alginolyticus is available. We experimentally verified the existence and characterized the function of sRNA srvg17985 in V. alginolyticus ZJ-T. We identified a 179 nt and growth-phase-dependent transcript with a σ70 promoter and a ρ-independent terminator. The transcript consisted of five stem-loops and was conserved in Vibrio spp. Phenotype microarray assays showed that deletion of srvg17985 led to less use of Gly-Glu as a carbon source but a gain in ability to use l-phenylalanine as a nitrogen source. Srvg17985 regulated the osmotic stress response with stronger tolerance to NaCl but weaker tolerance to urea. In addition, srvg17985 inhibited the deamination of l-serine at pH 9.5 and promoted the hydrolysis of X-beta-d-glucuronide, thus affecting the pH stress response. Bioinformatics by IntaRNA and TargetRNA2 identified 45 common target mRNAs, some of which probably contributed to the observed phenotypes. These results indicated that srvg17985 regulated environmental adaptation. The results provide valuable information for in-depth studies of sRNA-mediated regulation mechanisms of the complex physiological processes of V alginolyticus and provide new targets for antibacterial therapeutics or attenuated vaccines for Vibrio spp.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lei Bei
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Huo Li
- Jinyang Tropical Haizhen Aquaculture Co., Ltd., Maoming, China
| | - Chang Chen
- Xisha/Nansha Ocean Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China; Tropical Aquaculture Research and Development Centre, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hainan, China.
| |
Collapse
|
16
|
Zhang L, Yu W, Tang Y, Li H, Ma X, Liu Z. RNA chaperone hfq mediates persistence to multiple antibiotics in Aeromonas veronii. Microb Pathog 2019; 132:124-128. [PMID: 31054368 DOI: 10.1016/j.micpath.2019.04.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
Pathogenic Aeromonas veronii results in great healthy and economic losses in fishes and human. The multiple drug tolerance of bacterial persister is the major cause for recurrent infections. Ubiquitous RNA-binding protein Hfq is liable for antibiotic tolerance and persisiter production. We showed that the hfq deletion in A. veronii retarded the growth, reduced the tolerances to diverse antibiotics, and lowered the persistence. Such effects might be mediated by the downregulations of RelE, CspD, ClpB, RpoS, OxyR, and upregulation of OppB. Our study supports the role of Hfq in persister formation and provides clues for the avoidance of recalcitrant infections.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, 570228, Haikou, China.
| | - Wenjing Yu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, 570228, Haikou, China.
| | - Yanqiong Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, 570228, Haikou, China.
| | - Hong Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, 570228, Haikou, China.
| | - Xiang Ma
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, 570228, Haikou, China.
| | - Zhu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, 570228, Haikou, China.
| |
Collapse
|
17
|
Deng Y, Su Y, Liu S, Guo Z, Cheng C, Ma H, Wu J, Feng J, Chen C. Corrigendum: Identification of a Novel Small RNA srvg23535 in Vibrio alginolyticus ZJ-T and Its Characterization With Phenotype MicroArray Technology. Front Microbiol 2019; 10:21. [PMID: 30766513 PMCID: PMC6365953 DOI: 10.3389/fmicb.2019.00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jinjun Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chang Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Xisha/Nansha Ocean Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
18
|
Deng Y, Su Y, Liu S, Guo Z, Cheng C, Ma H, Wu J, Feng J, Chen C. Identification of a Novel Small RNA srvg23535 in Vibrio alginolyticus ZJ-T and Its Characterization With Phenotype MicroArray Technology. Front Microbiol 2018; 9:2394. [PMID: 30349521 PMCID: PMC6186989 DOI: 10.3389/fmicb.2018.02394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
Small non-coding RNAs (sRNAs) are important modulators of gene expression and are involved in the pathogenesis and survival of prokaryotes. However, few studies have been conducted with Vibrio alginolyticus, which limits our ability to probe the regulation of virulence and environmental adaptation by sRNAs in this opportunistic pathogen. In this study, the sRNA candidate srvg23535 was identified in V. alginolyticus ZJ-T. The precise transcript end, secondary structure, and sequence conservation were determined. A srvg23535 null mutant was constructed and characterized by using Phenotype MicroArray (PM) technology. In silico target prediction was conducted by IntaRNA and TargetRNA2. Subsequently, a 107 nt transcript was validated with a sigma70 promoter at the 5' end and a Rho-independent terminator at the 3' end. The sRNA srvg23535 had four stem-loop structures and was conserved among Vibrio harveyi, Vibrio parahaemolyticus, and Vibrio splendidus. Deletion of srvg23535 in V. alginolyticus ZJ-T led to a weaker utilization of D-mannose, D-melibiose, lactulose, and inosine as carbon sources but stronger utilization of L-cysteine as nitrogen source. Moreover, the srvg2353 mutant showed stronger resistance to osmotic stress but weaker resistance to pH stress. Additionally, a total of 22 common targets were identified and several were related to the observed phenotype of the mutant. This study indicated that the novel sRNA, srvg23535, is conserved and restricted to Vibrio spp., affecting the utilization of several carbon and nitrogen sources and the response to osmotic and pH stress. These results extend our understanding of sRNA regulation in V. alginolyticus and provide a significant resource for the further study of the precise target mRNAs of srvg23535, which may provide targets for antibacterial therapeutic or attenuated vaccines against Vibrio spp.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jinjun Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chang Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Xisha/Nansha Ocean Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
19
|
Huang X, Chen C, Ren C, Li Y, Deng Y, Yang Y, Ding X. Identification and characterization of a locus putatively involved in colanic acid biosynthesis in Vibrio alginolyticus ZJ-51. BIOFOULING 2018; 34:1-14. [PMID: 29210309 DOI: 10.1080/08927014.2017.1400020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Colanic acid (CA) is a group I extracellular polysaccharide (EPS) that contributes to resistance against adverse environments in many members of the Enterobacteriaceae. In the present study, a genetic locus EPSC putatively involved in CA biosynthesis was identified in Vibrio alginolyticus ZJ-51, which undergoes colony morphology variation between translucent/smooth (ZJ-T) and opaque/rugose (ZJ-O). EPSC in ZJ-T carries 21 ORFs and resembles the CA cluster of Escherichia coli K-12. The deletion of EPSC led to decreased EPS and biofilm formation in both genetic backgrounds but no alternation of lipopolysaccharide. The loss of this locus also changed the colony morphology of ZJ-O on the 2216E plate and reduced the motility of ZJ-T. Compared with ZJ-T, ZJ-O lacks a 10-kb fragment (epsT) in EPSC containing homologs of wecA, wzx and wzy that are essential for O-antigen synthesis. However, the deletion or overexpression of epsT resulted in no change of colony morphology, biofilm formation or EPS production. This study reported at the first time a genetic locus EPSC that may be involved in colanic acid synthesis in V. alginolyticus ZJ-51, and found that it was related to EPS biosynthesis, biofilm formation, colony morphology and motility, which may shed light on the environmental adaptation of the vibrios.
Collapse
Affiliation(s)
- Xiaochun Huang
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
- b Guangdong Provincial Key Laboratory of Applied Marine Biology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , China
- d University of Chinese Academy of Sciences , Beijing , PR China
| | - Chang Chen
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
- b Guangdong Provincial Key Laboratory of Applied Marine Biology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , China
- c Xisha Deep Sea Marine Environment Observation and Research Station , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
| | - Chunhua Ren
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
| | - Yingying Li
- e College of Life Science and Technology , Jinan University , Guangzhou , PR China
| | - Yiqin Deng
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
- b Guangdong Provincial Key Laboratory of Applied Marine Biology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , China
- d University of Chinese Academy of Sciences , Beijing , PR China
| | - Yiying Yang
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
- b Guangdong Provincial Key Laboratory of Applied Marine Biology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , China
- d University of Chinese Academy of Sciences , Beijing , PR China
| | - Xiongqi Ding
- a Key Laboratory of Tropical Marine Bio-resources and Ecology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , PR China
- b Guangdong Provincial Key Laboratory of Applied Marine Biology , South China Sea Institution of Oceanology, University of Chinese Academy of Sciences , Guangzhou , China
- d University of Chinese Academy of Sciences , Beijing , PR China
| |
Collapse
|
20
|
Kuo HY, Chao HH, Liao PC, Hsu L, Chang KC, Tung CH, Chen CH, Liou ML. Functional Characterization of Acinetobacter baumannii Lacking the RNA Chaperone Hfq. Front Microbiol 2017; 8:2068. [PMID: 29163381 PMCID: PMC5663733 DOI: 10.3389/fmicb.2017.02068] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
The RNA chaperone Hfq is involved in the riboregulation of diverse genes via small RNAs. Recent studies have demonstrated that Hfq contributes to the stress response and the virulence of several pathogens, and the roles of Hfq vary among bacterial species. Here, we attempted to elucidate the role of Hfq in Acinetobacter baumannii ATCC 17978. In the absence of hfq, A. baumannii exhibited retarded cell growth and was highly sensitive to environmental stress, including osmotic and oxidative pressure, pH, and temperature. Compared to the wild-type, the Hfq mutant had reduced outer membrane vesicles secretion and fimbriae production as visualized by atomic force microscopy. The absence of hfq reduced biofilm formation, airway epithelial cell adhesion and invasion, and survival in macrophage. Further, the hfq mutant induced significantly higher IL-8 levels in airway epithelial cells, which would promote bacterial clearance by the host. In addition to results similar to those reported for other bacteria, our findings demonstrate that Hfq is required in the regulation of the iron-acquisition system via downregulating the bauA and basD genes, the stress-related outer membrane proteins carO, A1S_0820, ompA, and nlpE, and the stress-related cytosolic proteins uspA and groEL. Our data indicate that Hfq plays a critical role in environmental adaptation and virulence in A. baumannii by modulating stress responses, surface architectures, and virulence factors. This study is the first to illustrate the functional role of Hfq in A. baumannii.
Collapse
Affiliation(s)
- Han-Yueh Kuo
- Department of Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan.,Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Hao Chao
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan
| | - Po-Cheng Liao
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| | - Long Hsu
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Chi-Hua Tung
- Department of Bioinformatics, Chung Hua University, Hsinchu, Taiwan
| | - Chang-Hua Chen
- Division of Infectious Disease, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan.,Center of Infection Prevention and Control, Changhua Christian Hospital, Changhua, Taiwan
| | - Ming-Li Liou
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| |
Collapse
|
21
|
Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus. Appl Environ Microbiol 2017; 83:AEM.00450-17. [PMID: 28389538 DOI: 10.1128/aem.00450-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/03/2017] [Indexed: 01/03/2023] Open
Abstract
Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium (Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes (flgA and flgP) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance.IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote cellular aggregation without inducing cell death. These findings suggest that CLPs hold great promise as potential drug candidates targeting bacterial motility and biofilm formation with a low overall potential for triggering antibiotic resistance.
Collapse
|
22
|
Pérez-Reytor D, Plaza N, Espejo RT, Navarrete P, Bastías R, Garcia K. Role of Non-coding Regulatory RNA in the Virulence of Human Pathogenic Vibrios. Front Microbiol 2017; 7:2160. [PMID: 28123382 PMCID: PMC5225090 DOI: 10.3389/fmicb.2016.02160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022] Open
Abstract
In recent decades, the identification of small non-coding RNAs in bacteria has revealed an important regulatory mechanism of gene expression involved in the response to environmental signals and to the control of virulence. In the family Vibrionaceae, which includes several human and animal pathogens, small non-coding RNAs (sRNAs) are closely related to important processes including metabolism, quorum sensing, virulence, and fitness. Studies conducted in silico and experiments using microarrays and high-throughput RNA sequencing have led to the discovery of an unexpected number of sRNAs in Vibrios. The present review discusses the most relevant reports regarding the mechanisms of action of sRNAs and their implications in the virulence of the main human pathogens in the family Vibrionaceae: Vibrio parahaemolyticus, V. vulnificus and V. cholerae.
Collapse
Affiliation(s)
- Diliana Pérez-Reytor
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile San Miguel, Chile
| | - Nicolás Plaza
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de ChileSan Miguel, Chile; Institute of Nutrition and Food Technology, University of ChileSantiago, Chile
| | - Romilio T Espejo
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| | - Paola Navarrete
- Institute of Nutrition and Food Technology, University of Chile Santiago, Chile
| | - Roberto Bastías
- Laboratory of Microbiology, Institute of Biology, Pontificia Universidad Católica de Valparaíso Valparaíso, Chile
| | - Katherine Garcia
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile San Miguel, Chile
| |
Collapse
|