1
|
Hamaker NK, Lee KH. High-efficiency and multilocus targeted integration in CHO cells using CRISPR-mediated donor nicking and DNA repair inhibitors. Biotechnol Bioeng 2023; 120:2419-2440. [PMID: 37039773 PMCID: PMC10524319 DOI: 10.1002/bit.28393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Efforts to leverage clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) for targeted genomic modifications in mammalian cells are limited by low efficiencies and heterogeneous outcomes. To aid method optimization, we developed an all-in-one reporter system, including a novel superfolder orange fluorescent protein (sfOrange), to simultaneously quantify gene disruption, site-specific integration (SSI), and random integration (RI). SSI strategies that utilize different donor plasmid formats and Cas9 nuclease variants were evaluated for targeting accuracy and efficiency in Chinese hamster ovary cells. Double-cut and double-nick donor formats significantly improved targeting accuracy by 2.3-8.3-fold and 19-22-fold, respectively, compared to standard circular donors. Notably, Cas9-mediated donor linearization was associated with increased RI events, whereas donor nicking minimized RI without sacrificing SSI efficiency and avoided low-fidelity outcomes. A screen of 10 molecules that modulate the major mammalian DNA repair pathways identified two inhibitors that further enhance targeting accuracy and efficiency to achieve SSI in 25% of transfected cells without selection. The optimized methods integrated transgene expression cassettes with 96% efficiency at a single locus and with 53%-55% efficiency at two loci simultaneously in selected clones. The CRISPR-based tools and methods developed here could inform the use of CRISPR/Cas9 in mammalian cell lines, accelerate mammalian cell line engineering, and support advanced recombinant protein production applications.
Collapse
Affiliation(s)
- Nathaniel K. Hamaker
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Kelvin H. Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- The National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), University of Delaware, Newark, DE, 19713, USA
| |
Collapse
|
2
|
Marx N, Eisenhut P, Weinguny M, Klanert G, Borth N. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol Adv 2022; 56:107924. [PMID: 35149147 DOI: 10.1016/j.biotechadv.2022.107924] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in omics technologies and the broad availability of big datasets have revolutionized our understanding of Chinese hamster ovary cells in their role as the most prevalent host for production of complex biopharmaceuticals. In consequence, our perception of this "workhorse of the biopharmaceutical industry" has successively shifted from that of a nicely working, but unknown recombinant protein producing black box to a biological system governed by multiple complex regulatory layers that might possibly be harnessed and manipulated at will. Despite the tremendous progress that has been made to characterize CHO cells on various omics levels, our understanding is still far from complete. The well-known inherent genetic plasticity of any immortalized and rapidly dividing cell line also characterizes CHO cells and can lead to problematic instability of recombinant protein production. While the high mutational frequency has been a focus of CHO cell research for decades, the impact of epigenetics and its role in differential gene expression has only recently been addressed. In this review we provide an overview about the current understanding of epigenetic regulation in CHO cells and discuss its significance for shaping the cell's phenotype. We also look into current state-of-the-art technology that can be applied to harness and manipulate the epigenetic network so as to nudge CHO cells towards a specific phenotype. Here, we revise current strategies on site-directed integration and random as well as targeted epigenome modifications. Finally, we address open questions that need to be investigated to exploit the full repertoire of fine-tuned control of multiplexed gene expression using epigenetic and systems biology tools.
Collapse
Affiliation(s)
- Nicolas Marx
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Eisenhut
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Marcus Weinguny
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|
3
|
Stadermann A, Gamer M, Fieder J, Lindner B, Fehrmann S, Schmidt M, Schulz P, Gorr IH. Structural analysis of random transgene integration in CHO manufacturing cell lines by targeted sequencing. Biotechnol Bioeng 2021; 119:868-880. [PMID: 34935125 PMCID: PMC10138747 DOI: 10.1002/bit.28012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/08/2022]
Abstract
Genetically modified CHO cell lines are traditionally used for the production of biopharmaceuticals. However, an in-depth molecular understanding of the mechanism and exact position of transgene integration into the genome of pharmaceutical manufacturing cell lines is still scarce. Next Generation Sequencing (NGS) holds great promise for strongly facilitating the understanding of CHO cell factories, as it has matured to a powerful and affordable technology for cellular genotype analysis. Targeted Locus Amplification (TLA) combined with NGS allows for robust detection of genomic positions of transgene integration and structural genomic changes occurring upon stable integration of expression vectors. TLA was applied to generate comparative genomic fingerprints of several CHO production cell lines expressing different monoclonal antibodies. Moreover, high producers resulting from an additional round of transfection of an existing cell line (supertransfection) were analyzed to investigate the integrity and the number of integration sites. Our analyses enabled detailed genetic characterization of the integration regions with respect to the number of integrates and structural changes of the host cell's genome. Single integration sites per clone with concatenated transgene copies could be detected and were in some cases found to be associated with genomic rearrangements, deletions or translocations. Supertransfection resulted in an increase in titer associated with an additional integration site per clone. Based on the TLA fingerprints, CHO cell lines originating from the same mother clone could clearly be distinguished. Interestingly, two CHO cell lines originating from the same mother clone were shown to differ genetically and phenotypically despite of their identical TLA fingerprints. Taken together, TLA provides an accurate genetic characterization with respect to transgene integration sites compared to conventional methods and represents a valuable tool for a comprehensive evaluation of CHO production clones early in cell line development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anna Stadermann
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Martin Gamer
- R&D Project Management NBEs, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Jürgen Fieder
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Benjamin Lindner
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Steffen Fehrmann
- Genedata AG, Selector BU, Margarethenstrasse 38, 4053, Basel, Switzerland
| | - Moritz Schmidt
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Patrick Schulz
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| | - Ingo H Gorr
- Analytical Development Biologicals, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach, Germany
| |
Collapse
|
4
|
Li GB, Pollard J, Liu R, Stevens RC, Quiroz J, Nelson MC, Manahan M, Murgolo N, Ehrick RS, Wallenstein EJ, Hughes J, Tsao YS, Zhao J, Du Z, Tugcu N, Pollard D. Retrospective assessment of clonality of a legacy cell line by analytical subcloning of the master cell bank. Biotechnol Prog 2021; 38:e3215. [PMID: 34586757 DOI: 10.1002/btpr.3215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 11/10/2022]
Abstract
In recent years, assurance of clonality of the production cell line has been emphasized by health authorities during review of regulatory submissions. When insufficient assurance of clonality is provided, augmented control strategies may be required for a commercial production process. In this study, we conducted a retrospective assessment of clonality of a legacy cell line through analysis of subclones from the master cell bank (MCB). Twenty-four subclones were randomly selected based on a predetermined acceptance sampling plan. All these subclones share a conserved integration junction, thus providing a high level of assurance that the cell population in the MCB was derived from a single progenitor cell. However, Southern blot analysis indicates that at least four subpopulations possibly exist in the MCB. Additional characterization of these four subpopulations demonstrated that the resulting changes in product quality attributes of some subclones are not related to the genetic heterogeneity observed in Southern blot hybridization. Furthermore, process consistency, process comparability, and analytical comparability have been demonstrated in batches produced across varying manufacturing processes, scales, facilities, cell banks, and cell ages. Finally, process and product consistency together with a high level of assurance of clonal origin of the MCB helped clear the hurdle for regulatory approval without requirement of additional control strategies.
Collapse
Affiliation(s)
- Guanghua Benson Li
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jennifer Pollard
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Ren Liu
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Richard C Stevens
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jorge Quiroz
- Research CMC Statistics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Michael C Nelson
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Matthew Manahan
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Nicholas Murgolo
- Genetics and Pharmacogenomics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Robin S Ehrick
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Eric J Wallenstein
- Biologics Process Development & Commercialization, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jason Hughes
- Global Research IT, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Yung-Shyeng Tsao
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Jia Zhao
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Zhimei Du
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Nihal Tugcu
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - David Pollard
- Biologics Process Research & Development, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
5
|
Bulté DB, Palomares LA, Parra CG, Martínez JA, Contreras MA, Noriega LG, Ramírez OT. Overexpression of the mitochondrial pyruvate carrier reduces lactate production and increases recombinant protein productivity in CHO cells. Biotechnol Bioeng 2020; 117:2633-2647. [DOI: 10.1002/bit.27439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/15/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Dubhe B. Bulté
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de México Morelos Mexico
| | - Laura A. Palomares
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de México Morelos Mexico
| | - Carolina Gómez Parra
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de México Morelos Mexico
| | - Juan Andrés Martínez
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de México Morelos Mexico
| | - Martha A. Contreras
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de México Morelos Mexico
| | - Lilia G. Noriega
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán Mexico
| | - Octavio T. Ramírez
- Instituto de BiotecnologíaUniversidad Nacional Autónoma de México Morelos Mexico
| |
Collapse
|
6
|
Lee JS, Park JH, Ha TK, Samoudi M, Lewis NE, Palsson BO, Kildegaard HF, Lee GM. Revealing Key Determinants of Clonal Variation in Transgene Expression in Recombinant CHO Cells Using Targeted Genome Editing. ACS Synth Biol 2018; 7:2867-2878. [PMID: 30388888 DOI: 10.1021/acssynbio.8b00290] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Generation of recombinant Chinese hamster ovary (rCHO) cell lines is critical for the production of therapeutic proteins. However, the high degree of phenotypic heterogeneity among generated clones, referred to as clonal variation, makes the rCHO cell line development process inefficient and unpredictable. Here, we investigated the major genomic causes of clonal variation. We found the following: (1) consistent with previous studies, a strong variation in rCHO clones in response to hypothermia (33 vs 37 °C) after random transgene integration; (2) altered DNA sequence of randomly integrated cassettes, which occurred during the integration process, affecting the transgene expression level in response to hypothermia; (3) contrary to random integration, targeted integration of the same expression cassette, without any DNA alteration, into three identified integration sites showed the similar response of transgene expression in response to hypothermia, irrespective of integration site; (4) switching the promoter from CMV to EF1α eliminated the hypothermia response; and (5) deleting the enhancer part of the CMV promoter altered the hypothermia response. Thus, we have revealed the effects of integration methods and cassette design on transgene expression levels, implying that rCHO cell line generation can be standardized through detailed genomic understanding. Further elucidation of such understanding is likely to have a broad impact on diverse fields that use transgene integration, from gene therapy to generation of production cell lines.
Collapse
Affiliation(s)
- Jae Seong Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jin Hyoung Park
- Department of Biological Sciences, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Tae Kwang Ha
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mojtaba Samoudi
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, California 92093, United States
| | - Nathan E. Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Bernhard O. Palsson
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Pediatrics, University of California, San Diego, La Jolla, California 92093, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| |
Collapse
|
7
|
Zhao M, Wang J, Luo M, Luo H, Zhao M, Han L, Zhang M, Yang H, Xie Y, Jiang H, Feng L, Lu H, Zhu J. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35. Appl Microbiol Biotechnol 2018; 102:6105-6117. [PMID: 29789882 DOI: 10.1007/s00253-018-9021-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Chinese hamster ovary (CHO) cells are the most widely used mammalian hosts for recombinant protein production. However, by conventional random integration strategy, development of a high-expressing and stable recombinant CHO cell line has always been a difficult task due to the heterogenic insertion and its caused requirement of multiple rounds of selection. Site-specific integration of transgenes into CHO hot spots is an ideal strategy to overcome these challenges since it can generate isogenic cell lines with consistent productivity and stability. In this study, we investigated three sites with potential high transcriptional activities: C12orf35, HPRT, and GRIK1, to determine the possible transcriptional hot spots in CHO cells, and further construct a reliable site-specific integration strategy to develop recombinant cell lines efficiently. Genes encoding representative proteins mCherry and anti-PD1 monoclonal antibody were targeted into these three loci respectively through CRISPR/Cas9 technology. Stable cell lines were generated successfully after a single round of selection. In comparison with a random integration control, all the targeted integration cell lines showed higher productivity, among which C12orf35 locus was the most advantageous in both productivity and cell line stability. Binding affinity and N-glycan analysis of the antibody revealed that all batches of product were of similar quality independent on integrated sites. Deep sequencing demonstrated that there was low level of off-target mutations caused by CRISPR/Cas9, but none of them contributed to the development process of transgene cell lines. Our results demonstrated the feasibility of C12orf35 as the target site for exogenous gene integration, and strongly suggested that C12orf35 targeted integration mediated by CRISPR/Cas9 is a reliable strategy for the rapid development of recombinant CHO cell lines.
Collapse
Affiliation(s)
- Menglin Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiaxian Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Manyu Luo
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Han Luo
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Meiqi Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lei Han
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mengxiao Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hui Yang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yueqing Xie
- Jecho Laboratories, Inc., 7320 Executive Way, Frederick, MD, 21704, USA
| | - Hua Jiang
- Jecho Laboratories, Inc., 7320 Executive Way, Frederick, MD, 21704, USA
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China. .,Jecho Laboratories, Inc., 7320 Executive Way, Frederick, MD, 21704, USA.
| |
Collapse
|