1
|
Poirier N, Ménétrier F, Moreno J, Boichot V, Heydel JM, Didierjean C, Canivenc-Lavier MC, Canon F, Neiers F, Schwartz M. Rattus norvegicus Glutathione Transferase Omega 1 Localization in Oral Tissues and Interactions with Food Phytochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5887-5897. [PMID: 38441878 DOI: 10.1021/acs.jafc.4c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glutathione transferases are xenobiotic-metabolizing enzymes with both glutathione-conjugation and ligandin roles. GSTs are present in chemosensory tissues and fluids of the nasal/oral cavities where they protect tissues from exogenous compounds, including food molecules. In the present study, we explored the presence of the omega-class glutathione transferase (GSTO1) in the rat oral cavity. Using immunohistochemistry, GSTO1 expression was found in taste bud cells of the tongue epithelium and buccal cells of the oral epithelium. Buccal and lingual extracts exhibited thiol-transferase activity (4.9 ± 0.1 and 1.8 ± 0.1 μM/s/mg, respectively). A slight reduction from 4.9 ± 0.1 to 4.2 ± 0.1 μM/s/mg (p < 0.05; Student's t test) was observed in the buccal extract with 100 μM GSTO1-IN-1, a specific inhibitor of GSTO1. RnGSTO1 exhibited the usual activities of omega GSTs, i.e., thiol-transferase (catalytic efficiency of 8.9 × 104 M-1·s-1), and phenacyl-glutathione reductase (catalytic efficiency of 8.9 × 105 M-1·s-1) activities, similar to human GSTO1. RnGSTO1 interacts with food phytochemicals, including bitter compounds such as luteolin (Ki = 3.3 ± 1.9 μM). Crystal structure analysis suggests that luteolin most probably binds to RnGSTO1 ligandin site. Our results suggest that GSTO1 could interact with food phytochemicals in the oral cavity.
Collapse
Affiliation(s)
- Nicolas Poirier
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Franck Ménétrier
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Jade Moreno
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Valentin Boichot
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Jean-Marie Heydel
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | | | | | - Francis Canon
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Fabrice Neiers
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| | - Mathieu Schwartz
- CSGA, INRAE, CNRS, University of Burgundy, Institut Agro, Dijon 21065, France
| |
Collapse
|
2
|
Muradova M, Proskura A, Canon F, Aleksandrova I, Schwartz M, Heydel JM, Baranenko D, Nadtochii L, Neiers F. Unlocking Flavor Potential Using Microbial β-Glucosidases in Food Processing. Foods 2023; 12:4484. [PMID: 38137288 PMCID: PMC10742834 DOI: 10.3390/foods12244484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Aroma is among of the most important criteria that indicate the quality of food and beverage products. Aroma compounds can be found as free molecules or glycosides. Notably, a significant portion of aroma precursors accumulates in numerous food products as nonvolatile and flavorless glycoconjugates, termed glycosidic aroma precursors. When subjected to enzymatic hydrolysis, these seemingly inert, nonvolatile glycosides undergo transformation into fragrant volatiles or volatiles that can generate odor-active compounds during food processing. In this context, microbial β-glucosidases play a pivotal role in enhancing or compromising the development of flavors during food and beverage processing. β-glucosidases derived from bacteria and yeast can be utilized to modulate the concentration of particular aroma and taste compounds, such as bitterness, which can be decreased through hydrolysis by glycosidases. Furthermore, oral microbiota can influence flavor perception by releasing volatile compounds that can enhance or alter the perception of food products. In this review, considering the glycosidic flavor precursors present in diverse food and beverage products, we underscore the significance of glycosidases with various origins. Subsequently, we delve into emerging insights regarding the release of aroma within the human oral cavity due to the activity of oral microbial glycosidases.
Collapse
Affiliation(s)
- Mariam Muradova
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Alena Proskura
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Francis Canon
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| | - Irina Aleksandrova
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Mathieu Schwartz
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| | - Jean-Marie Heydel
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| | - Denis Baranenko
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Liudmila Nadtochii
- International Research Center “Biotechnologies of the Third Millennium”, Faculty of Biotechnologies (BioTech), ITMO University, 191002 Saint-Petersburg, Russia; (I.A.); (L.N.)
| | - Fabrice Neiers
- Molecular Mechanisms of Flavor Perception, Center for Taste and Feeding Behavior, INRAE, CNRS, University of Burgundy Franche-Comté, 21000 Dijon, France; (A.P.); (F.C.); (M.S.); (J.-M.H.)
| |
Collapse
|
3
|
Schwartz M, Perrot T, Beurton J, Zannini F, Morel-Rouhier M, Gelhaye E, Neiers F, Schaniel D, Favier F, Jacquot JP, Leroy P, Clarot I, Boudier A, Didierjean C. Structural insights into the interactions of glutathione transferases with a nitric oxide carrier and sodium nitroprusside. Biochem Biophys Res Commun 2023; 649:79-86. [PMID: 36758482 DOI: 10.1016/j.bbrc.2023.01.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Glutathione transferases are detoxification enzymes with multifaceted roles, including a role in the metabolism and scavenging of nitric oxide (NO) compounds in cells. Here, we explored the ability of Trametes versicolor glutathione transferases (GSTs) from the Omega class (TvGSTOs) to bind metal-nitrosyl compounds. TvGSTOs have been studied previously for their ligandin role and are interesting models to study protein‒ligand interactions. First, we determined the X-ray structure of the TvGSTO3S isoform bound to the dinitrosyl glutathionyl iron complex (DNGIC), a physiological compound involved in the storage of nitric oxide. Our results suggested a different binding mode compared to the one previously described in human GST Pi 1 (GSTP1). Then, we investigated the manner in which TvGSTO3S binds three nonphysiological metal-nitrosyl compounds with different metal cores (iron, ruthenium and osmium). We assayed sodium nitroprusside, a well-studied vasodilator used in cases of hypertensive crises or heart failure. Our results showed that the tested GST can bind metal-nitrosyls at two distinct binding sites. Thermal shift analysis with six isoforms of TvGSTOs identified TvGSTO6S as the best interactant. Using the Griess method, TvGSTO6S was found to improve the release of nitric oxide from sodium nitroprusside in vitro, whereas the effects of human GST alpha 1 (GSTA1) and GSTP1 were moderate. Our results open new structural perspectives for understanding the interactions of glutathione transferases with metal-nitrosyl compounds associated with the biochemical mechanisms of NO uptake/release in biological systems.
Collapse
Affiliation(s)
- Mathieu Schwartz
- Université de Lorraine, CNRS, CRM2, F-54000, Nancy, France; CSGA, INRAE, University of Burgundy, CNRS, Institut Agro, F-21000, Dijon, France.
| | - Thomas Perrot
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Jordan Beurton
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | | | | | - Eric Gelhaye
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Fabrice Neiers
- CSGA, INRAE, University of Burgundy, CNRS, Institut Agro, F-21000, Dijon, France
| | | | | | | | - Pierre Leroy
- Université de Lorraine, INRAE, IAM, F-54000, Nancy, France
| | - Igor Clarot
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | - Ariane Boudier
- Université de Lorraine, CITHEFOR, F-54000, Nancy, France
| | | |
Collapse
|
4
|
Li QM, Zhou YL, Wei ZF, Wang Y. Phylogenomic Insights into Distribution and Adaptation of Bdellovibrionota in Marine Waters. Microorganisms 2021; 9:757. [PMID: 33916768 PMCID: PMC8067016 DOI: 10.3390/microorganisms9040757] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
Bdellovibrionota is composed of obligate predators that can consume some Gram-negative bacteria inhabiting various environments. However, whether genomic traits influence their distribution and marine adaptation remains to be answered. In this study, we performed phylogenomics and comparative genomics studies using 132 Bdellovibrionota genomes along with five metagenome-assembled genomes (MAGs) from deep sea zones. Four phylogenetic groups, Oligoflexia, Bdello-group1, Bdello-group2 and Bacteriovoracia, were revealed by constructing a phylogenetic tree, of which 53.84% of Bdello-group2 and 48.94% of Bacteriovoracia were derived from the ocean. Bacteriovoracia was more prevalent in deep sea zones, whereas Bdello-group2 was largely distributed in the epipelagic zone. Metabolic reconstruction indicated that genes involved in chemotaxis, flagellar (mobility), type II secretion system, ATP-binding cassette (ABC) transporters and penicillin-binding protein were necessary for the predatory lifestyle of Bdellovibrionota. Genes involved in glycerol metabolism, hydrogen peroxide (H2O2) degradation, cell wall recycling and peptide utilization were ubiquitously present in Bdellovibrionota genomes. Comparative genomics between marine and non-marine Bdellovibrionota demonstrated that betaine as an osmoprotectant is probably widely used by marine Bdellovibrionota, and all the marine genomes have a number of genes for adaptation to marine environments. The genes encoding chitinase and chitin-binding protein were identified for the first time in Oligoflexia, which implied that Oligoflexia may prey on a wider spectrum of microbes. This study expands our knowledge on adaption strategies of Bdellovibrionota inhabiting deep seas and the potential usage of Oligoflexia for biological control.
Collapse
Affiliation(s)
- Qing-Mei Li
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.-M.L.); (Y.-L.Z.); (Z.-F.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Li Zhou
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.-M.L.); (Y.-L.Z.); (Z.-F.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhan-Fei Wei
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.-M.L.); (Y.-L.Z.); (Z.-F.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Wang
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Q.-M.L.); (Y.-L.Z.); (Z.-F.W.)
| |
Collapse
|
5
|
Diversity of Omega Glutathione Transferases in mushroom-forming fungi revealed by phylogenetic, transcriptomic, biochemical and structural approaches. Fungal Genet Biol 2021; 148:103506. [PMID: 33450403 DOI: 10.1016/j.fgb.2020.103506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/20/2023]
Abstract
The Omega class of glutathione transferases (GSTs) forms a distinct class within the cytosolic GST superfamily because most of them possess a catalytic cysteine residue. The human GST Omega 1 isoform was first characterized twenty years ago, but it took years of work to clarify the roles of the human isoforms. Concerning the kingdom of fungi, little is known about the cellular functions of Omega glutathione transferases (GSTOs), although they are widely represented in some of these organisms. In this study, we re-assess the phylogeny and the classification of GSTOs based on 240 genomes of mushroom-forming fungi (Agaricomycetes). We observe that the number of GSTOs is not only extended in the order of Polyporales but also in other orders such as Boletales. Our analysis leads to a new classification in which the fungal GSTOs are divided into two Types A and B. The catalytic residue of Type-A is either cysteine or serine, while that of Type-B is cysteine. The present study focuses on Trametes versicolor GSTO isoforms that possess a catalytic cysteine residue. Transcriptomic data show that Type-A GSTOs are constitutive enzymes while Type-B are inducible ones. The crystallographic analysis reveals substantial structural differences between the two types while they have similar biochemical profiles in the tested conditions. Additionally, these enzymes have the ability to bind antioxidant molecules such as wood polyphenols in two possible binding sites as observed from X-ray structures. The multiplication of GSTOs could allow fungal organisms to adapt more easily to new environments.
Collapse
|
6
|
Brangulis K, Akopjana I, Petrovskis I, Kazaks A, Zelencova D, Jekabsons A, Jaudzems K, Tars K. BBE31 from the Lyme disease agent Borrelia burgdorferi, known to play an important role in successful colonization of the mammalian host, shows the ability to bind glutathione. Biochim Biophys Acta Gen Subj 2019; 1864:129499. [PMID: 31785327 DOI: 10.1016/j.bbagen.2019.129499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 11/27/2022]
Abstract
Lyme disease is a tick-borne infection caused by Borrelia burgdorferi sensu lato complex spirochetes. The spirochete is located in the gut of the tick; as the infected tick starts the blood meal, the spirochete must travel through the hemolymph to the salivary glands, where it can spread to and infect the new host organism. In this study, we determined the crystal structures of the key outer surface protein BBE31 from B. burgdorferi and its orthologous protein BSE31 (BSPA14S_RS05060 gene product) from B. spielmanii. BBE31 is known to be important for the transfer of B. burgdorferi from the gut to the hemolymph in the tick after a tick bite. While BBE31 exerts its function by interacting with the Ixodes scapularis tick gut protein TRE31, structural and mass spectrometry data revealed that BBE31 has a glutathione (GSH) covalently attached to Cys142 suggesting that the protein may have acquired some additional functions in contrast to its orthologous protein BSE31, which lacks any interactions with GSH. In the current study, in addition to analyzing the potential reasons for GSH binding, the three-dimensional structure of BBE31 provides new insights into the molecular details of the transmission process as the protein plays an important role in the initial phase before the spirochete is physically transferred to the new host. This knowledge will be potentially used for the development of new strategies to fight against Lyme disease.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia; Riga Stradins University, Department of Human Physiology and Biochemistry, Dzirciema 16, LV-1007 Riga, Latvia.
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia
| | - Ivars Petrovskis
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia
| | - Diana Zelencova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Atis Jekabsons
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia; University of Latvia, Faculty of Chemistry, Jelgavas 1, LV-1004 Riga, Latvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, LV-1067 Riga, Latvia; University of Latvia, Faculty of Biology, Jelgavas 1, LV-1004 Riga, Latvia
| |
Collapse
|
7
|
Di Matteo A, Federici L, Masulli M, Carletti E, Santorelli D, Cassidy J, Paradisi F, Di Ilio C, Allocati N. Structural Characterization of the Xi Class Glutathione Transferase From the Haloalkaliphilic Archaeon Natrialba magadii. Front Microbiol 2019; 10:9. [PMID: 30713525 PMCID: PMC6345682 DOI: 10.3389/fmicb.2019.00009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/07/2019] [Indexed: 12/30/2022] Open
Abstract
Xi class glutathione transferases (GSTs) are a recently identified group, within this large superfamily of enzymes, specifically endowed with glutathione-dependent reductase activity on glutathionyl-hydroquinone. Enzymes belonging to this group are widely distributed in bacteria, fungi, and plants but not in higher eukaryotes. Xi class GSTs are also frequently found in archaea and here we focus on the enzyme produced by the extreme haloalkaliphilic archaeon Natrialba magadii (NmGHR). We investigated its function and stability and determined its 3D structure in the apo form by X-ray crystallography. NmGHR displays the same fold of its mesophilic counterparts, is enriched in negatively charged residues, which are evenly distributed along the surface of the protein, and is characterized by a peculiar distribution of hydrophobic residues. A distinctive feature of haloalkaliphilic archaea is their preference for γ-glutamyl-cysteine over glutathione as a reducing thiol. Indeed we found that the N. magadii genome lacks a gene coding for glutathione synthase. Analysis of NmGHR structure suggests that the thiol binding site (G-site) of the enzyme is well suited for hosting γ-glutamyl-cysteine.
Collapse
Affiliation(s)
- Adele Di Matteo
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | - Luca Federici
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,CeSI-MeT, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Michele Masulli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Erminia Carletti
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,CeSI-MeT, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Daniele Santorelli
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,CeSI-MeT, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Jennifer Cassidy
- Synthesis and Solid State Pharmaceutical Centre (SSPC), School of Chemistry, University College Dublin, Dublin, Ireland
| | - Francesca Paradisi
- Synthesis and Solid State Pharmaceutical Centre (SSPC), School of Chemistry, University College Dublin, Dublin, Ireland.,School of Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Carmine Di Ilio
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Nerino Allocati
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
8
|
Sylvestre-Gonon E, Law SR, Schwartz M, Robe K, Keech O, Didierjean C, Dubos C, Rouhier N, Hecker A. Functional, Structural and Biochemical Features of Plant Serinyl-Glutathione Transferases. FRONTIERS IN PLANT SCIENCE 2019; 10:608. [PMID: 31191562 PMCID: PMC6540824 DOI: 10.3389/fpls.2019.00608] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/25/2019] [Indexed: 05/04/2023]
Abstract
Glutathione transferases (GSTs) belong to a ubiquitous multigenic family of enzymes involved in diverse biological processes including xenobiotic detoxification and secondary metabolism. A canonical GST is formed by two domains, the N-terminal one adopting a thioredoxin (TRX) fold and the C-terminal one an all-helical structure. The most recent genomic and phylogenetic analysis based on this domain organization allowed the classification of the GST family into 14 classes in terrestrial plants. These GSTs are further distinguished based on the presence of the ancestral cysteine (Cys-GSTs) present in TRX family proteins or on its substitution by a serine (Ser-GSTs). Cys-GSTs catalyze the reduction of dehydroascorbate and deglutathionylation reactions whereas Ser-GSTs catalyze glutathione conjugation reactions and eventually have peroxidase activity, both activities being important for stress tolerance or herbicide detoxification. Through non-catalytic, so-called ligandin properties, numerous plant GSTs also participate in the binding and transport of small heterocyclic ligands such as flavonoids including anthocyanins, and polyphenols. So far, this function has likely been underestimated compared to the other documented roles of GSTs. In this review, we compiled data concerning the known enzymatic and structural properties as well as the biochemical and physiological functions associated to plant GSTs having a conserved serine in their active site.
Collapse
Affiliation(s)
- Elodie Sylvestre-Gonon
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
| | - Simon R. Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Mathieu Schwartz
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Kevin Robe
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Claude Didierjean
- Centre National de la Recherche Scientifique, Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, Nancy, France
| | - Christian Dubos
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), INRA, CNRS, SupAgro-M, Université de Montpellier, Montpellier, France
| | - Nicolas Rouhier
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| | - Arnaud Hecker
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
- *Correspondence: Nicolas Rouhier, Arnaud Hecker,
| |
Collapse
|
9
|
Schwartz M, Perrot T, Deroy A, Roret T, Morel‐Rouhier M, Mulliert G, Gelhaye E, Favier F, Didierjean C. Trametes versicolor
glutathione transferase Xi 3, a dual Cys‐GST with catalytic specificities of both Xi and Omega classes. FEBS Lett 2018; 592:3163-3172. [DOI: 10.1002/1873-3468.13224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 11/06/2022]
|