1
|
Kim GHJ, Mo H, Liu H, Okorie M, Chen S, Zheng J, Li H, Arkin M, Huang B, Guo S. In Vivo Dopamine Neuron Imaging-Based Small Molecule Screen Identifies Novel Neuroprotective Compounds and Targets. Front Pharmacol 2022; 13:837756. [PMID: 35370735 PMCID: PMC8971663 DOI: 10.3389/fphar.2022.837756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder with prominent dopamine (DA) neuron degeneration. PD affects millions of people worldwide, but currently available therapies are limited to temporary relief of symptoms. As an effort to discover disease-modifying therapeutics, we have conducted a screen of 1,403 bioactive small molecule compounds using an in vivo whole organism screening assay in transgenic larval zebrafish. The transgenic model expresses the bacterial enzyme nitroreductase (NTR) driven by the tyrosine hydroxylase (th) promotor. NTR converts the commonly used antibiotic pro-drug metronidazole (MTZ) to the toxic nitroso radical form to induce DA neuronal loss. 57 compounds were identified with a brain health score (BHS) that was significantly improved compared to the MTZ treatment alone after FDR adjustment (padj<0.05). Independently, we curated the high throughput screening (HTS) data by annotating each compound with pharmaceutical classification, known mechanism of action, indication, IC50, and target. Using the Reactome database, we performed pathway analysis, which uncovered previously unknown pathways in addition to validating previously known pathways associated with PD. Non-topology-based pathway analysis of the screening data further identified apoptosis, estrogen hormone, dipeptidyl-peptidase 4, and opioid receptor Mu1 to be potentially significant pathways and targets involved in neuroprotection. A total of 12 compounds were examined with a secondary assay that imaged DA neurons before and after compound treatment. The z’-factor of this secondary assay was determined to be 0.58, suggesting it is an excellent assay for screening. Etodolac, nepafenac, aloperine, protionamide, and olmesartan showed significant neuroprotection and was also validated by blinded manual DA neuronal counting. To determine whether these compounds are broadly relevant for neuroprotection, we tested them on a conduritol-b-epoxide (CBE)-induced Gaucher disease (GD) model, in which the activity of glucocerebrosidase (GBA), a commonly known genetic risk factor for PD, was inhibited. Aloperine, olmesartan, and nepafenac showed significant protection of DA neurons in this assay. Together, this work, which combines high content whole organism in vivo imaging-based screen and bioinformatic pathway analysis of the screening dataset, delineates a previously uncharted approach for identifying hit-to-lead candidates and for implicating previously unknown pathways and targets involved in DA neuron protection.
Collapse
Affiliation(s)
- Gha-hyun J. Kim
- Department of Bioengineering and Therapeutic Sciences and Programs in Biological Sciences and Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Graduate Program of Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, CA, United States
- *Correspondence: Gha-hyun J. Kim, ; Su Guo,
| | - Han Mo
- Department of Bioengineering and Therapeutic Sciences and Programs in Biological Sciences and Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Harrison Liu
- Department of Pharmaceutical Chemistry, San Francisco, CA, United States
- Graduate Program of Bioengineering, San Francisco, CA, United States
| | - Meri Okorie
- Department of Bioengineering and Therapeutic Sciences and Programs in Biological Sciences and Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Graduate Program of Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, CA, United States
| | - Steven Chen
- Department of Pharmaceutical Chemistry, San Francisco, CA, United States
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, United States
| | - Jiashun Zheng
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States
| | - Michelle Arkin
- Department of Pharmaceutical Chemistry, San Francisco, CA, United States
- Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, San Francisco, CA, United States
- Graduate Program of Bioengineering, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences and Programs in Biological Sciences and Human Genetics, University of California San Francisco, San Francisco, CA, United States
- Graduate Program of Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, CA, United States
- *Correspondence: Gha-hyun J. Kim, ; Su Guo,
| |
Collapse
|
2
|
Abozaid A, Hung J, Tsang B, Motlana K, Al-Ani R, Gerlai R. Behavioral effects of acute ethanol in larval zebrafish (D. rerio) depend on genotype and volume of experimental well. Prog Neuropsychopharmacol Biol Psychiatry 2022; 112:110411. [PMID: 34363865 DOI: 10.1016/j.pnpbp.2021.110411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/10/2023]
Abstract
Ethanol consumption is a worldwide problem. Sensitivity to acute effects of ethanol influences the development of chronic ethanol abuse and ethanol dependence. Environmental and genetic factors have been found to contribute to differential effects of acute ethanol. Animal models have been employed to investigate these factors. An increasingly frequently utilized animal model in ethanol research is the zebrafish. A large proportion of ethanol studies with zebrafish have been conducted with adult zebrafish. However, high throughput drug and mutation screens are particularly well adapted to larval zebrafish. These studies are often carried out using the 96-well-plate that allows monitoring large numbers of fish efficiently. Here, we investigate the effects of acute (30 min long) ethanol exposure in 8-day post-fertilization (dpf) old zebrafish. We compare four genetically distinct populations (strains) of zebrafish, measuring numerous parameters of their swim path in two well sizes, i.e., in the 96-well-plate (small volume wells) and in the 6-well-plate (large volume wells). In general, we found that the highest dose of ethanol (1% vol/vol) reduced swim speed, increased duration of immobility, increased turn angle, and increased intra-individual variance of turn angle, while the intermediate dose (0.5%) had a less strong effect, compared to control. However, we also found that these ethanol effects were strain dependent and, in general, were better detected in the larger volume well. We conclude that larval zebrafish are appropriate for quantification of acute ethanol effects and also for the analysis of environmental and genetic factors that influence these effects. We also speculate that using larger wells will likely increase sensitivity of detection and precision in screening applications.
Collapse
Affiliation(s)
- Amira Abozaid
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Joshua Hung
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Benjamin Tsang
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Critical Care Medicine, Hospital for Sick Children, Toronto, Canada; Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, United Kingdom
| | - Keza Motlana
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Reem Al-Ani
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Robert Gerlai
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Kim GHJ, Mo H, Liu H, Wu Z, Chen S, Zheng J, Zhao X, Nucum D, Shortland J, Peng L, Elepano M, Tang B, Olson S, Paras N, Li H, Renslo AR, Arkin MR, Huang B, Lu B, Sirota M, Guo S. A zebrafish screen reveals Renin-angiotensin system inhibitors as neuroprotective via mitochondrial restoration in dopamine neurons. eLife 2021; 10:69795. [PMID: 34550070 PMCID: PMC8457844 DOI: 10.7554/elife.69795] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/27/2021] [Indexed: 01/12/2023] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder without effective disease-modifying therapeutics. Here, we establish a chemogenetic dopamine (DA) neuron ablation model in larval zebrafish with mitochondrial dysfunction and robustness suitable for high-content screening. We use this system to conduct an in vivo DA neuron imaging-based chemical screen and identify the Renin-Angiotensin-Aldosterone System (RAAS) inhibitors as significantly neuroprotective. Knockdown of the angiotensin receptor 1 (agtr1) in DA neurons reveals a cell-autonomous mechanism of neuroprotection. DA neuron-specific RNA-seq identifies mitochondrial pathway gene expression that is significantly restored by RAAS inhibitor treatment. The neuroprotective effect of RAAS inhibitors is further observed in a zebrafish Gaucher disease model and Drosophila pink1-deficient PD model. Finally, examination of clinical data reveals a significant effect of RAAS inhibitors in delaying PD progression. Our findings reveal the therapeutic potential and mechanisms of targeting the RAAS pathway for neuroprotection and demonstrate a salient approach that bridges basic science to translational medicine. Parkinson’s disease is caused by the slow death and deterioration of brain cells, in particular of the neurons that produce a chemical messenger known as dopamine. Certain drugs can mitigate the resulting drop in dopamine levels and help to manage symptoms, but they cause dangerous side-effects. There is no treatment that can slow down or halt the progress of the condition, which affects 0.3% of the population globally. Many factors, both genetic and environmental, contribute to the emergence of Parkinson’s disease. For example, dysfunction of the mitochondria, the internal structures that power up cells, is a known mechanism associated with the death of dopamine-producing neurons. Zebrafish are tiny fish which can be used to study Parkinson’s disease, as they are easy to manipulate in the lab and share many characteristics with humans. In particular, they can be helpful to test the effects of various potential drugs on the condition. Here, Kim et al. established a new zebrafish model in which dopamine-producing brain cells die due to their mitochondria not working properly; they then used this assay to assess the impact of 1,403 different chemicals on the integrity of these cells. A group of molecules called renin-angiotensin-aldosterone (RAAS) inhibitors was shown to protect dopamine-producing neurons and stopped them from dying as often. These are already used to treat high blood pressure as they help to dilate blood vessels. In the brain, however, RAAS worked by restoring certain mitochondrial processes. Kim et al. then investigated whether these results are relevant in other, broader contexts. They were able to show that RAAS inhibitors have the same effect in other animals, and that Parkinson’s disease often progresses more slowly in patients that already take these drugs for high blood pressure. Taken together, these findings therefore suggest that RAAS inhibitors may be useful to treat Parkinson’s disease, as well as other brain illnesses that emerge because of mitochondria not working properly. Clinical studies and new ways to improve these drugs are needed to further investigate and capitalize on these potential benefits.
Collapse
Affiliation(s)
- Gha-Hyun J Kim
- Department of Bioengineering and Therapeutic Sciences and Programs in BiologicalSciences and Human Genetics, University of California, San Francisco, San Francisco, United States.,Graduate Program of Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, United States
| | - Han Mo
- Department of Bioengineering and Therapeutic Sciences and Programs in BiologicalSciences and Human Genetics, University of California, San Francisco, San Francisco, United States.,Tsinghua-Peking Center for Life Sciences, McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Harrison Liu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Graduate Program of Bioengineering, University of California, San Francisco, San Francisco, United States
| | - Zhihao Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| | - Steven Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Small Molecule Discovery Center, University of California, San Francisco, San Francisco, United States
| | - Jiashun Zheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Xiang Zhao
- Department of Bioengineering and Therapeutic Sciences and Programs in BiologicalSciences and Human Genetics, University of California, San Francisco, San Francisco, United States
| | - Daryl Nucum
- Department of Bioengineering and Therapeutic Sciences and Programs in BiologicalSciences and Human Genetics, University of California, San Francisco, San Francisco, United States
| | - James Shortland
- Department of Bioengineering and Therapeutic Sciences and Programs in BiologicalSciences and Human Genetics, University of California, San Francisco, San Francisco, United States
| | - Longping Peng
- Department of Bioengineering and Therapeutic Sciences and Programs in BiologicalSciences and Human Genetics, University of California, San Francisco, San Francisco, United States.,Department of Cardiovascular Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mannuel Elepano
- Institute for Neurodegenerative Diseases (IND), UCSF Weill Institute forNeurosciences, University of California, San Francisco, San Francisco, United States
| | - Benjamin Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, United States.,Institute for Neurodegenerative Diseases (IND), UCSF Weill Institute forNeurosciences, University of California, San Francisco, San Francisco, United States
| | - Steven Olson
- Small Molecule Discovery Center, University of California, San Francisco, San Francisco, United States.,Institute for Neurodegenerative Diseases (IND), UCSF Weill Institute forNeurosciences, University of California, San Francisco, San Francisco, United States
| | - Nick Paras
- Institute for Neurodegenerative Diseases (IND), UCSF Weill Institute forNeurosciences, University of California, San Francisco, San Francisco, United States
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Small Molecule Discovery Center, University of California, San Francisco, San Francisco, United States
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Small Molecule Discovery Center, University of California, San Francisco, San Francisco, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Graduate Program of Bioengineering, University of California, San Francisco, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, United States
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences and Programs in BiologicalSciences and Human Genetics, University of California, San Francisco, San Francisco, United States.,Graduate Program of Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
4
|
Carregosa D, Mota S, Ferreira S, Alves-Dias B, Loncarevic-Vasiljkovic N, Crespo CL, Menezes R, Teodoro R, dos Santos CN. Overview of Beneficial Effects of (Poly)phenol Metabolites in the Context of Neurodegenerative Diseases on Model Organisms. Nutrients 2021; 13:2940. [PMID: 34578818 PMCID: PMC8464690 DOI: 10.3390/nu13092940] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
The rise of neurodegenerative diseases in an aging population is an increasing problem of health, social and economic consequences. Epidemiological and intervention studies have demonstrated that diets rich in (poly)phenols can have potent health benefits on cognitive decline and neurodegenerative diseases. Meanwhile, the role of gut microbiota is ever more evident in modulating the catabolism of (poly)phenols to dozens of low molecular weight (poly)phenol metabolites that have been identified in plasma and urine. These metabolites can reach circulation in higher concentrations than parent (poly)phenols and persist for longer periods of time. However, studies addressing their potential brain effects are still lacking. In this review, we will discuss different model organisms that have been used to study how low molecular weight (poly)phenol metabolites affect neuronal related mechanisms gathering critical insight on their potential to tackle the major hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Diogo Carregosa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Sara Mota
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| | - Sofia Ferreira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Beatriz Alves-Dias
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Natasa Loncarevic-Vasiljkovic
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Carolina Lage Crespo
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Regina Menezes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Rita Teodoro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Cláudia Nunes dos Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
5
|
Li X, Akinyemi IA, You JK, Rezaei MA, Li C, McIntosh MT, Del Poeta M, Bhaduri-McIntosh S. A Mechanism-Based Targeted Screen To Identify Epstein-Barr Virus-Directed Antiviral Agents. J Virol 2020; 94:e01179-20. [PMID: 32796077 PMCID: PMC7565614 DOI: 10.1128/jvi.01179-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/06/2020] [Indexed: 12/23/2022] Open
Abstract
Epstein-Barr virus (EBV) is one of nine human herpesviruses that persist latently to establish permanent residence in their hosts. Periodic activation into the lytic/replicative phase allows such viruses to propagate and spread, but can also cause disease in the host. This lytic phase is also essential for EBV to cause infectious mononucleosis and cancers, including B lymphocyte-derived Burkitt lymphoma and immunocompromise-associated lymphoproliferative diseases/lymphomas as well as epithelial cell-derived nasopharyngeal cell carcinoma. In the absence of anti-EBV agents, however, therapeutic options for EBV-related diseases are limited. In earlier work, we discovered that through the activities of the viral protein kinase conserved across herpesviruses and two cellular proteins, ATM and KAP1, a lytic cycle amplification loop is established, and disruption of this loop disables the EBV lytic cascade. We therefore devised a high-throughput screening assay, screened a small-molecule-compound library, and identified 17 candidates that impair the release of lytically replicated EBV. The identified compounds will (i) serve as lead compounds or may be modified to inhibit EBV and potentially other herpesviruses, and (ii) be developed into anticancer agents, as functions of KAP1 and ATM are tightly linked to cancer. Importantly, our screening strategy may also be used to screen additional compound libraries for antiherpesviral and anticancer drugs.IMPORTANCE Epstein-Barr virus, which is nearly ubiquitous in humans, is causal to infectious mononucleosis, chronic active EBV infection, and lymphoid and epithelial cancers. However, EBV-specific antiviral agents are not yet available. To aid in the identification of compounds that may be developed as antivirals, we pursued a mechanism-based approach. Since many of these diseases rely on EBV's lytic phase, we developed a high-throughput assay that is able to measure a key step that is essential for successful completion of EBV's lytic cascade. We used this assay to screen a library of small-molecule compounds and identified inhibitors that may be pursued for their anti-EBV and possibly even antiherpesviral potential, as this key mechanism appears to be common to several human herpesviruses. Given the prominent role of this mechanism in both herpesvirus biology and cancer, our screening assay may be used as a platform to identify both antiherpesviral and anticancer drugs.
Collapse
Affiliation(s)
- Xiaofan Li
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Ibukun A Akinyemi
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Jeehyun Karen You
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Mohammad Ali Rezaei
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Michael T McIntosh
- Child Health Research Institute, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Ohnesorge N, Sasore T, Hillary D, Alvarez Y, Carey M, Kennedy BN. Orthogonal Drug Pooling Enhances Phenotype-Based Discovery of Ocular Antiangiogenic Drugs in Zebrafish Larvae. Front Pharmacol 2019; 10:508. [PMID: 31178719 PMCID: PMC6544088 DOI: 10.3389/fphar.2019.00508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Unbiased screening of large randomized chemical libraries in vivo is a powerful tool to find new drugs and targets. However, forward chemical screens in zebrafish can be time consuming and usually >99% of test compounds have no significant effect on the desired phenotype. Here, we sought to find bioactive drugs more efficiently and to comply with the 3R principles of replacement, reduction, and refinement of animals in research. We investigated if pooling of drugs to simultaneously test 8–10 compounds in zebrafish larvae can increase the screening efficiency of an established assay that identifies drugs inhibiting developmental angiogenesis in the eye. In a phenotype-based screen, we tested 1,760 small molecule compounds from the ChemBridge DIVERSet™ chemical library for their ability to inhibit the formation of distinct primary hyaloid vessels in the eye. Applying orthogonal pooling of the chemical library, we treated zebrafish embryos from 3 to 5 days post fertilization with pools of 8 or 10 compounds at 10 μM each. This reduced the number of tests from 1,760 to 396. In 63% of cases, treatment showed sub-threshold effects of <40% reduction of primary hyaloid vessels. From 18 pool hits, we identified eight compounds that reduce hyaloid vessels in the larval zebrafish eye by at least 40%. Compound 4-[4-(1H-benzimidazol-2-yl)phenoxy]aniline ranked as the most promising candidate with reproducible and dose-dependent effects. To our knowledge, this is the first report of a self-deconvoluting matrix strategy applied to drug screening in zebrafish. We conclude that the orthogonal drug pooling strategy is a cost-effective, time-saving, and unbiased approach to discover novel inhibitors of developmental angiogenesis in the eye. Ultimately, this approach may identify new drugs or targets to mitigate disease caused by pathological angiogenesis in the eye, e.g., diabetic retinopathy or age-related macular degeneration, wherein blood vessel growth and leaky vessels lead to vision impairment or clinical blindness.
Collapse
Affiliation(s)
- Nils Ohnesorge
- UCD School of Biomolecular and Biomedical Sciences, and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Temitope Sasore
- UCD School of Biomolecular and Biomedical Sciences, and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Daniel Hillary
- School of Mathematics & Statistics, University College Dublin, Dublin, Ireland
| | - Yolanda Alvarez
- UCD School of Biomolecular and Biomedical Sciences, and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Michelle Carey
- School of Mathematics & Statistics, University College Dublin, Dublin, Ireland
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Sciences, and UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Bradford YM, Toro S, Ramachandran S, Ruzicka L, Howe DG, Eagle A, Kalita P, Martin R, Taylor Moxon SA, Schaper K, Westerfield M. Zebrafish Models of Human Disease: Gaining Insight into Human Disease at ZFIN. ILAR J 2017; 58:4-16. [PMID: 28838067 PMCID: PMC5886338 DOI: 10.1093/ilar/ilw040] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022] Open
Abstract
The Zebrafish Model Organism Database (ZFIN; https://zfin.org) is the central resource for genetic, genomic, and phenotypic data for zebrafish (Danio rerio) research. ZFIN continuously assesses trends in zebrafish research, adding new data types and providing data repositories and tools that members of the research community can use to navigate data. The many research advantages and flexibility of manipulation of zebrafish have made them an increasingly attractive animal to model and study human disease.To facilitate disease-related research, ZFIN developed support to provide human disease information as well as annotation of zebrafish models of human disease. Human disease term pages at ZFIN provide information about disease names, synonyms, and references to other databases as well as a list of publications reporting studies of human diseases in which zebrafish were used. Zebrafish orthologs of human genes that are implicated in human disease etiology are routinely studied to provide an understanding of the molecular basis of disease. Therefore, a list of human genes involved in the disease with their corresponding zebrafish ortholog is displayed on the disease page, with links to additional information regarding the genes and existing mutations. Studying human disease often requires the use of models that recapitulate some or all of the pathologies observed in human diseases. Access to information regarding existing and published models can be critical, because they provide a tractable way to gain insight into the phenotypic outcomes of the disease. ZFIN annotates zebrafish models of human disease and supports retrieval of these published models by listing zebrafish models on the disease term page as well as by providing search interfaces and data download files to access the data. The improvements ZFIN has made to annotate, display, and search data related to human disease, especially zebrafish models for disease and disease-associated gene information, should be helpful to researchers and clinicians considering the use of zebrafish to study human disease.
Collapse
Affiliation(s)
- Yvonne M. Bradford
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Sabrina Toro
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Sridhar Ramachandran
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Leyla Ruzicka
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Douglas G. Howe
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Anne Eagle
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Patrick Kalita
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Ryan Martin
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Sierra A. Taylor Moxon
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Kevin Schaper
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| | - Monte Westerfield
- Yvonne M. Bradford, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sabrina Toro, PhD, is a scientific curator for the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sridhar Ramachandran, MS, is a scientific curator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Leyla Ruzicka, PhD, is a scientific curator and senior research associate at the Zebrafish Model Organism Database, at the University of Oregon in Eugene, Oregon. Douglas G. Howe, PhD, is the Data Curation Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Anne Eagle, MSCS, is the Software Development and Project Manager at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Patrick Kalita, MS, is a software developer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Ryan Martin, MS, is a systems administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Sierra A. Taylor Moxon, BA, is the Database Administrator at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Kevin Schaper, BS, is a software engineer at the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon. Monte Westerfield, PhD, is a Professor of Biology in the Institute of Neuroscience and directs the Zebrafish Model Organism Database at the University of Oregon in Eugene, Oregon.
| |
Collapse
|
8
|
Geldenhuys WJ, Bergeron SA, Mullins JE, Aljammal R, Gaasch BL, Chen WC, Yun J, Hazlehurst LA. High-content screen using zebrafish (Danio rerio) embryos identifies a novel kinase activator and inhibitor. Bioorg Med Chem Lett 2017; 27:2029-2037. [PMID: 28320616 DOI: 10.1016/j.bmcl.2017.02.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
Abstract
In this report we utilized zebrafish (Danio rerio) embryos in a phenotypical high-content screen (HCS) to identify novel leads in a cancer drug discovery program. We initially validated our HCS model using the flavin adenosine dinucleotide (FAD) containing endoplasmic reticulum (ER) enzyme, endoplasmic reticulum oxidoreductase (ERO1) inhibitor EN460. EN460 showed a dose response effect on the embryos with a dose of 10μM being significantly lethal during early embryonic development. The HCS campaign which employed a small library identified a promising lead compound, a naphthyl-benzoic acid derivative coined compound 1 which had significant dosage and temporally dependent effects on notochord and muscle development in zebrafish embryos. Screening a 369 kinase member panel we show that compound 1 is a PIM3 kinase inhibitor (IC50=4.078μM) and surprisingly a DAPK1 kinase agonist/activator (EC50=39.525μM). To our knowledge this is the first example of a small molecule activating DAPK1 kinase. We provide a putative model for increased phosphate transfer in the ATP binding domain when compound 1 is virtually docked with DAPK1. Our data indicate that observable phenotypical changes can be used in future zebrafish screens to identify compounds acting via similar molecular signaling pathways.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, United States.
| | - Sadie A Bergeron
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Jackie E Mullins
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV 26506, United States
| | - Rowaa Aljammal
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, United States
| | - Briah L Gaasch
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, United States
| | - Wei-Chi Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, United States
| | - June Yun
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - Lori A Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, United States
| |
Collapse
|