1
|
Balachandra S, Amodeo AA. Bellymount-pulsed tracking: a novel approach for real-time in vivo imaging of Drosophila abdominal tissues. G3 (BETHESDA, MD.) 2025; 15:jkae271. [PMID: 39556480 PMCID: PMC11708215 DOI: 10.1093/g3journal/jkae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Quantitative live imaging is a valuable tool that offers insights into cellular dynamics. However, many fundamental biological processes are incompatible with current live-imaging modalities. Drosophila oogenesis is a well-studied system that has provided molecular insights into a range of cellular and developmental processes. The length of the oogenesis, coupled with the requirement for inputs from multiple tissues, has made long-term culture challenging. Here, we have developed Bellymount-pulsed tracking (Bellymount-PT), which allows continuous, noninvasive live imaging of Drosophila oogenesis inside the female abdomen for up to 16 h. Bellymount-PT improves upon the existing Bellymount technique by adding pulsed anesthesia with periods of feeding that support the long-term survival of flies during imaging. Using Bellymount-PT, we measure key events of oogenesis, including egg chamber growth, yolk uptake, and transfer of specific proteins to the oocyte during nurse cell dumping with high spatiotemporal precision within the abdomen of a live female.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
2
|
Gazzo DV, Zartman JJ. Calcium Imaging in Drosophila. Methods Mol Biol 2025; 2861:257-271. [PMID: 39395111 DOI: 10.1007/978-1-0716-4164-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Ex vivo calcium imaging in Drosophila opens an expansive amount of research avenues for the study of live signal propagation through complex tissue. Here, we describe how to isolate Drosophila organs of interest, like the developing wing imaginal disc and larval brain, culture them for extended periods, up to 10 h, and how to image the calcium dynamics occurring within them using genetically encoded biosensors like GCaMP. This protocol enables the study of complex calcium signaling dynamics, which is conserved throughout biology in such processes as cell differentiation and proliferation, immune reactions, wound healing, and cell-to-cell and organ-to-organ communication, among others. These methods also allow pharmacological compounds to be tested to observe effects on calcium dynamics with the applications of target identification and therapeutic development.
Collapse
Affiliation(s)
- David V Gazzo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
3
|
Balachandra S, Amodeo AA. Bellymount-Pulsed Tracking: A Novel Approach for Real-Time In vivo Imaging of Drosophila Abdominal Tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.587498. [PMID: 38617254 PMCID: PMC11014545 DOI: 10.1101/2024.03.31.587498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Quantitative live imaging is a valuable tool that offers insights into cellular dynamics. However, many fundamental biological processes are incompatible with current live imaging modalities. Drosophila oogenesis is a well-studied system that has provided molecular insights into a range of cellular and developmental processes. The length of the oogenesis coupled with the requirement for inputs from multiple tissues has made long-term culture challenging. Here, we have developed Bellymount-Pulsed Tracking (Bellymount-PT), which allows continuous, non-invasive live imaging of Drosophila oogenesis inside the female abdomen for up to 16 hours. Bellymount-PT improves upon the existing Bellymount technique by adding pulsed anesthesia with periods of feeding that support the long-term survival of flies during imaging. Using Bellymount-PT we measure key events of oogenesis including egg chamber growth, yolk uptake, and transfer of specific proteins to the oocyte during nurse cell dumping with high spatiotemporal precision within the abdomen of a live female.
Collapse
Affiliation(s)
- Shruthi Balachandra
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Amanda A Amodeo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
4
|
Warren J, Kumar JP. Patterning of the Drosophila retina by the morphogenetic furrow. Front Cell Dev Biol 2023; 11:1151348. [PMID: 37091979 PMCID: PMC10117938 DOI: 10.3389/fcell.2023.1151348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Pattern formation is the process by which cells within a homogeneous epithelial sheet acquire distinctive fates depending upon their relative spatial position to each other. Several proposals, starting with Alan Turing's diffusion-reaction model, have been put forth over the last 70 years to describe how periodic patterns like those of vertebrate somites and skin hairs, mammalian molars, fish scales, and avian feather buds emerge during development. One of the best experimental systems for testing said models and identifying the gene regulatory networks that control pattern formation is the compound eye of the fruit fly, Drosophila melanogaster. Its cellular morphogenesis has been extensively studied for more than a century and hundreds of mutants that affect its development have been isolated. In this review we will focus on the morphogenetic furrow, a wave of differentiation that takes an initially homogeneous sheet of cells and converts it into an ordered array of unit eyes or ommatidia. Since the discovery of the furrow in 1976, positive and negative acting morphogens have been thought to be solely responsible for propagating the movement of the furrow across a motionless field of cells. However, a recent study has challenged this model and instead proposed that mechanical driven cell flow also contributes to retinal pattern formation. We will discuss both models and their impact on patterning.
Collapse
Affiliation(s)
| | - Justin P. Kumar
- Department of Biology, Indiana University, Bloomington, IN, United States
| |
Collapse
|
5
|
Ho KYL, Carr RL, Dvoskin AD, Tanentzapf G. Kinetics of blood cell differentiation during hematopoiesis revealed by quantitative long-term live imaging. eLife 2023; 12:e84085. [PMID: 37000163 PMCID: PMC10065797 DOI: 10.7554/elife.84085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/08/2023] [Indexed: 04/01/2023] Open
Abstract
Stem cells typically reside in a specialized physical and biochemical environment that facilitates regulation of their behavior. For this reason, stem cells are ideally studied in contexts that maintain this precisely constructed microenvironment while still allowing for live imaging. Here, we describe a long-term organ culture and imaging strategy for hematopoiesis in flies that takes advantage of powerful genetic and transgenic tools available in this system. We find that fly blood progenitors undergo symmetric cell divisions and that their division is both linked to cell size and is spatially oriented. Using quantitative imaging to simultaneously track markers for stemness and differentiation in progenitors, we identify two types of differentiation that exhibit distinct kinetics. Moreover, we find that infection-induced activation of hematopoiesis occurs through modulation of the kinetics of cell differentiation. Overall, our results show that even subtle shifts in proliferation and differentiation kinetics can have large and aggregate effects to transform blood progenitors from a quiescent to an activated state.
Collapse
Affiliation(s)
- Kevin Yueh Lin Ho
- Department of Cellular and Physiological Sciences, University of British ColumbiaVancouverCanada
| | - Rosalyn Leigh Carr
- Department of Cellular and Physiological Sciences, University of British ColumbiaVancouverCanada
- School of Biomedical Engineering, University of British ColumbiaVancouverCanada
- British Columbia Children’s HospitalVancouverCanada
| | | | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British ColumbiaVancouverCanada
| |
Collapse
|
6
|
Couturier L, Luna J, Mazouni K, Mestdagh C, Phan MS, Corson F, Schweisguth F. HaloTag-based reporters for sparse labeling and cell tracking. Fly (Austin) 2022; 16:360-366. [PMID: 36323649 PMCID: PMC9635558 DOI: 10.1080/19336934.2022.2142460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Multiscale analysis of morphogenesis requires to follow and measure in real-time the in vivo behaviour of large numbers of individual cells over long period of time. Despite recent progress, the large-scale automated tracking of cells in developing embryos and tissues remains a challenge. Here we describe a genetic tool for the random and sparse labelling of individual cells in developing Drosophila tissues. This tool is based on the conditional expression of a nuclear HaloTag protein that can be fluorescently labelled upon the irreversible binding of a cell permeable synthetic ligand. While the slow maturation of genetically encoded fluorescent renders the tracking of individual cells difficult in rapidly dividing tissues, nuclear HaloTag proteins allowed for rapid labelling of individual cells in cultured imaginal discs. To study cell shape changes, we also produced an HaloTag version of the actin-bound protein LifeAct. Since sparse labelling facilitates cell tracking, nuclear HaloTag reporters will be useful for the single-cell analysis of fate dynamics in Drosophila tissues cultured ex vivo.
Collapse
Affiliation(s)
- Lydie Couturier
- 4D Unit, Developmental and Stem Cell Biology Dept, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| | - Juan Luna
- 4D Unit, Developmental and Stem Cell Biology Dept, Institut Pasteur, CNRS UMR3738, 75015 Paris, France,Laboratoire de Physique de l’Ecole Normale Supérieure, CNRS, Sorbonne Université, Université Paris Diderot, 75005, Paris, France
| | - Khalil Mazouni
- 4D Unit, Developmental and Stem Cell Biology Dept, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| | - Claire Mestdagh
- 4D Unit, Developmental and Stem Cell Biology Dept, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| | - Minh-Son Phan
- 4D Unit, Developmental and Stem Cell Biology Dept, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| | - Francis Corson
- Laboratoire de Physique de l’Ecole Normale Supérieure, CNRS, Sorbonne Université, Université Paris Diderot, 75005, Paris, France
| | - Francois Schweisguth
- 4D Unit, Developmental and Stem Cell Biology Dept, Institut Pasteur, CNRS UMR3738, 75015 Paris, France,CONTACT Francois Schweisguth 4D Unit, Developmental and Stem Cell Biology Dept, Institut Pasteur, CNRS UMR3738, 75015 Paris, France
| |
Collapse
|
7
|
Marchetti M, Zhang C, Edgar BA. An improved organ explant culture method reveals stem cell lineage dynamics in the adult Drosophila intestine. eLife 2022; 11:e76010. [PMID: 36005292 PMCID: PMC9578704 DOI: 10.7554/elife.76010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
In recent years, live-imaging techniques have been developed for the adult midgut of Drosophila melanogaster that allow temporal characterization of key processes involved in stem cell and tissue homeostasis. However, these organ culture techniques have been limited to imaging sessions of <16 hours, an interval too short to track dynamic processes such as damage responses and regeneration, which can unfold over several days. Therefore, we developed an organ explant culture protocol capable of sustaining midguts ex vivo for up to 3 days. This was made possible by the formulation of a culture medium specifically designed for adult Drosophila tissues with an increased Na+/K+ ratio and trehalose concentration, and by placing midguts at an air-liquid interface for enhanced oxygenation. We show that midgut progenitor cells can respond to gut epithelial damage ex vivo, proliferating and differentiating to replace lost cells, but are quiescent in healthy intestines. Using ex vivo gene induction to promote stem cell proliferation using RasG12V or string and Cyclin E overexpression, we demonstrate that progenitor cell lineages can be traced through multiple cell divisions using live imaging. We show that the same culture set-up is useful for imaging adult renal tubules and ovaries for up to 3 days and hearts for up to 10 days. By enabling both long-term imaging and real-time ex vivo gene manipulation, our simple culture protocol provides a powerful tool for studies of epithelial biology and cell lineage behavior.
Collapse
Affiliation(s)
- Marco Marchetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Chenge Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| | - Bruce A Edgar
- Department of Oncological Sciences, Huntsman Cancer Institute, University of UtahSalt Lake CityUnited States
| |
Collapse
|
8
|
Gallagher KD, Mani M, Carthew RW. Emergence of a geometric pattern of cell fates from tissue-scale mechanics in the Drosophila eye. eLife 2022; 11:72806. [PMID: 35037852 PMCID: PMC8863370 DOI: 10.7554/elife.72806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/15/2022] [Indexed: 12/02/2022] Open
Abstract
Pattern formation of biological structures involves the arrangement of different types of cells in an ordered spatial configuration. In this study, we investigate the mechanism of patterning the Drosophila eye epithelium into a precise triangular grid of photoreceptor clusters called ommatidia. Previous studies had led to a long-standing biochemical model whereby a reaction-diffusion process is templated by recently formed ommatidia to propagate a molecular prepattern across the eye. Here, we find that the templating mechanism is instead, mechanochemical in origin; newly born columns of differentiating ommatidia serve as a template to spatially pattern flows that move epithelial cells into position to form each new column of ommatidia. Cell flow is generated by a source and sink, corresponding to narrow zones of cell dilation and contraction respectively, that straddle the growing wavefront of ommatidia. The newly formed lattice grid of ommatidia cells are immobile, deflecting, and focusing the flow of other cells. Thus, the self-organization of a regular pattern of cell fates in an epithelium is mechanically driven.
Collapse
Affiliation(s)
- Kevin D Gallagher
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States,NSF Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| | - Madhav Mani
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States,NSF Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States,Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States,NSF Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
9
|
Dye NA. Cultivation and Live Imaging of Drosophila Imaginal Discs. Methods Mol Biol 2022; 2540:317-334. [PMID: 35980586 DOI: 10.1007/978-1-0716-2541-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this chapter, I present a method for the ex vivo cultivation and live imaging of Drosophila imaginal disc explants using low concentrations of the steroid hormone 20-hydroxyecdysone (20E). This method has been optimized for analyzing cellular dynamics during wing disc growth and leverages recent insights from in vivo experiments demonstrating that 20E is required for growth and patterning of the imaginal tissues. Using this protocol, we directly observe wing disc proliferation at a rapid rate for at least 13 h during live imaging. The orientation of tissue growth is also consistent with that inferred from indirect in vivo techniques. Thus, this method provides an improved way of studying dynamic cellular processes and tissue movements during imaginal disc development. I first describe the preparation of the growth medium and the dissection, and then I include a protocol for mounting and live imaging of the explants.
Collapse
Affiliation(s)
- Natalie A Dye
- Mildred Scheel Nachwuchszentrum (MSNZ) P2 & Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
10
|
Novel function of N-acetyltransferase for microtubule stability and JNK signaling in Drosophila organ development. Proc Natl Acad Sci U S A 2021; 118:2010140118. [PMID: 33479178 DOI: 10.1073/pnas.2010140118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of microtubule stability is crucial for the maintenance of cell structure and function. While the acetylation of α-tubulin lysine 40 by acetylase has been implicated in the regulation of microtubule stability, the in vivo functions of N-terminal acetyltransferases (NATs) involved in the acetylation of N-terminal amino acids are not well known. Here, we identify an N-terminal acetyltransferase, Mnat9, that regulates cell signaling and microtubule stability in Drosophila Loss of Mnat9 causes severe developmental defects in multiple tissues. In the wing imaginal disc, Mnat9 RNAi leads to the ectopic activation of c-Jun N-terminal kinase (JNK) signaling and apoptotic cell death. These defects are suppressed by reducing the level of JNK signaling. Overexpression of Mnat9 can also inhibit JNK signaling. Mnat9 colocalizes with mitotic spindles, and its loss results in various spindle defects during mitosis in the syncytial embryo. Furthermore, overexpression of Mnat9 enhances microtubule stability. Mnat9 is physically associated with microtubules and shows a catalytic activity in acetylating N-terminal peptides of α- and β-tubulin in vitro. Cell death and tissue loss in Mnat9-depleted wing discs are restored by reducing the severing protein Spastin, suggesting that Mnat9 protects microtubules from its severing activity. Remarkably, Mnat9 mutated in the acetyl-CoA binding site is as functional as its wild-type form. We also find that human NAT9 can rescue Mnat9 RNAi phenotypes in flies, indicating their functional conservation. Taken together, we propose that Mnat9 is required for microtubule stability and regulation of JNK signaling to promote cell survival in developing Drosophila organs.
Collapse
|
11
|
Sorge S, Theelke J, Yildirim K, Hertenstein H, McMullen E, Müller S, Altbürger C, Schirmeier S, Lohmann I. ATF4-Induced Warburg Metabolism Drives Over-Proliferation in Drosophila. Cell Rep 2021; 31:107659. [PMID: 32433968 DOI: 10.1016/j.celrep.2020.107659] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/30/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial electron transport chain (ETC) enables essential metabolic reactions; nonetheless, the cellular responses to defects in mitochondria and the modulation of signaling pathway outputs are not understood. We show that Notch signaling and ETC attenuation via knockdown of COX7a induces massive over-proliferation. The tumor-like growth is caused by a transcriptional response through the eIF2α-kinase PERK and ATF4, which activates the expression of metabolic enzymes, nutrient transporters, and mitochondrial chaperones. We find this stress adaptation to be beneficial for progenitor cell fitness, as it renders cells sensitive to proliferation induced by the Notch signaling pathway. Intriguingly, over-proliferation is not caused by transcriptional cooperation of Notch and ATF4, but it is mediated in part by pH changes resulting from the Warburg metabolism induced by ETC attenuation. Our results suggest that ETC function is monitored by the PERK-ATF4 pathway, which can be hijacked by growth-promoting signaling pathways, leading to oncogenic pathway activity.
Collapse
Affiliation(s)
- Sebastian Sorge
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Jonas Theelke
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Kerem Yildirim
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Helen Hertenstein
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | - Ellen McMullen
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | - Stephan Müller
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | | | - Stefanie Schirmeier
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Tsao CK, Huang YF, Sun YH. Early lineage segregation of the retinal basal glia in the Drosophila eye disc. Sci Rep 2020; 10:18522. [PMID: 33116242 PMCID: PMC7595039 DOI: 10.1038/s41598-020-75581-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/16/2020] [Indexed: 11/09/2022] Open
Abstract
The retinal basal glia (RBG) is a group of glia that migrates from the optic stalk into the third instar larval eye disc while the photoreceptor cells (PR) are differentiating. The RBGs are grouped into three major classes based on molecular and morphological characteristics: surface glia (SG), wrapping glia (WG) and carpet glia (CG). The SGs migrate and divide. The WGs are postmitotic and wraps PR axons. The CGs have giant nucleus and extensive membrane extension that each covers half of the eye disc. In this study, we used lineage tracing methods to determine the lineage relationships among these glia subtypes and the temporal profile of the lineage decisions for RBG development. We found that the CG lineage segregated from the other RBG very early in the embryonic stage. It has been proposed that the SGs migrate under the CG membrane, which prevented SGs from contacting with the PR axons lying above the CG membrane. Upon passing the front of the CG membrane, which is slightly behind the morphogenetic furrow that marks the front of PR differentiation, the migrating SG contact the nascent PR axon, which in turn release FGF to induce SGs' differentiation into WG. Interestingly, we found that SGs are equally distributed apical and basal to the CG membrane, so that the apical SGs are not prevented from contacting PR axons by CG membrane. Clonal analysis reveals that the apical and basal RBG are derived from distinct lineages determined before they enter the eye disc. Moreover, the basal SG lack the competence to respond to FGFR signaling, preventing its differentiation into WG. Our findings suggest that this novel glia-to-glia differentiation is both dependent on early lineage decision and on a yet unidentified regulatory mechanism, which can provide spatiotemporal coordination of WG differentiation with the progressive differentiation of photoreceptor neurons.
Collapse
Affiliation(s)
- Chia-Kang Tsao
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | - Yu Fen Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,, 64 Marvin Lane, Piscataway, NJ, 08854, USA
| | - Y Henry Sun
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC. .,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.
| |
Collapse
|
13
|
Bostock MP, Prasad AR, Chaouni R, Yuen AC, Sousa-Nunes R, Amoyel M, Fernandes VM. An Immobilization Technique for Long-Term Time-Lapse Imaging of Explanted Drosophila Tissues. Front Cell Dev Biol 2020; 8:590094. [PMID: 33117817 PMCID: PMC7576353 DOI: 10.3389/fcell.2020.590094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 01/19/2023] Open
Abstract
Time-lapse imaging is an essential tool to study dynamic biological processes that cannot be discerned from fixed samples alone. However, imaging cell- and tissue-level processes in intact animals poses numerous challenges if the organism is opaque and/or motile. Explant cultures of intact tissues circumvent some of these challenges, but sample drift remains a considerable obstacle. We employed a simple yet effective technique to immobilize tissues in medium-bathed agarose. We applied this technique to study multiple Drosophila tissues from first-instar larvae to adult stages in various orientations and with no evidence of anisotropic pressure or stress damage. Using this method, we were able to image fine features for up to 18 h and make novel observations. Specifically, we report that fibers characteristic of quiescent neuroblasts are inherited by their basal daughters during reactivation; that the lamina in the developing visual system is assembled roughly 2-3 columns at a time; that lamina glia positions are dynamic during development; and that the nuclear envelopes of adult testis cyst stem cells do not break down completely during mitosis. In all, we demonstrate that our protocol is well-suited for tissue immobilization and long-term live imaging, enabling new insights into tissue and cell dynamics in Drosophila.
Collapse
Affiliation(s)
- Matthew P. Bostock
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Anadika R. Prasad
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Rita Chaouni
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Alice C. Yuen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Rita Sousa-Nunes
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
14
|
Vasconcelos MA, Orsolin PC, Oliveira VC, Lima PMAP, Naves MPC, de Morais CR, Nicolau-Júnior N, Bonetti AM, Spanó MA. Modulating effect of vitamin D3 on the mutagenicity and carcinogenicity of doxorubicin in Drosophila melanogaster and in silico studies. Food Chem Toxicol 2020; 143:111549. [PMID: 32640329 PMCID: PMC7335493 DOI: 10.1016/j.fct.2020.111549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023]
Abstract
Vitamin D3 (VD3) deficiency increases DNA damage, while supplementation may exert a pro-oxidant activity, prevent viral infections and formation of tumors. The aim of this study was to investigate the mutagenicity and carcinogenicity of VD3 alone or in combination with doxorubicin (DXR) using the Somatic Mutation and Recombination Test and the Epithelial Tumor Test, both in Drosophila melanogaster. For better understanding of the molecular interactions of VD3 and receptors, in silico analysis were performed with molecular docking associated with molecular dynamics. Findings revealed that VD3 alone did not increase the frequency of mutant spots, but reduced the frequency of mutant spots when co-administered with DXR. In addition, VD3 did not alter the recombinogenic effect of DXR in both ST and HB crosses. VD3 alone did not increase the total frequency of tumor, but significantly reduced the total frequency of tumor when co-administered with DXR. Molecular modeling and molecular dynamics between calcitriol and Ecdysone Receptor (EcR) showed a stable interaction, indicating the possibility of signal transduction between VD3 and EcR. In conclusion, under these experimental conditions, VD3 has modulatory effects on the mutagenicity and carcinogenicity induced by DXR in somatic cells of D. melanogaster and exhibited satisfactory interactions with the EcR.
Collapse
Affiliation(s)
- Mirley Alves Vasconcelos
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil.
| | - Priscila Capelari Orsolin
- Laboratory of Cytogenetic and Mutagenesis, University Center of Patos de Minas, Patos de Minas, MG, Brazil.
| | - Victor Constante Oliveira
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil.
| | | | | | | | - Nilson Nicolau-Júnior
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil.
| | - Ana Maria Bonetti
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil.
| | - Mário Antônio Spanó
- Institute of Biotechnology, Federal University of Uberlândia, Campus Umuarama, Uberlândia, MG, Brazil.
| |
Collapse
|
15
|
de Mena L, Rincon-Limas DE. PhotoGal4: A Versatile Light-Dependent Switch for Spatiotemporal Control of Gene Expression in Drosophila Explants. iScience 2020; 23:101308. [PMID: 32652492 PMCID: PMC7347995 DOI: 10.1016/j.isci.2020.101308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/15/2020] [Accepted: 06/19/2020] [Indexed: 12/04/2022] Open
Abstract
We present here PhotoGal4, a phytochrome B-based optogenetic switch for fine-tuned spatiotemporal control of gene expression in Drosophila explants. This switch integrates the light-dependent interaction between phytochrome B and PIF6 from plants with regulatory elements from the yeast Gal4/UAS system. We found that PhotoGal4 efficiently activates and deactivates gene expression upon red- or far-red-light irradiation, respectively. In addition, this optogenetic tool reacts to different illumination conditions, allowing for fine modulation of the light-dependent response. Importantly, by simply focusing a laser beam, PhotoGal4 induces intricate patterns of expression in a customized manner. For instance, we successfully sketched personalized patterns of GFP fluorescence such as emoji-like shapes or letterform logos in Drosophila explants, which illustrates the exquisite precision and versatility of this tool. Hence, we anticipate that PhotoGal4 will expand the powerful Drosophila toolbox and will provide a new avenue to investigate intricate and complex problems in biomedical research.
Collapse
Affiliation(s)
- Lorena de Mena
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32611, USA.
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
16
|
Das A, Gangarde YM, Tomar V, Shinde O, Upadhyay T, Alam S, Ghosh S, Chaudhary V, Saraogi I. Small-Molecule Inhibitor Prevents Insulin Fibrillogenesis and Preserves Activity. Mol Pharm 2020; 17:1827-1834. [PMID: 32347728 DOI: 10.1021/acs.molpharmaceut.9b01080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyloidosis is a well-known but poorly understood phenomenon caused by the aggregation of proteins, often leading to pathological conditions. For example, the aggregation of insulin poses significant challenges during the preparation of pharmaceutical insulin formulations commonly used to treat diabetic patients. Therefore, it is essential to develop inhibitors of insulin aggregation for potential biomedical applications and for important mechanistic insights into amyloidogenic pathways. Here, we have identified a small molecule M1, which causes a dose-dependent reduction in insulin fibril formation. Biophysical analyses and docking results suggest that M1 likely binds to partially unfolded insulin intermediates. Further, M1-treated insulin had lower cytotoxicity and remained functionally active in regulating cell proliferation in cultured Drosophila wing epithelium. Thus, M1 is of great interest as a novel agent for inhibiting insulin aggregation during biopharmaceutical manufacturing.
Collapse
|
17
|
tpHusion: An efficient tool for clonal pH determination in Drosophila. PLoS One 2020; 15:e0228995. [PMID: 32059043 PMCID: PMC7021318 DOI: 10.1371/journal.pone.0228995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/27/2020] [Indexed: 02/04/2023] Open
Abstract
Genetically encoded pH indicators (GEpHI) have emerged as important tools for investigating intracellular pH (pHi) dynamics in Drosophila. However, most of the indicators are based on the Gal4/UAS binary expression system. Here, we report the generation of a ubiquitously-expressed GEpHI. The fusion protein of super ecliptic pHluorin and FusionRed was cloned under the tubulin promoter (tpHusion) to drive it independently of the Gal4/UAS system. The function of tpHusion was validated in various tissues from different developmental stages of Drosophila. Differences in pHi were also indicated correctly in fixed tissues. Finally, we describe the use of tpHusion for comparative analysis of pHi in manipulated clones and the surrounding cells in epithelial tissues. Our findings establish tpHusion as a robust tool for studying pHi in Drosophila.
Collapse
|
18
|
Ho TY, Wu WH, Hung SJ, Liu T, Lee YM, Liu YH. Expressional Profiling of Carpet Glia in the Developing Drosophila Eye Reveals Its Molecular Signature of Morphology Regulators. Front Neurosci 2019; 13:244. [PMID: 30983950 PMCID: PMC6449730 DOI: 10.3389/fnins.2019.00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/01/2019] [Indexed: 12/11/2022] Open
Abstract
Homeostasis in the nervous system requires intricate regulation and is largely accomplished by the blood-brain barrier (BBB). The major gate keeper of the vertebrate BBB is vascular endothelial cells, which form tight junctions (TJs). To gain insight into the development of the BBB, we studied the carpet glia, a subperineurial glial cell type with vertebrate TJ-equivalent septate junctions, in the developing Drosophila eye. The large and flat, sheet-like carpet glia, which extends along the developing eye following neuronal differentiation, serves as an easily accessible experimental system to understand the cell types that exhibit barrier function. We profiled transcribed genes in the carpet glia using targeted DNA adenine methyl-transferase identification, followed by next-generation sequencing (targeted DamID-seq) and found that the majority of genes expressed in the carpet glia function in cellular activities were related to its dynamic morphological changes in the developing eye. To unravel the morphology regulators, we silenced genes selected from the carpet glia transcriptome using RNA interference. The Rho1 gene encoding a GTPase was previously reported as a key regulator of the actin cytoskeleton. The expression of the pathetic (path) gene, encoding a solute carrier transporter in the developing eye, is specific to the carpet glia. The reduced expression of Rho1 severely disrupted the formation of intact carpet glia, and the silencing path impaired the connection between the two carpet glial cells, indicating the pan-cellular and local effects of Rho1 and Path on carpet glial cell morphology, respectively. Our study molecularly characterized a particular subperineurial cell type providing a resource for a further understanding of the cell types comprising the BBB.
Collapse
Affiliation(s)
- Tsung-Ying Ho
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hang Wu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Jou Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Ming Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
19
|
Temporal and spatial order of photoreceptor and glia projections into optic lobe in Drosophila. Sci Rep 2018; 8:12669. [PMID: 30140062 PMCID: PMC6107658 DOI: 10.1038/s41598-018-30415-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/25/2018] [Indexed: 11/10/2022] Open
Abstract
Photoreceptor (PR) axons project from the retina to the optic lobe in brain and form a precise retinotopic map in the Drosophila visual system. Yet the role of retinal basal glia in the retinotopic map formation is not previously known. We examined the formation of the retinotopic map by marking single PR pairs and following their axonal projections. In addition to confirming previous studies that the spatial information is preserved from the retina to the optic stalk and then to the optic lamina, we found that the young PR R3/4 axons transiently overshoot and then retract to their final destination, the lamina plexus. We then examined the process of wrapping glia (WG) membrane extension in the eye disc and showed that the WG membrane extensions also follow the retinotopic map. We show that the WG is important for the proper spatial distribution of PR axons in the optic stalk and lamina, suggesting an active role of wrapping glia in the retinotopic map formation.
Collapse
|
20
|
Liou NF, Lin SH, Chen YJ, Tsai KT, Yang CJ, Lin TY, Wu TH, Lin HJ, Chen YT, Gohl DM, Silies M, Chou YH. Diverse populations of local interneurons integrate into the Drosophila adult olfactory circuit. Nat Commun 2018; 9:2232. [PMID: 29884811 PMCID: PMC5993751 DOI: 10.1038/s41467-018-04675-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/14/2018] [Indexed: 11/09/2022] Open
Abstract
Drosophila olfactory local interneurons (LNs) in the antennal lobe are highly diverse and variable. How and when distinct types of LNs emerge, differentiate, and integrate into the olfactory circuit is unknown. Through systematic developmental analyses, we found that LNs are recruited to the adult olfactory circuit in three groups. Group 1 LNs are residual larval LNs. Group 2 are adult-specific LNs that emerge before cognate sensory and projection neurons establish synaptic specificity, and Group 3 LNs emerge after synaptic specificity is established. Group 1 larval LNs are selectively reintegrated into the adult circuit through pruning and re-extension of processes to distinct regions of the antennal lobe, while others die during metamorphosis. Precise temporal control of this pruning and cell death shapes the global organization of the adult antennal lobe. Our findings provide a road map to understand how LNs develop and contribute to constructing the olfactory circuit. Local interneurons (LNs) in the Drosophila olfactory system are highly diverse. Here, the authors labeled different LN types and described how different LN subtypes are integrated into the developing circuit.
Collapse
Affiliation(s)
- Nan-Fu Liou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Han Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Jun Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Ting Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chi-Jen Yang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzi-Yang Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter, Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Ting-Han Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Ju Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yuh-Tarng Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Daryl M Gohl
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, USA.,University of Minnesota Genomics Center, 1-210 CCRB, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Marion Silies
- Department of Neurobiology, Stanford University, Stanford, CA, 94305, USA.,European Neuroscience Institute, University Medical Center Göttingen, Grisebachstr. 5, 37077, Göttingen, Germany
| | - Ya-Hui Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 11529, Taiwan. .,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
21
|
Ishimoto H, Sano H. Ex Vivo Calcium Imaging for Visualizing Brain Responses to Endocrine Signaling in Drosophila. J Vis Exp 2018. [PMID: 29912190 DOI: 10.3791/57701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Organ-to-organ communication by endocrine signaling, for example, from the periphery to the brain, is essential for maintaining homeostasis. As a model animal for endocrine research, Drosophila melanogaster, which has sophisticated genetic tools and genome information, is being increasingly used. This article describes a method for the calcium imaging of Drosophila brain explants. This method enables the detection of the direct signaling of a hormone to the brain. It is well known that many peptide hormones act through G-protein-coupled receptors (GPCRs), whose activation causes an increase in the intracellular Ca2+concentration. Neural activation also elevates intracellular Ca2+ levels, from both Ca2+ influx and the release of Ca2+ stored in the endoplasmic reticulum (ER). A calcium sensor, GCaMP, can monitor these Ca2+ changes. In this method, GCaMP is expressed in the neurons of interest, and the GCaMP-expressing larval brain is dissected and cultured ex vivo. The test peptide is then applied to the brain explant, and the fluorescent changes in GCaMP are detected using a spinning disc confocal microscope equipped with a CCD camera. Using this method, any water-soluble molecule can be tested, and various cellular events associated with neural activation can be imaged using the appropriate fluorescent indicators. Moreover, by modifying the imaging chamber, this method can be used to image other Drosophila organs or the organs of other animals.
Collapse
Affiliation(s)
- Hiroshi Ishimoto
- Division of Biological Science, Graduate School of Science, Nagoya University
| | - Hiroko Sano
- Department of Molecular Genetics, Institute of Life Science, Kurume University;
| |
Collapse
|
22
|
Wolff C, Tinevez JY, Pietzsch T, Stamataki E, Harich B, Guignard L, Preibisch S, Shorte S, Keller PJ, Tomancak P, Pavlopoulos A. Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb. eLife 2018; 7:34410. [PMID: 29595475 PMCID: PMC5929908 DOI: 10.7554/elife.34410] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/26/2018] [Indexed: 12/11/2022] Open
Abstract
During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic. During early life, animals develop from a single fertilized egg cell to hundreds, millions or even trillions of cells. These cells specialize to do different tasks; forming different tissues and organs like muscle, skin, lungs and liver. For more than a century, scientists have strived to understand the details of how animal cells become different and specialize, and have created many new techniques and technologies to help them achieve this goal. Limbs – such as arms, legs and wings – form from small lumps of cells called limb buds. Scientists use the shrimp-like crustacean, Parhyale hawaiensis, to study development, including limb growth. This species is useful because it is easy to grow, manipulate and observe its developing young in the laboratory. Understanding how its limbs develop offers important new insights into how limbs develop in other animals too. Wolff, Tinevez, Pietzsch et al. have now combined advanced microscopy with custom computer software, called Massive Multi-view Tracker (MaMuT) to investigate this. As limbs develop in Parhyale, the MaMuT software tracks how cells behave, and how they are organized. This analysis revealed that for cells to produce a limb bud, they need to split at an early stage into separate groups. These groups are organized along two body axes, one that goes from head to tail, and one that runs from back to belly. The limb grows perpendicular to these main body axes, along a new ‘proximal-distal’ axis that goes from nearest to furthest from the body. Wolff et al. found that the cells that contribute to the extremities of the limb divide faster than the ones that stay closer to the body. Finally, the results show that when cells in a limb divide, they mostly divide along the proximal-distal axis, producing one cell that is further from the body than the other. These cell activities may help limbs to get longer as they grow. Notably, the groups of cells seen by Wolff et al. were expressing genes that had previously been identified in developing limbs. This helps to validate the new results and to identify which active genes control the behaviors of the analyzed cells. These findings reveal new ways to study animal development. This approach could have many research uses and may help to link the mechanisms of cell biology to their effects. It could also contribute to new understanding of developmental and genetic conditions that affect human health.
Collapse
Affiliation(s)
- Carsten Wolff
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Tobias Pietzsch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Evangelia Stamataki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Benjamin Harich
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Léo Guignard
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stephan Preibisch
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
23
|
Kumar JP. The fly eye: Through the looking glass. Dev Dyn 2017; 247:111-123. [PMID: 28856763 DOI: 10.1002/dvdy.24585] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022] Open
Abstract
The developing eye-antennal disc of Drosophila melanogaster has been studied for more than a century, and it has been used as a model system to study diverse processes, such as tissue specification, organ growth, programmed cell death, compartment boundaries, pattern formation, cell fate specification, and planar cell polarity. The findings that have come out of these studies have informed our understanding of basic developmental processes as well as human disease. For example, the isolation of a white-eyed fly ultimately led to a greater appreciation of the role that sex chromosomes play in development, sex determination, and sex linked genetic disorders. Similarly, the discovery of the Sevenless receptor tyrosine kinase pathway not only revealed how the fate of the R7 photoreceptor is selected but it also helped our understanding of how disruptions in similar biochemical pathways result in tumorigenesis and cancer onset. In this article, I will discuss some underappreciated areas of fly eye development that are fertile for investigation and are ripe for producing exciting new breakthroughs. The topics covered here include organ shape, growth control, inductive signaling, and right-left symmetry. Developmental Dynamics 247:111-123, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, Indiana
| |
Collapse
|
24
|
Dye NA, Popović M, Spannl S, Etournay R, Kainmüller D, Ghosh S, Myers EW, Jülicher F, Eaton S. Cell dynamics underlying oriented growth of the Drosophila wing imaginal disc. Development 2017; 144:4406-4421. [PMID: 29038308 DOI: 10.1242/dev.155069] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/05/2017] [Indexed: 12/30/2022]
Abstract
Quantitative analysis of the dynamic cellular mechanisms shaping the Drosophila wing during its larval growth phase has been limited, impeding our ability to understand how morphogen patterns regulate tissue shape. Such analysis requires explants to be imaged under conditions that maintain both growth and patterning, as well as methods to quantify how much cellular behaviors change tissue shape. Here, we demonstrate a key requirement for the steroid hormone 20-hydroxyecdysone (20E) in the maintenance of numerous patterning systems in vivo and in explant culture. We find that low concentrations of 20E support prolonged proliferation in explanted wing discs in the absence of insulin, incidentally providing novel insight into the hormonal regulation of imaginal growth. We use 20E-containing media to observe growth directly and to apply recently developed methods for quantitatively decomposing tissue shape changes into cellular contributions. We discover that whereas cell divisions drive tissue expansion along one axis, their contribution to expansion along the orthogonal axis is cancelled by cell rearrangements and cell shape changes. This finding raises the possibility that anisotropic mechanical constraints contribute to growth orientation in the wing disc.
Collapse
Affiliation(s)
- Natalie A Dye
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Stephanie Spannl
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Raphaël Etournay
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Unité de Génétique et Physiologie de l'Audition UMRS 1120, Département de Neurosciences, Institut Pasteur, 75015 Paris, France
| | - Dagmar Kainmüller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Janelia Farm Research Campus, 19700 Helix Dr, Ashburn, VA 20147, USA
| | - Suhrid Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany .,Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01309 Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01309 Dresden, Germany .,Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01309 Dresden, Germany
| |
Collapse
|
25
|
Ku HY, Sun YH. Notch-dependent epithelial fold determines boundary formation between developmental fields in the Drosophila antenna. PLoS Genet 2017; 13:e1006898. [PMID: 28708823 PMCID: PMC5533456 DOI: 10.1371/journal.pgen.1006898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 07/28/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Compartment boundary formation plays an important role in development by separating adjacent developmental fields. Drosophila imaginal discs have proven valuable for studying the mechanisms of boundary formation. We studied the boundary separating the proximal A1 segment and the distal segments, defined respectively by Lim1 and Dll expression in the eye-antenna disc. Sharp segregation of the Lim1 and Dll expression domains precedes activation of Notch at the Dll/Lim1 interface. By repressing bantam miRNA and elevating the actin regulator Enable, Notch signaling then induces actomyosin-dependent apical constriction and epithelial fold. Disruption of Notch signaling or the actomyosin network reduces apical constriction and epithelial fold, so that Dll and Lim1 cells become intermingled. Our results demonstrate a new mechanism of boundary formation by actomyosin-dependent tissue folding, which provides a physical barrier to prevent mixing of cells from adjacent developmental fields. During development, boundary formation between adjacent developmental fields is important to maintain the integrity of complex organs and tissues. We examined how boundaries become established between adjacent developmental fields—which are defined by expression of distinct selector genes and developmental fates—using the Drosophila eye-antennal disc as a model. We show that boundary formation is a progressive process. We focused our analysis on the antennal A1 fold that separates the A1 and A2-Ar segments, corresponding to the evolutionarily conserved segregation between coxopodite and telopodite segments of arthropod appendages. We describe a clear temporal and causal sequence of events from selector gene expression to establishment of a lineage-restricting boundary. We found that Notch activation at the boundary between adjacent fields of selector gene expression triggers actomyosin-mediated cell apical constriction, which induces the formation of an epithelial fold and prevents intermixing of cells from adjacent fields. Our findings describe a novel mechanism by which epithelial fold provides a physical barrier for cell segregation.
Collapse
Affiliation(s)
- Hui-Yu Ku
- Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Y. Henry Sun
- Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
26
|
Strassburger K, Lorbeer FK, Lutz M, Graf F, Boutros M, Teleman AA. Oxygenation and adenosine deaminase support growth and proliferation of ex vivo cultured Drosophila wing imaginal discs. Development 2017; 144:2529-2538. [PMID: 28526754 DOI: 10.1242/dev.147538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/11/2017] [Indexed: 01/22/2023]
Abstract
The Drosophila wing imaginal disc has been an important model system over past decades for discovering novel biology related to development, signaling and epithelial morphogenesis. Novel experimental approaches have been enabled using a culture setup that allows ex vivo cultures of wing discs. Current setups, however, are not able to sustain both growth and cell-cycle progression of wing discs ex vivo We discover here a setup that requires both oxygenation of the tissue and adenosine deaminase activity in the medium, and supports both growth and proliferation of wing discs for 9 h. Nonetheless, further work will be required to extend the duration of the culturing and to enable live imaging of the cultured discs in the future.
Collapse
Affiliation(s)
| | | | - Marilena Lutz
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Fabian Graf
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | | |
Collapse
|
27
|
Abstract
Live imaging provides the ability to continuously track dynamic cellular and developmental processes in real time. Drosophila larval imaginal discs have been used to study many biological processes, such as cell proliferation, differentiation, growth, migration, apoptosis, competition, cell-cell signaling, and compartmental boundary formation. However, methods for the long-term ex vivo culture and live imaging of the imaginal discs have not been satisfactory, despite many efforts. Recently, we developed a method for the long-term ex vivo culture and live imaging of imaginal discs for up to 18 h. In addition to using a high insulin concentration in the culture medium, a low-melting agarose was also used to embed the disc to prevent it from drifting during the imaging period. This report uses the eye-antennal discs as an example. Photoreceptor R3/4-specific mδ0.5-Ga4 expression was followed to demonstrate that photoreceptor differentiation and ommatidial rotation can be observed during a 10 h live imaging period. This is a detailed protocol describing this simple method.
Collapse
Affiliation(s)
- Chia-Kang Tsao
- Institute of Genomic Sciences, National Yang-Ming University; Institute of Molecular Biology, Academia Sinica
| | - Hui-Yu Ku
- Institute of Genomic Sciences, National Yang-Ming University; Institute of Molecular Biology, Academia Sinica
| | - Y Henry Sun
- Institute of Genomic Sciences, National Yang-Ming University; Institute of Molecular Biology, Academia Sinica;
| |
Collapse
|