1
|
Wang X, Wang Z, Zhang X, Zhang Y, Zhang W, Zhang Y, Zhang X, Xiao Y, Zhang Y, Fang W. Bioinformatics-assisted mining and design of novel pullulanase suitable for starch cold hydrolysis. J Biotechnol 2025; 398:106-116. [PMID: 39681264 DOI: 10.1016/j.jbiotec.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Cold-active pullulanases with good catalytic performance possess promising applications in cold hydrolysis of starch. Adopting bioinformatics-assisted mining strategies, 7 candidate cold-active pullulanases were initially screened out from IMG/MER database. Among the candidates, PulBs exhibited good thermostability and the highest specific activity of 147.4 U/mg. The half-life of PulBs was about 200 h at 35 °C. Employing PulBs as the initial enzyme, the active-site design of FuncLib was implemented to enhance the activity. The design PulBs-20 exhibited an enhanced specific activity of 209.9 U/mg, which was 1.4 times that of PulBs. Furthermore, the thermostability of PulBs-20 was augmented, with a half-life of 250 h at 35 °C. When applied in the cold hydrolysis of starch, PulBs-20 can effectively enhance the hydrolysis effect of raw starch. Supplemented with the raw starch-hydrolyzing α-amylase AmyZ1 and PulBs-20, the hydrolysis rate of raw corn starch increased to 53.5 %, which was 1.3 times that of using AmyZ1 alone. Due to its high hydrolysis activity and good thermostability, PulBs-20 can serve as an efficient accessory enzyme in starch cold hydrolysis.
Collapse
Affiliation(s)
- Xin Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Zixing Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Xueting Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yanli Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Wenxia Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yu Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yinliang Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.
| | - Wei Fang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.
| |
Collapse
|
2
|
Liu H, Guan F, Liu T, Yang L, Fan L, Liu X, Luo H, Wu N, Yao B, Tian J, Huang H. MECE: a method for enhancing the catalytic efficiency of glycoside hydrolase based on deep neural networks and molecular evolution. Sci Bull (Beijing) 2023; 68:2793-2805. [PMID: 37867059 DOI: 10.1016/j.scib.2023.09.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/14/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
The demand for high efficiency glycoside hydrolases (GHs) is on the rise due to their various industrial applications. However, improving the catalytic efficiency of an enzyme remains a challenge. This investigation showcases the capability of a deep neural network and method for enhancing the catalytic efficiency (MECE) platform to predict mutations that improve catalytic activity in GHs. The MECE platform includes DeepGH, a deep learning model that is able to identify GH families and functional residues. This model was developed utilizing 119 GH family protein sequences obtained from the Carbohydrate-Active enZYmes (CAZy) database. After undergoing ten-fold cross-validation, the DeepGH models exhibited a predictive accuracy of 96.73%. The utilization of gradient-weighted class activation mapping (Grad-CAM) was used to aid us in comprehending the classification features, which in turn facilitated the creation of enzyme mutants. As a result, the MECE platform was validated with the development of CHIS1754-MUT7, a mutant that boasts seven amino acid substitutions. The kcat/Km of CHIS1754-MUT7 was found to be 23.53 times greater than that of the wild type CHIS1754. Due to its high computational efficiency and low experimental cost, this method offers significant advantages and presents a novel approach for the intelligent design of enzyme catalytic efficiency. As a result, it holds great promise for a wide range of applications.
Collapse
Affiliation(s)
- Hanqing Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tuoyu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixin Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lingxi Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huiying Luo
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Yao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jian Tian
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huoqing Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Naik B, Kumar V, Goyal SK, Dutt Tripathi A, Mishra S, Joakim Saris PE, Kumar A, Rizwanuddin S, Kumar V, Rustagi S. Pullulanase: unleashing the power of enzyme with a promising future in the food industry. Front Bioeng Biotechnol 2023; 11:1139611. [PMID: 37449089 PMCID: PMC10337586 DOI: 10.3389/fbioe.2023.1139611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Pullulanases are the most important industrial group of enzymes in family 13 glycosyl hydrolases. They hydrolyze either α-1,6 and α-1,4 or both glycosidic bonds in pullulan as well as other carbohydrates to produce glucose, maltose, and maltotriose syrups, which have important uses in food and other related sectors. However, very less reports are available on pullulanase production from native strains because of low yield issues. In line with the increasing demands for pullulanase, it has become important to search for novel pullulanase-producing microorganisms with high yields. Moreover, high production costs and low yield are major limitations in the industrial production of pullulanase enzymes. The production cost of pullulanase by using the solid-state fermentation (SSF) process can be minimized by selecting agro-industrial waste. This review summarizes the types, sources, production strategies, and potential applications of pullulanase in different food and other related industries. Researchers should focus on fungal strains producing pullulanase for better yield and low production costs by using agro-waste. It will prove a better enzyme in different food processing industries and will surely reduce the cost of products.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - S. K. Goyal
- Department of Agricultural Engineering, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Akhilesh Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sheikh Rizwanuddin
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Uttarakhand, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Sarvesh Rustagi
- Department of Food Technology, UCLAS, Uttaranchal University, Dehradun, India
| |
Collapse
|
4
|
Liu Y, Zhang N, Ma J, Zhou Y, Wei Q, Tian C, Fang Y, Zhong R, Chen G, Zhang S. Advances in cold-adapted enzymes derived from microorganisms. Front Microbiol 2023; 14:1152847. [PMID: 37180232 PMCID: PMC10169661 DOI: 10.3389/fmicb.2023.1152847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Cold-adapted enzymes, produced in cold-adapted organisms, are a class of enzyme with catalytic activity at low temperatures, high temperature sensitivity, and the ability to adapt to cold stimulation. These enzymes are largely derived from animals, plants, and microorganisms in polar areas, mountains, and the deep sea. With the rapid development of modern biotechnology, cold-adapted enzymes have been implemented in human and other animal food production, the protection and restoration of environments, and fundamental biological research, among other areas. Cold-adapted enzymes derived from microorganisms have attracted much attention because of their short production cycles, high yield, and simple separation and purification, compared with cold-adapted enzymes derived from plants and animals. In this review we discuss various types of cold-adapted enzyme from cold-adapted microorganisms, along with associated applications, catalytic mechanisms, and molecular modification methods, to establish foundation for the theoretical research and application of cold-adapted enzymes.
Collapse
Affiliation(s)
- Yehui Liu
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Na Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Jie Ma
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Yuqi Zhou
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Qiang Wei
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yi Fang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Rongzhen Zhong
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
| | - Sitong Zhang
- College of Life Science, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
5
|
Niu D, Cong H, Zhang Y, Mchunu NP, Wang ZX. Pullulanase with high temperature and low pH optima improved starch saccharification efficiency. Sci Rep 2022; 12:21942. [PMID: 36536070 PMCID: PMC9763405 DOI: 10.1038/s41598-022-26410-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Pullulanase, a starch debranching enzyme, is required for the preparation of high glucose/maltose syrup from starch. In order to expand its narrow reaction conditions and improve its application value, Bacillus naganoensis pullulanase (PulA) was mutated by site-directed mutagenesis and the biochemical characteristics of the mutants were studied. The mutant PulA-N3 with mutations at asparagine 467, 492 and 709 residues was obtained. It displayed the activity maximum at 60 °C and pH 4.5 and exceeded 90% activities between 45 and 60 °C and from pH 4.0 to pH 5.5, which was improved greatly compared with wild-type PulA. Its thermostability and acidic pH stability were also remarkably improved. Its catalytic rate (kcat/Vmax) was 2.76 times that of PulA. In the preparation of high glucose syrup, the DX (glucose content, %) values of glucose mediated by PulA-N3 and glucoamylase reached 96.08%, which were 0.82% higher than that of PulA. In conclusion, a new pullulanase mutant PulA-N3 was successfully developed, which has high debranching activity in a wide range of temperature and pH, thereby paving the way for highly efficient starch saccharification.
Collapse
Affiliation(s)
- Dandan Niu
- grid.413109.e0000 0000 9735 6249Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Huihui Cong
- grid.413109.e0000 0000 9735 6249Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Yanan Zhang
- grid.413109.e0000 0000 9735 6249Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Nokuthula Peace Mchunu
- grid.413109.e0000 0000 9735 6249Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China ,grid.428711.90000 0001 2173 1003Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, 0110 South Africa
| | - Zheng-Xiang Wang
- grid.413109.e0000 0000 9735 6249Department of Biological Chemical Engineering, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457 China ,grid.413109.e0000 0000 9735 6249College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| |
Collapse
|
6
|
Mondal S, Mondal K, Halder SK, Thakur N, Mondal KC. Microbial Amylase: Old but still at the forefront of all major industrial enzymes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Abstract
Starch and pullulan degrading enzymes are essential industrial biocatalysts. Pullulan-degrading enzymes are grouped into pullulanases (types I and type II) and pullulan hydrolase (types I, II and III). Generally, these enzymes hydrolyse the α-1,6 glucosidic bonds (and α-1,4 for certain enzyme groups) of substrates and form reducing sugars such as glucose, maltose, maltotriose, panose or isopanose. This review covers two main aspects: (i) bibliometric analysis of publications and patents related to pullulan-degrading enzymes and (ii) biological aspects of free and immobilised pullulan-degrading enzymes and protein engineering. The collective data suggest that most publications involved researchers within the same institution or country in the past and current practice. Multi-national interaction shall be improved, especially in tapping the enzymes from unculturable prokaryotes. While the understanding of pullulanases may reach a certain extend of saturation, the discovery of pullulan hydrolases is still limited. In this report, we suggest readers consider using the next-generation sequencing technique to fill the gaps of finding more new sequences encoding pullulan-degrading enzymes to expand the knowledge body of this topic.
Collapse
|
8
|
Du J, Hu S, Dong J, Wu R, Yu J, Yin H. Exploring the factors that affect the themostability of barley limit dextrinase - Inhibitor complex. J Mol Graph Model 2021; 109:108043. [PMID: 34649145 DOI: 10.1016/j.jmgm.2021.108043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
Barley Limit dextrinase (Hordeum vulgare HvLD) is the unique endogenous starch-debranching enzyme, determining the production of a high degree of fermentation. The activity of HvLD is regulated by an endogenous LD inhibitor protein (LDI). In beer production, free LD is easy to inactivate in mashing process under the condition of high temperature. The binding of LD with LDI protects it against heat inactivation. Exploring the factors affecting the themostability of HvLD-LDI complex is important for beer production. In this work, the themostability of HvLD-LDI complex at different NaCl concentrations and temperatures were explored by molecular dynamics simulation and binding free energy calculation. In NaCl solution, the complex exhibits higher conformational stability at 343 K and 363 K than those in pure water. Root mean square fluctuation (RMSF) analysis identified the thermal sensitive regions of HvLD and LDI. The binding free energy results suggest that the LD-LDI complex is more stable in NaCl solution than those in pure water at high temperature. The residues with high contribution to the complex were identified. The structural and dynamic details will help us to understand the driving forces that lead to the themostability of HvLD-LDI complex at different temperatures and different salt concentrations, which will facilitate the optimization conditions of beer production for maintaining the thermal stability and activity of HvLD.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery, Qingdao, China; Shandong Province Key Laboratory of Applied Mycology, College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery, Qingdao, China.
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery, Qingdao, China
| | - Ruihan Wu
- Shandong Province Key Laboratory of Applied Mycology, College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery, Qingdao, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery, Qingdao, China
| |
Collapse
|
9
|
Microbial starch debranching enzymes: Developments and applications. Biotechnol Adv 2021; 50:107786. [PMID: 34147588 DOI: 10.1016/j.biotechadv.2021.107786] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Starch debranching enzymes (SDBEs) hydrolyze the α-1,6 glycosidic bonds in polysaccharides such as starch, amylopectin, pullulan and glycogen. SDBEs are also important enzymes for the preparation of sugar syrup, resistant starch and cyclodextrin. As the synergistic catalysis of SDBEs and other starch-acting hydrolases can effectively improve the raw material utilization and production efficiency during starch processing steps such as saccharification and modification, they have attracted substantial research interest in the past decades. The substrate specificities of the two major members of SDBEs, pullulanases and isoamylases, are quite different. Pullulanases generally require at least two α-1,4 linked glucose units existing on both sugar chains linked by the α-1,6 bond, while isoamylases require at least three units of α-1,4 linked glucose. SDBEs mainly belong to glycoside hydrolase (GH) family 13 and 57. Except for GH57 type II pullulanse, GH13 pullulanases and isoamylases share plenty of similarities in sequence and structure of the core catalytic domains. However, the N-terminal domains, which might be one of the determinants contributing to the substrate binding of SDBEs, are distinct in different enzymes. In order to overcome the current defects of SDBEs in catalytic efficiency, thermostability and expression level, great efforts have been made to develop effective enzyme engineering and fermentation strategies. Herein, the diverse biochemical properties and distinct features in the sequence and structure of pullulanase and isoamylase from different sources are summarized. Up-to-date developments in the enzyme engineering, heterologous production and industrial applications of SDBEs is also reviewed. Finally, research perspective which could help understanding and broadening the applications of SDBEs are provided.
Collapse
|
10
|
Xu P, Zhang SY, Luo ZG, Zong MH, Li XX, Lou WY. Biotechnology and bioengineering of pullulanase: state of the art and perspectives. World J Microbiol Biotechnol 2021; 37:43. [PMID: 33547538 DOI: 10.1007/s11274-021-03010-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/19/2021] [Indexed: 11/26/2022]
Abstract
Pullulanase (EC 3.2.1.41) is a starch-debranching enzyme in the α-amylase family and specifically cleaves α-1,6-glycosidic linkages in starch-type polysaccharides, such as pullulan, β-limited dextrin, glycogen, and amylopectin. It plays a key role in debranching and hydrolyzing starch completely, thus bring improved product quality, increased productivity, and reduced production cost in producing resistant starch, sugar syrup, and beer. Plenty of researches have been made with respects to the discovery of either thermophilic or mesophilic pullulanases, however, few examples meet the demand of industrial application. This review presents the progress made in the recent years from the first aspect of characteristics of pullulanases. The heterologous expression of pullulanases in different microbial hosts and the methods used to improve the expression effectiveness and the regulation of enzyme production are also described. Then, the function evolution of pullulanases from a protein engineering view is discussed. In addition, the immobilization strategy using novel materials is introduced to improve the recyclability of pullulanases. At the same time, we indicate the trends in the future research to facilitate the industrial application of pullulanases.
Collapse
Affiliation(s)
- Pei Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Shi-Yu Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Zhi-Gang Luo
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xiao-Xi Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Wen-Yong Lou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
11
|
Chen Y, Zhao Y, Zhou X, Liu N, Ming D, Zhu L, Jiang L. Improving the thermostability of trehalose synthase from Thermomonospora curvata by covalent cyclization using peptide tags and investigation of the underlying molecular mechanism. Int J Biol Macromol 2020; 168:13-21. [PMID: 33285196 DOI: 10.1016/j.ijbiomac.2020.11.195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
One of the most desirable properties for industrial enzymes is high thermotolerance, which can reduce the amount of biocatalyst used and lower the production cost. Aiming to improve the thermotolerance of trehalose synthase (TreS, EC 5.4.99.16) from Thermomonospora curvata, four mutants (G78D, V289L, G322A, I323L) and four cyclized TreS variants fused using different Tag/Catcher pairs (SpyTag-TreS-SpyCatcher, SpyTag-TreS-KTag, SnoopTag-TreS-SnoopCatcher, SnoopTagJR-TreS-DogTag) were constructed. The results showed that cyclization led to a much larger increase of thermostability than that achieved via site-directed mutagenesis. The t1/2 of all four cyclized TreS variants at 55 °C increased 2- to 3- fold, while the analysis of kinetic and thermodynamic stability indicated that the T50 of the different cyclized TreS variants increased by between 7.5 °C and 15.5 °C. Molecular dynamics simulations showed that the Rg values of cyclized TreS decreased significantly, indicating that the protein maintained a tight tertiary structure at high temperatures, avoiding exposure of the hydrophobic core to the solvent. Cyclization using a Tag/Catcher pair is a simple and effective method for improving the thermotolerance of enzymes.
Collapse
Affiliation(s)
- Yao Chen
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yang Zhao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xue Zhou
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Nian Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
12
|
Han Y, Guan F, Sun J, Wu N, Tian J. Identification of a chitosanase from the marine metagenome and its molecular improvement based on evolution data. Appl Microbiol Biotechnol 2020; 104:6647-6657. [PMID: 32548690 DOI: 10.1007/s00253-020-10715-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 12/22/2022]
Abstract
Chitooligosaccharides have important application value in the fields of food and agriculture. Chitosanase can degrade chitosan to obtain chitooligosaccharides. The marine metagenome contains many genes related to the degradation of chitosan. However, it is difficult to mine valuable genes from large gene resources. This study proposes a method to screen chitosanases directly from the marine metagenome. Chitosanase gene chis1754 was identified from the metagenome and heterologously expressed in Escherichia coli. The optimal temperature and pH of CHIS1754 were 55 °C and 5.5, respectively. A mutant, CHIS1754T, with 15 single point mutations designed based on molecular evolution data was also expressed in E. coli. The results indicated that the thermal stability of CHIS1754T was significantly improved, as the Tm showed an increase of ~ 7.63 °C. Additionally, the kcat/Km of CHIS1754T was 4.8-fold higher than that of the wild type. This research provides new theories and foundations for the excavation, modification, and industrial application of chitosanases. KEY POINTS: A chitosanase gene, chis1754, was firstly identified from marine metagenome. A multi-site mutant was designed to improve enzyme stability and activity. The kcat/Kmof the designed mutant was 4.8-fold higher than that of the wild type.
Collapse
Affiliation(s)
- Yanshuo Han
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China.,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jilu Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jian Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China. .,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
13
|
Du J, Dong J, Du S, Zhang K, Yu J, Hu S, Yin H. Understanding Thermostability Factors of Barley Limit Dextrinase by Molecular Dynamics Simulations. Front Mol Biosci 2020; 7:51. [PMID: 32478090 PMCID: PMC7241666 DOI: 10.3389/fmolb.2020.00051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Limit dextrinase (LD) is the only endogenous starch-debranching enzyme in barley (Hordeum vulgare, Hv), which is the key factor affecting the production of a high degree of fermentation. Free LD will lose its activity in the mashing process at high temperature in beer production. However, there remains a lack of understanding on the factor affecting the themostability of HvLD at the atomic level. In this work, the molecular dynamics simulations were carried out for HvLD to explore the key factors affecting the thermal stability of LD. The higher value of root mean square deviation (RMSD), radius of gyration (Rg), and surface accessibility (SASA) suggests the instability of HvLD at high temperatures. Intra-protein hydrogen bonds and hydrogen bonds between protein and water decrease at high temperature. Long-lived hydrogen bonds, salt bridges, and hydrophobic contacts are lost at high temperature. The salt bridge interaction analysis suggests that these salt bridges are important for the thermostability of HvLD, including E568–R875, D317–R378, D803–R884, D457–R214, D468–R395, D456–R452, D399–R471, and D541–R542. Root mean square fluctuation (RMSF) analysis identified the thermal-sensitive regions of HvLD, which will facilitate enzyme engineering of HvLD for enhanced themostability.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Biological Fermentation Engineering of Beer, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.,Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Songjie Du
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Kun Zhang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shumin Hu
- State Key Laboratory of Biological Fermentation Engineering of Beer, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
14
|
Zhang SY, Guo ZW, Wu XL, Ou XY, Zong MH, Lou WY. Recombinant expression and characterization of a novel cold-adapted type I pullulanase for efficient amylopectin hydrolysis. J Biotechnol 2020; 313:39-47. [DOI: 10.1016/j.jbiotec.2020.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
|
15
|
Highly efficient production of chitooligosaccharides by enzymes mined directly from the marine metagenome. Carbohydr Polym 2020; 234:115909. [DOI: 10.1016/j.carbpol.2020.115909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
|
16
|
Deckers M, Deforce D, Fraiture MA, Roosens NHC. Genetically Modified Micro-Organisms for Industrial Food Enzyme Production: An Overview. Foods 2020; 9:E326. [PMID: 32168815 PMCID: PMC7143438 DOI: 10.3390/foods9030326] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
The use of food enzymes (FE) by the industrial food industry is continuously increasing. These FE are mainly obtained by microbial fermentation, for which both wild-type (WT) and genetically modified (GM) strains are used. The FE production yield can be increased by optimizing the fermentation process, either by using genetically modified micro-organism (GMM) strains or by producing recombinant enzymes. This review provides a general overview of the different methods used to produce FE preparations and how the use of GMM can increase the production yield. Additionally, information regarding the construction of these GMM strains is provided. Thereafter, an overview of the different European regulations concerning the authorization of FE preparations on the European market and the use of GMM strains is given. Potential issues related to the authorization and control of FE preparations sold on the European market are then identified and illustrated by a case study. This process highlighted the importance for control of FE preparations and the consequent need for appropriate detection methods targeting the presence of GMM, which is used in fermentation products.
Collapse
Affiliation(s)
- Marie Deckers
- Transversal Activities in Applied Genomics (TAG), Sciensano, Rue Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Marie-Alice Fraiture
- Transversal Activities in Applied Genomics (TAG), Sciensano, Rue Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Nancy H C Roosens
- Transversal Activities in Applied Genomics (TAG), Sciensano, Rue Juliette Wytsmanstraat 14, 1050 Brussels, Belgium
| |
Collapse
|
17
|
Li Q, Yan Y, Liu X, Zhang Z, Tian J, Wu N. Enhancing thermostability of a psychrophilic alpha-amylase by the structural energy optimization in the trajectories of molecular dynamics simulations. Int J Biol Macromol 2020; 142:624-633. [DOI: 10.1016/j.ijbiomac.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
|
18
|
Wang X, Jing X, Deng Y, Nie Y, Xu F, Xu Y, Zhao YL, Hunt JF, Montelione GT, Szyperski T. Evolutionary coupling saturation mutagenesis: Coevolution-guided identification of distant sites influencing Bacillus naganoensis pullulanase activity. FEBS Lett 2019; 594:799-812. [PMID: 31665817 DOI: 10.1002/1873-3468.13652] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 01/20/2023]
Abstract
Pullulanases are well-known debranching enzymes hydrolyzing α-1,6-glycosidic linkages. To date, engineering of pullulanase is mainly focused on catalytic pocket or domain tailoring based on structure/sequence information. Saturation mutagenesis-involved directed evolution is, however, limited by the low number of mutational sites compatible with combinatorial libraries of feasible size. Using Bacillus naganoensis pullulanase as a target protein, here we introduce the 'evolutionary coupling saturation mutagenesis' (ECSM) approach: residue pair covariances are calculated to identify residues for saturation mutagenesis, focusing directed evolution on residue pairs playing important roles in natural evolution. Evolutionary coupling (EC) analysis identified seven residue pairs as evolutionary mutational hotspots. Subsequent saturation mutagenesis yielded variants with enhanced catalytic activity. The functional pairs apparently represent distant sites affecting enzyme activity.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiaoran Jing
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yi Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Fei Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - John F Hunt
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Chemistry and Chemical Biology, and Center for Biotechnology and Integrative Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Thomas Szyperski
- Department of Chemistry, The State University of New York at Buffalo, NY, USA
| |
Collapse
|
19
|
Bashirova A, Pramanik S, Volkov P, Rozhkova A, Nemashkalov V, Zorov I, Gusakov A, Sinitsyn A, Schwaneberg U, Davari MD. Disulfide Bond Engineering of an Endoglucanase from Penicillium verruculosum to Improve Its Thermostability. Int J Mol Sci 2019; 20:E1602. [PMID: 30935060 PMCID: PMC6479618 DOI: 10.3390/ijms20071602] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 01/29/2023] Open
Abstract
Endoglucanases (EGLs) are important components of multienzyme cocktails used in the production of a wide variety of fine and bulk chemicals from lignocellulosic feedstocks. However, a low thermostability and the loss of catalytic performance of EGLs at industrially required temperatures limit their commercial applications. A structure-based disulfide bond (DSB) engineering was carried out in order to improve the thermostability of EGLII from Penicillium verruculosum. Based on in silico prediction, two improved enzyme variants, S127C-A165C (DSB2) and Y171C-L201C (DSB3), were obtained. Both engineered enzymes displayed a 15⁻21% increase in specific activity against carboxymethylcellulose and β-glucan compared to the wild-type EGLII (EGLII-wt). After incubation at 70 °C for 2 h, they retained 52⁻58% of their activity, while EGLII-wt retained only 38% of its activity. At 80 °C, the enzyme-engineered forms retained 15⁻22% of their activity after 2 h, whereas EGLII-wt was completely inactivated after the same incubation time. Molecular dynamics simulations revealed that the introduced DSB rigidified a global structure of DSB2 and DSB3 variants, thus enhancing their thermostability. In conclusion, this work provides an insight into DSB protein engineering as a potential rational design strategy that might be applicable for improving the stability of other enzymes for industrial applications.
Collapse
Affiliation(s)
- Anna Bashirova
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Subrata Pramanik
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, Worringerweg 3, Germany.
| | - Pavel Volkov
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Aleksandra Rozhkova
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Vitaly Nemashkalov
- G.K.Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142292, Moscow region, Russia.
| | - Ivan Zorov
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Moscow 119071, Russia.
- Department of Chemistry, M.V.Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Alexander Gusakov
- Department of Chemistry, M.V.Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Arkady Sinitsyn
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Moscow 119071, Russia.
- Department of Chemistry, M.V.Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, Worringerweg 3, Germany.
- DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstrasse 50, Aachen 52056, Germany.
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, Worringerweg 3, Germany.
| |
Collapse
|
20
|
Wang X, Nie Y, Xu Y. Improvement of the Activity and Stability of Starch-Debranching Pullulanase from Bacillus naganoensis via Tailoring of the Active Sites Lining the Catalytic Pocket. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13236-13242. [PMID: 30499289 DOI: 10.1021/acs.jafc.8b06002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pullulanases are well-known debranching enzymes that hydrolyze α-1,6-glycosidic linkages in starch and oligosaccharides. However, most of the pullulanases exhibit limited activity for practical applications. Here, two sites (787 and 621) lining the catalytic pocket of Bacillus naganoensis pullulanase were identified as being critical for enzymatic activity by triple-code saturation mutagenesis. Subsequently, both sites were subjected to NNK-based saturation mutagenesis to obtain positive variants. Among the variants showing enhanced activity, the enzymatic activity and specific activity of D787C were 1.5-fold higher than those of the wild-type (WT). D787C also showed a 1.8-fold increase in kcat and a 1.7-fold increase in kcat/ Km. In addition, D787C maintained higher activity compared with that of WT at temperatures over 60 °C. All the positive variants showed higher acid resistance, with D787C maintaining 90% residual activity at pH 4.0. Thus, enzymes with improved properties were obtained by saturation mutagenesis at the active site.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
- Suqian Industrial Technology Research Institute of Jiangnan University , Suqian 223814 , China
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education , Jiangnan University , Wuxi 214122 , China
- Suqian Industrial Technology Research Institute of Jiangnan University , Suqian 223814 , China
| |
Collapse
|