1
|
Ramesh KB, Mahendra C, Gouda MNR, Salim R, Subramanian S. Genetic structure and haplotype analysis of predominant genetic group of Bemisia tabaci Asia II 1 from Asia and India. Sci Rep 2025; 15:11672. [PMID: 40188161 PMCID: PMC11972362 DOI: 10.1038/s41598-025-96483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
Whitefly, Bemisia tabaci is a globally recognized invasive cryptic pest species complex and a primary vector for 90% of begomoviruses. Understanding the species composition and diversity within the B. tabaci cryptic species complex is essential for developing effective pest management strategies. The Asia II 1 genetic group of B. tabaci is notably widespread in India and across Asia, demonstrating significant genetic diversity. Our study investigates the haplotype diversity of Asia II 1 using the mtCOI barcoding gene, analyzing 676 sequences from various Asian countries and 190 sequences from India. We identified 241 distinct haplotypes in Asia II 1 across Asia, with the highest haplotype diversity in China (Hd: 1.000) and the lowest in Vietnam (Hd: 0.667). Nucleotide diversity peaked in Pakistan (pi: 0.0145) and was lowest in Vietnam (pi: 0.0010). In India, we identified 77 haplotypes with a diversity of 0.926 and nucleotide diversity of 0.0076. When grouped by hostplant families, 79 haplotypes were recorded, with the highest diversity in Cucurbitaceae and the lowest in Solanaceae. Our findings suggest that hostplants and geographical location significantly influence genetic group development, offering novel insights into Asia II 1's genetic structure and evolution. This marks the first comprehensive study of Asia II 1 genetic diversity in Asia and India.
Collapse
Affiliation(s)
- Kurubarahalli Bhoothanna Ramesh
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Department of Entomology, ICAR-Indian Institute of Vegetable Research, Regional Research Station, Uttar Pradesh, Sargatia, 274406, India
| | - Chowdanayak Mahendra
- Division of Molecular Biology and Biotechnology, ICAR- Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India
| | - M N Rudra Gouda
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajna Salim
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sabtharshi Subramanian
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
2
|
Krause-Sakate R, Gomes Ruschel R, Ochoa-Corona F, Andreason SA, de Marchi BR, Ribeiro-Junior MR, Nascimento DM, Trujillo R, Smith HA, Hutton SF, Wallace S. First detection of Bemisia tabaci (Hemiptera: Aleyrodidae) MED in Oklahoma and development of a high-resolution melting assay for MEAM1 and MED discrimination. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:45-56. [PMID: 39673486 PMCID: PMC11818381 DOI: 10.1093/jee/toae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/19/2024] [Accepted: 10/09/2024] [Indexed: 12/16/2024]
Abstract
The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is a polyphagous pest recognized as composed of several cryptic or sibling species. The Middle East-Asia Minor 1 (MEAM1) and the Mediterranean (MED) putative species are invasive and destructive worldwide. The MEAM1 is established throughout the United States, while MED is documented in 27 states. This study determines the status of MED in Oklahoma and develops and validates a high-resolution melting (HRM) assay for discrimination of MEAM1 and MED. In August-October 2022, whiteflies were collected from different host plants in Stillwater, Oklahoma, and identified as species based on analysis of a diagnostic fragment of the mitochondrial cytochrome oxidase I (mtCOI) gene. MED was found in mixed infestations with MEAM1 on both sweetpotato in a greenhouse and cucumber in the field. Other cryptic species were not detected. Sequencing followed by phylogenetic analysis indicated that the MED specimens belonged to the Q2 mitotype. Additionally, the secondary endosymbionts in captured and progeny whiteflies were identified. For rapid discrimination of MEAM1 and MED species, an HRM assay using a single set of primer pairs targeting the mtCOI gene was developed. Species discrimination was tested in 2 laboratories using MEAM1 and MED Q2 mitotype genomic DNA, and a synthetic plasmid containing the MED Q1 mitotype mtCOI fragment. The HRM assay was validated to discriminate MEAM1 from MED Q1 and Q2 mitotypes. This is the first report of B. tabaci MED in Oklahoma and reinforces the need for continued monitoring of this insect species complex.
Collapse
Affiliation(s)
- Renate Krause-Sakate
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, USA
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
- School of Agricultural Sciences, Department of Plant Protection, São Paulo State University (UNESP), CEP 18610-307, Botucatu (SP), Brazil
| | - Rafaela Gomes Ruschel
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, USA
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Francisco Ochoa-Corona
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, USA
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Sharon A Andreason
- United States Department of Agriculture, Agricultural Research Service, U.S. Vegetable Laboratory, Charleston, SC, USA
| | - Bruno Rossito de Marchi
- Eurofins Agroscience Services, Mebane, NC, USA
- Entomology and Nematology Department, University of Florida Gulf Coast Research and Education Center, Wimauma, FL, USA
| | - Marcos Roberto Ribeiro-Junior
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, USA
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Daniele Maria Nascimento
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, USA
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Reese Trujillo
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK, USA
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| | - Hugh A Smith
- Entomology and Nematology Department, University of Florida Gulf Coast Research and Education Center, Wimauma, FL, USA
| | - Samuel F Hutton
- Horticultural Sciences Department, University of Florida Gulf Coast Research and Education Center, Wimauma, FL, USA
| | - Sara Wallace
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
3
|
Marchant WG, Brown JK, Gautam S, Ghosh S, Simmons AM, Srinivasan R. Non-Feeding Transmission Modes of the Tomato Yellow Leaf Curl Virus by the Whitefly Bemisia tabaci Do Not Contribute to Reoccurring Leaf Curl Outbreaks in Tomato. INSECTS 2024; 15:760. [PMID: 39452336 PMCID: PMC11508932 DOI: 10.3390/insects15100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Tomato yellow leaf curl virus (TYLCV) causes significant yield loss in tomato production in the southeastern United States and elsewhere. TYLCV is transmitted by the whitefly Bemisia tabaci cryptic species in a persistent, circulative, and non-propagative manner. Unexpectedly, transovarial and sexual transmission of TYLCV has been reported for one strain from Israel. In this study, the potential contribution of the B. tabaci B cryptic species transovarial and sexual transmission of TYLCV (Israel strain, Georgia variant, Georgia, USA) to reoccurring outbreaks was investigated by conducting whitefly-TYLCV transmission assays and virus DNA detection using end point PCR, DNA quantitation via real-time PCR, and virion detection by immunocapture PCR. TYLCV DNA was detectable in four, two, and two percent of first-generation fourth-instar nymphs, first-generation adults, and second-generation adults, respectively, following transovarial acquisition. Post-mating between viruliferous counterparts, the virus's DNA was detected in four percent of males and undetectable in females. The accumulation of TYLCV DNA in whiteflies from the transovarial and/or sexual experiments was substantially lower (100 to 1000-fold) compared with whitefly adults allowed a 48-hr acquisition-access period on plants infected with TYLCV. Despite the detection of TYLCV DNA in whiteflies from the transovarial and/or mating experiments, the virions were undetectable by immunocapture PCR-a technique specifically designed to detect virions. Furthermore, tomato test plants exposed to whitefly adults that presumably acquired TYLCV transovarially or through mating remained free of detectable TYLCV DNA. Collectively, the extremely low levels of TYLCV DNA and complete absence of virions detected in whiteflies and the inability of the B. tabaci cryptic species B to transmit TYLCV to test tomato plants following transovarial and mating acquisition indicate that neither transovarial nor sexual transmission of TYLCV are probable or epidemiologically relevant for TYLCV persistence in this pathosystem.
Collapse
Affiliation(s)
- Wendy G. Marchant
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (W.G.M.); (S.G.); (S.G.)
| | - Judith K. Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | - Saurabh Gautam
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (W.G.M.); (S.G.); (S.G.)
| | - Saptarshi Ghosh
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (W.G.M.); (S.G.); (S.G.)
| | - Alvin M. Simmons
- Agriculture Research Service, United States Department of Agriculture, Charleston, SC 29414, USA;
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (W.G.M.); (S.G.); (S.G.)
| |
Collapse
|
4
|
Gaffke AM, Miller NW, Sharma A, Allan SA. Attraction of Sweet Potato Whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), and Two Generalist Predators to Green Leaf Volatile Compounds. INSECTS 2024; 15:750. [PMID: 39452326 PMCID: PMC11508912 DOI: 10.3390/insects15100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Traditionally, olfaction was thought to play a minor role in the behavioral ecology of the sweet potato whitefly, Bemisia tabaci (Gennadius). However, recent research is uncovering significant potential for whitefly management based on olfaction. Incorporating chemical attractants with standard whitefly management programs could significantly improve control. The integration of attractants with biological control is exceptionally promising. Therefore, the behavioral response of B. tabaci and two generalist predators to the green leaf volatiles (E)-2-hexenal, (Z)-3-hexenal, (Z)-3-hexenyl acetate, and (Z)-3-hexe-1-ol were investigated in Y-tube olfactometers. Three of the four green leaf volatiles resulted in the attraction of female B. tabaci. Blend optimization indicated a two-chemical blend to be the most attractive blend for female B. tabaci. In addition, this blend was attractive to female Macrolophus praeclarus (Distant) but did not elicit a behavioral response from either male or female Delphastus catalinae (Horn). The two-chemical blend of green leaf volatiles could be further developed as a lure to attract B. tabaci and its predator, M. praeclarus.
Collapse
Affiliation(s)
- Alexander M. Gaffke
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA; (N.W.M.); (S.A.A.)
| | - Neil W. Miller
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA; (N.W.M.); (S.A.A.)
| | - Anamika Sharma
- Center for Biological Control, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Sandra A. Allan
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA; (N.W.M.); (S.A.A.)
| |
Collapse
|
5
|
Chen N, Zou C, Pan LL, Du H, Yang JJ, Liu SS, Wang XW. Cotton leaf curl Multan virus subverts the processing of hydroxyproline-rich systemin to suppress tobacco defenses against insect vectors. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5819-5838. [PMID: 38829390 DOI: 10.1093/jxb/erae257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Insect vector-virus-plant interactions have important ecological and evolutionary implications. The constant struggle of plants against viruses and insect vectors has driven the evolution of multiple defense strategies in the host as well as counter-defense strategies in the viruses and insect vectors. Cotton leaf curl Multan virus (CLCuMuV) is a major causal agent of cotton leaf curl disease in Asia and is exclusively transmitted by the whitefly Bemisia tabaci. Here, we report that plants infected with CLCuMuV and its betasatellite CLCuMuB enhance the performance of the B. tabaci vector, and βC1 encoded by CLCuMuB plays an important role in begomovirus-whitefly-tobacco tripartite interactions. We showed that CLCuMuB βC1 suppresses the jasmonic acid signaling pathway by interacting with the subtilisin-like protease 1.7 (NtSBT1.7) protein, thereby enhancing whitefly performance on tobacco plants. Further studies revealed that in wild-type plants, NtSBT1.7 could process tobacco preprohydroxyproline-rich systemin B (NtpreproHypSysB). After CLCuMuB infection, CLCuMuB βC1 could interfere with the processing of NtpreproHypSysB by NtSBT1.7, thereby impairing plant defenses against whitefly. These results contribute to our understanding of tripartite interactions among virus, plant, and whitefly, thus offering ecological insights into the spread of vector insect populations and the prevalence of viral diseases.
Collapse
Affiliation(s)
- Na Chen
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Chi Zou
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
- Zhenhai Agricultural Technology Extension Station, 569 Minhe Road, Ningbo 310000, China
| | - Li-Long Pan
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Hui Du
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Jing-Jing Yang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Shu-Sheng Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| | - Xiao-Wei Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
6
|
Gao L, Li K, Zhang Z, Chen J, Du J, Yan S, Wei Y, Liu Y, Shi X, Zhang D. β-Caryophyllene wrapped by nanoliposomes efficiently increases the control effect on Bemisia tabaci MED. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106082. [PMID: 39277395 DOI: 10.1016/j.pestbp.2024.106082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 08/11/2024] [Indexed: 09/17/2024]
Abstract
Bemisia tabaci poses a severe threat to plants, and the control of B. tabaci mainly relies on pesticides, which causes more and more rapidly increasing resistance. β-Caryophyllene is a promising ingredient for agricultural pest control, but its feature of poor water solubility need to be improved in practical applications. Nanotechnology can enhance the effectiveness and dispersion of volatile organic compounds (VOCs). In this study, a nanoliposome carrier was constructed by ethanol injection and ultrasonic dispersion method, and β-caryophyllene was wrapped inside it, thus solving the defect of poor solubility of β-caryophyllene. The size of the β-caryophyllene nanoliposomes (C-BT-NPs) was around 200 nm, with the absolute value of the zeta potential exceeding 30 mV and a PDI below 0.5. The stability was also maintained over a 14-d storage period. C-BT-NPs showed effective insecticidal activity against B. tabaci, with an LC50 of 1.51 g/L, outperforming thiamethoxam and offering efficient agricultural pest control. Furthermore, C-BT-NPs had minimal short-term impact on the growth of tomato plants, indicating that they are safety on plants. Therefore, the VOCs using nanoliposome preparation technology show promise in reducing reliance on conventional pesticides and present new approaches to managing agricultural pests.
Collapse
Affiliation(s)
- Liming Gao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Kailong Li
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhuo Zhang
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410125, China
| | - Jianbin Chen
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410125, China
| | - Jiao Du
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410125, China
| | - Shuo Yan
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410125, China
| | - Yan Wei
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410125, China
| | - Yong Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410125, China.
| | - Xiaobin Shi
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410125, China.
| | - Deyong Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410125, China.
| |
Collapse
|
7
|
Kepngop LRK, Wosula EN, Amour M, Ghomsi PGT, Wakam LN, Kansci G, Legg JP. Genetic Diversity of Whiteflies Colonizing Crops and Their Associated Endosymbionts in Three Agroecological Zones of Cameroon. INSECTS 2024; 15:657. [PMID: 39336625 PMCID: PMC11432237 DOI: 10.3390/insects15090657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Bemisia tabaci (Gennadius) is as a major pest of vegetable crops in Cameroon. These sap-sucking insects are the main vector of many viruses infecting plants, and several cryptic species have developed resistance against insecticides. Nevertheless, there is very little information about whitefly species on vegetable crops and the endosymbionts that infect them in Cameroon. Here, we investigated the genetic diversity of whiteflies and their frequency of infection by endosymbionts in Cameroon. Ninety-two whitefly samples were collected and characterized using mitochondrial cytochrome oxidase I (mtCOI) markers and Kompetitive Allele Specific PCR (KASP). The analysis of mtCOI sequences of whiteflies indicated the presence of six cryptic species (mitotypes) of Bemisia tabaci, and two distinct clades of Bemisia afer and Trialeurodes vaporariorum. Bemisia tabaci mitotypes identified included: MED on tomato, pepper, okra, and melon; and SSA1-SG1, SSA1-SG2, SSA1-SG5, SSA3, and SSA4 on cassava. The MED mitotype predominated in all regions on the solanaceous crops, suggesting that MED is probably the main phytovirus vector in Cameroonian vegetable cropping systems. The more diverse cassava-colonizing B. tabaci were split into three haplogroups (SNP-based grouping) including SSA-WA, SSA4, and SSA-ECA using KASP genotyping. This is the first time that SSA-ECA has been reported in Cameroon. This haplogroup is predominant in regions currently affected by the severe cassava mosaic virus disease (CMD) and cassava brown streak virus disease (CBSD) pandemics. Three endosymbionts including Arsenophonus, Rickettsia, and Wolbachia were present in female whiteflies tested in this study with varying frequency. Arsenophonus, which has been shown to influence the adaptability of whiteflies, was more frequent in the MED mitotype (75%). Cardinium and Hamiltonella were absent in all whitefly samples. These findings add to the knowledge on the diversity of whiteflies and their associated endosymbionts, which, when combined, influence virus epidemics and responses to whitefly control measures, especially insecticides.
Collapse
Affiliation(s)
- Lanvin R. K. Kepngop
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial & Biocontrol Agents Unit (AmBcAU), Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - Everlyne N. Wosula
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania
| | - Massoud Amour
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania
| | - Pierre G. T. Ghomsi
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial & Biocontrol Agents Unit (AmBcAU), Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - Louise N. Wakam
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Antimicrobial & Biocontrol Agents Unit (AmBcAU), Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - Germain Kansci
- Laboratory of Food Science and Nutrition, Department of Biochemistry, Faculty of Science, University of Yaoundé 1, Yaoundé P.O. Box 337, Cameroon
| | - James P. Legg
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania
| |
Collapse
|
8
|
Xue Y, Wang Y, Chen J, Zhang G, Liu W, Wan F, Zhang Y. Disparities in Genetic Diversity Drive the Population Displacement of Two Invasive Cryptic Species of the Bemisia tabaci Complex in China. Int J Mol Sci 2024; 25:7966. [PMID: 39063207 PMCID: PMC11277096 DOI: 10.3390/ijms25147966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Within the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) complex, two cryptic species, namely Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), are important invasive pests affecting global agriculture and horticulture. They were introduced into China sequentially in the mid-1990s and around 2003, respectively. Subsequently, the latter invader MED has outcompeted the earlier invader MEAM1, becoming the dominant population in the field. Although extensive studies have explored the underlying mechanisms driving this shift, the contribution of population genetics remains notably underexplored. In this study, we analyzed the genetic diversity and structure of 22 MED and 8 MEAM1 populations from various regions of China using mitochondrial DNA sequencing and microsatellite genotyping. Our results indicate low and moderate levels of genetic differentiation among geographically separate populations of MED and MEAM1, respectively. Median-joining network analysis of mtCOI gene haplotypes revealed no clear geographic structuring for either, with common haplotypes observed across provinces, although MED had more haplotypes. Comparative analyses revealed that MED presented greater genetic diversity than MEAM1 on the basis of two markers. Furthermore, analysis of molecular variance supported these findings, suggesting that while some genetic variation exists between populations, a significant amount is also present within populations. These findings reveal the population genetics of the two invasive cryptic species of the B. tabaci complex in China and suggest that the disparities in genetic diversity drive the displacement of their populations in the field. This work also provides valuable information on the genetic factors influencing the population dynamics and dominance of these invasive whitefly species.
Collapse
Affiliation(s)
- Yantao Xue
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.X.); (Y.W.); (J.C.); (G.Z.); (W.L.); (F.W.)
| | - Yusheng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.X.); (Y.W.); (J.C.); (G.Z.); (W.L.); (F.W.)
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Jiqiang Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.X.); (Y.W.); (J.C.); (G.Z.); (W.L.); (F.W.)
| | - Guifen Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.X.); (Y.W.); (J.C.); (G.Z.); (W.L.); (F.W.)
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.X.); (Y.W.); (J.C.); (G.Z.); (W.L.); (F.W.)
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.X.); (Y.W.); (J.C.); (G.Z.); (W.L.); (F.W.)
| | - Yibo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.X.); (Y.W.); (J.C.); (G.Z.); (W.L.); (F.W.)
| |
Collapse
|
9
|
Fernandes DS, Okuma D, Pantoja-Gomez LM, Cuenca A, Corrêa AS. Bemisia tabaci MEAM1 still remains the dominant species in open field crops in Brazil. BRAZ J BIOL 2024; 84:e256949. [DOI: 10.1590/1519-6984.256949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/08/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Among Bemisia tabaci species, the invasive MEAM1 and MED species are key agricultural pests for many crops. In Brazil, most part of B. tabaci population outbreaks were associated with MEAM1, which, since 1990s quickly spread across the entire country. Later in 2014, the MED was identified in Brazil, initially more restricted to greenhouses, but suddenly reaching new areas in the South and Southeast open regions. Thus, our objective was to investigate the geographical distribution of MEAM1 and MED on open field crops in Brazil. MEAM1 is still the predominant species on open field crops such as soybean, cotton, and tomato. The sequencing of a cytochrome c oxidase subunit I (COI) gene fragment revealed a single haplotype of MEAM1, suggesting the establishment of a single MEAM1 strain in the country. The haplotypes found for MEAM1 and MED are genetically related to the globally dispersed strains, Jap1 and Mch1, respectively. Continuous monitoring of B. tabaci species is crucial because landscape alterations, climatic changes, and pest management methods may shift the B. tabaci species distribution and dominance in Brazilian crop areas.
Collapse
Affiliation(s)
| | - D. Okuma
- Universidade de São Paulo, Brasil; Bayer Crop Science, Brasil
| | | | | | | |
Collapse
|
10
|
Ally HM, Hamss HE, Simiand C, Maruthi MN, Colvin J, Delatte H. Genetic diversity, distribution, and structure of Bemisia tabaci whitefly species in potential invasion and hybridization regions of East Africa. PLoS One 2023; 18:e0285967. [PMID: 37228135 DOI: 10.1371/journal.pone.0285967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 02/23/2023] [Indexed: 05/27/2023] Open
Abstract
Outbreaks of whitefly, Bemisia tabaci species in East and Central Africa, have become increasingly prevalent during the previous 25 years and are responsible for driving the spread of plant-virus diseases, such as cassava mosaic disease and cassava brown steak disease. Epidemics of these diseases have expanded their ranges over the same period, spreading from Uganda into other sub-Saharan African countries. It was hypothesised that a highly abundant 'invader' population of B. tabaci was responsible for spreading these diseases from Uganda to neighbouring countries and potentially hybridising with the resident cassava B. tabaci populations. Here, we test this hypothesis by investigating the molecular identities of the highly abundant cassava B. tabaci populations from their supposed origin in Uganda, to the northern, central, eastern and coastal regions of Tanzania. Partial mitochondrial cytochrome oxidase I (mtCOI) barcoding sequences and nuclear microsatellite markers were used to analyse the population genetic diversity and structure of 2734 B. tabaci collected from both countries and in different agroecological zones. The results revealed that: (i) the putative SSA1 species is structured according to countries, so differ between them. (ii) Restricted gene flow occurred between SSA1-SG3 and both other SSA1 subgroups (SG1 and SG2), even in sympatry, demonstrating strong barriers to hybridization between those genotypes. (iii) Not only B. tabaci SSA1-(SG1 and SG2) was found in highly abundant (outbreak) numbers, but B. tabaci SSA1-SG3 and the Indian Ocean (IO) species were also recorded in high numbers in several sites in Tanzania. (iv) The SSA1-(SG1 and SG2) species was distributed in both countries, but in Tanzania, the B. tabaci IO and SSA1-SG3 species predominated. These data confirm that multiple, local Tanzanian B. tabaci species produce highly abundant populations, independent of the spread of the putative invasive B. tabaci SSA1-(SG1 and SG2) populations.
Collapse
Affiliation(s)
- Hadija M Ally
- Université de La Réunion Site du CS 92003 97744 Cedex9, Sainte-Clotilde, Réunion, France
- CIRAD, UMR PVBMT, Saint Pierre, La Réunion, France
- Tanzania Agricultural Research Institute (TARI)-Ukiriguru Centre, Mwanza, Tanzania
| | - Hajar El Hamss
- Natural Resources Institute (NRI), University of Greenwich, Gillingham, United Kingdom
| | | | - M N Maruthi
- Natural Resources Institute (NRI), University of Greenwich, Gillingham, United Kingdom
| | - John Colvin
- Natural Resources Institute (NRI), University of Greenwich, Gillingham, United Kingdom
| | | |
Collapse
|
11
|
Brown JK, Paredes-Montero JR, Stocks IC. The Bemisia tabaci cryptic (sibling) species group - imperative for a taxonomic reassessment. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101032. [PMID: 37030511 DOI: 10.1016/j.cois.2023.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
The taxonomy of the Bemisia tabaci cryptic species group remains a challenge due to the lack of morphological differentiation and porous species boundaries among its members. Additionally, it is unclear whether B. tabaci consists of several species in evolutionary stasis with limited morphological change or is the result of a recent adaptive radiation characterized by great ecological diversity but little morphological divergence. Here, a historical overview of the development of the nomenclature used to classify B. tabaci is provided covering changes after synonymizing several species in 1957 until recent insights gained from whole-genome sequencing data. The article discusses the limitations of using a 3.5% mtCOI threshold and argues that a 1% nuclear divergence cutoff better reflects ecological and biogeographic species boundaries. Finally, a plan of action is outlined for naming B. tabaci species using a Latin binomial system in accordance with the International Comission on Zoological Nomenclature (ICZN) regulations.
Collapse
Affiliation(s)
- Judith K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, United States.
| | - Jorge R Paredes-Montero
- Biology Department, Saginaw Valley State University, University Center, MI 48710, United States; Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
| | - Ian C Stocks
- Animal and Plant Inspection Service, Plant Protection and Quarantine, USDA, Rm. 320, Bldg. 003, Beltsville, MD 20705, United States.
| |
Collapse
|
12
|
Shahid MS, Paredes-Montero JR, Ashfaq M, Al-Sadi AM, Brown JK. Native and Non-Native Bemisia tabaci NAFME Haplotypes Can Be Implicated in Dispersal of Endemic and Introduced Begomoviruses in Oman. INSECTS 2023; 14:268. [PMID: 36975953 PMCID: PMC10056824 DOI: 10.3390/insects14030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Irrigated agriculture and global trade expansion have facilitated diversification and spread of begomoviruses (Geminiviridae), transmitted by the Bemisia tabaci (Gennadius) cryptic species. Oman is situated on major crossroads between Africa and South Asia, where endemic/native and introduced/exotic begomoviruses occur in agroecosystems. The B. tabaci 'B mitotype' belongs to the North Africa-Middle East (NAFME) cryptic species, comprising at least eight endemic haplotypes, of which haplotypes 6 and/or 8 are recognized invasives. Prevalence and associations among native and exotic begomoviruses and NAFME haplotypes in Oman were investigated. Nine begomoviral species were identified from B. tabaci infesting crop or wild plant species, with 67% and 33% representing native and exotic species, respectively. Haplotypes 2, 3, and 5 represented 31%, 3%, and 66% of the B. tabaci population, respectively. Logistic regression and correspondence analyses predicted 'strong'- and 'close' virus-vector associations involving haplotypes 5 and 2 and the exotic chili leaf curl virus (ChiLCV) and endemic tomato yellow leaf curl virus-OM, respectively. Patterns favor a hypothesis of relaxed virus-vector specificity between an endemic haplotype and the introduced ChiLCV, whereas the endemic co-evolved TYLCV-OM and haplotype 2 virus-vector relationship was reinforced. Thus, in Oman, at least one native haplotype can facilitate the spread of endemic and introduced begomoviruses.
Collapse
Affiliation(s)
- Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman
| | - Jorge R. Paredes-Montero
- Department of Biology, Saginaw Valley State University, University Center, Saginaw, MI 48710, USA
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil 090605, Ecuador
| | - Muhammad Ashfaq
- Centre for Biodiversity Genomics, Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Abdullah M. Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
13
|
Anand R, Singh SP, Sahu N, Singh YT, Mazumdar-Leighton S, Bentur JS, Nair S. Polymorphisms in the hypervariable control region of the mitochondrial DNA differentiate BPH populations. FRONTIERS IN INSECT SCIENCE 2022; 2:987718. [PMID: 38468808 PMCID: PMC10926497 DOI: 10.3389/finsc.2022.987718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/17/2022] [Indexed: 03/13/2024]
Abstract
The brown planthopper (BPH; Nilaparvata lugens) is one of India's most destructive pests of rice. BPH, a monophagous migratory insect, reported from all major rice-growing ecosystems of the country, is capable of traversing large distances and causing massive crop loss. A crucial step for developing viable management strategies is understanding its population dynamics. Very few reliable markers are currently available to screen BPH populations for their diversity. In the current investigation, we developed a combinatorial approach using the polymorphism present within the mitochondrial Control Region of BPH and in the nuclear genome (genomic simple sequence repeats; gSSRs) to unravel the diversity present in BPH populations collected from various rice-growing regions of India. Using two specific primer pairs, the complete Control Region (1112 to 2612 bp) was PCR amplified as two overlapping fragments, cloned and sequenced from BPH individuals representing nine different populations. Results revealed extensive polymorphism within this region due to a variable number of tandem repeats. The three selected gSSR markers also exhibited population-specific amplification patterns. Overall genetic diversity between the nine populations was high (>5%). Further, in silico double-digestion of the consensus sequences of the Control Region, with HpyCH4IV and Tsp45I restriction enzymes, revealed unique restriction fragment length polymorphisms (digital-RFLPs; dRFLPs) that differentiated all the nine BPH populations. To the best of our knowledge, this is the first report of markers developed from the Control Region of the BPH mitogenome that can differentiate populations. Eventually, such reliable and rapid marker-based identification of BPH populations will pave the way for an efficient pest management strategy.
Collapse
Affiliation(s)
- Rashi Anand
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- Plant Biotic Interaction Lab, Department of Botany, University of Delhi, Delhi, India
| | | | - Nihar Sahu
- Agri Biotech Foundation, Hyderabad, India
| | | | | | | | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
14
|
Ibrahim YE, Paredes-Montero JR, Al-Saleh MA, Widyawan A, He R, El Komy MH, Al Dhafer HM, Kitchen N, Gang DR, Brown JK. Characterization of the Asian Citrus Psyllid-‘Candidatus Liberibacter Asiaticus’ Pathosystem in Saudi Arabia Reveals Two Predominant CLas Lineages and One Asian Citrus Psyllid Vector Haplotype. Microorganisms 2022; 10:microorganisms10101991. [PMID: 36296267 PMCID: PMC9610752 DOI: 10.3390/microorganisms10101991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/16/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
In Saudi Arabia (SA), the citrus greening disease is caused by ‘Candidatus Liberibacter asiaticus’ (CLas) transmitted by the Asian citrus psyllid (ACP) Diaphorina citri. The origin and route(s) of the ACP-CLas pathosystem invasion in SA have not been studied. Adult ACP were collected from citrus trees in SA and differentiated by analysis of the mitochondrial cytochrome oxidase I (mtCOI) and nuclear copper transporting protein (atox1) genes. A phylogenetic analysis of the Wolbachia spp. surface protein (wsp) gene was used to identify the ACP-associated Wolbachia spp. A phylogenetic analysis of the atox1 and mtCOI gene sequences revealed one predominant ACP haplotype most closely related to the Indian subcontinent founder populations. The detection and identification of CLas in citrus trees were carried out by polymerase chain reaction (PCR) amplification and sequencing of the 16S rDNA gene. The CLas-integrated prophage genomes were sequenced, annotated, and used to differentiate CLas populations. The ML and ASTRAL trees reconstructed with prophages type 1 and 2 genome sequences, separately and concatenated, resolved two major lineages, CLas-1 and -2. The CLas-1 clade, reported here for the first time, consisted of isolates from SA isolates and Pakistan. The CLas-2 sequences formed two groups, CLas-2-1 and -2-2, previously the ‘Asiatic’ and ‘Floridian’ strains, respectively. Members of CLas-2-1 originated from Southeast Asia, the USA, and other worldwide locations, while CLas-2-2 was identified only in Florida. This study provides the first snapshot into the status of the ACP-CLas pathosystem in SA. In addition, the results provide new insights into the pathosystem coevolution and global invasion histories of two ACP-CLas lineages with a predicted center of origin in South and Southeast Asia, respectively.
Collapse
Affiliation(s)
- Yasser E. Ibrahim
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence: author:
| | - Jorge R. Paredes-Montero
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
- Department of Biology, Saginaw Valley State University, Saginaw, MI 48710, USA
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil 090902, Ecuador
| | - Mohammed A. Al-Saleh
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Arya Widyawan
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ruifeng He
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Mahmoud H. El Komy
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hathal M. Al Dhafer
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Noel Kitchen
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - David R. Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
15
|
Barman M, Samanta S, Upadhyaya G, Thakur H, Chakraborty S, Samanta A, Tarafdar J. Unraveling the Basis of Neonicotinoid Resistance in Whitefly Species Complex: Role of Endosymbiotic Bacteria and Insecticide Resistance Genes. Front Microbiol 2022; 13:901793. [PMID: 35814684 PMCID: PMC9260502 DOI: 10.3389/fmicb.2022.901793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bemisia tabaci (whitefly) is one of the most detrimental agricultural insect pests and vectors of many plant viruses distributed worldwide. Knowledge of the distribution patterns and insecticide resistance of this cryptic species is crucial for its management. In this study, genetic variation of mitochondrial cytochrome oxidase subunit 1 (MtCoI) gene of B. tabaci was analyzed followed by a study of the infection profile of various endosymbionts in 26 whitefly populations collected from West Bengal, India. Phylogenetic analysis revealed Asia I as the major cryptic species (65.38%), followed by Asia II 5, China 3, and Asia II 7, which were diversified into 20 different haplotypes. In addition to the primary endosymbiont (C. poriera), each of the four whitefly species showed a variable population of three secondary endosymbionts, majorly Arsenophonus with the highest infection rate (73.07%), followed by Wolbachia and Rickettsia. Further phylogenetic analyses revealed the presence of two subgroups of Arsenophonus, viz., A1 and A2, and one each in Wolbachia (W1) and Rickettsia (R3). Resistance to thiamethoxam, imidacloprid, and acetamiprid insecticides was analyzed for a clear picture of pesticide resistance status. The highest susceptibility was noted toward thiamethoxam (LC50 = 5.36 mg/L), followed by imidacloprid and acetamiprid. The whitefly population from Purulia and Hooghly districts bearing Asia II 7 and Asia II 5 cryptic species, respectively, shows maximum resistance. The differences in mean relative titer of four symbiotic bacteria among field populations varied considerably; however, a significant positive linear correlation was observed between the resistance level and relative titer of Arsenophonus and Wolbachia in the case of imidacloprid and thiamethoxam, while only Wolbachia was found in case of acetamiprid. Expression analysis demonstrated differential upregulation of insecticide resistance genes with Purulia and Hooghly populations showing maximally upregulated P450 genes. Moreover, thiamethoxam and imidacloprid resistance ratio (RR) showed a significant correlation with CYP6CM1, CYP6DZ7, and CYP4C64 genes, while acetamiprid RR correlated with CYP6CX1, CYP6DW2, CYP6DZ7, and CYP4C64 genes. Taken together, these findings suggested that P450 mono-oxygenase and symbiotic bacteria together affected whitefly resistance to neonicotinoids. Hence, a symbiont-oriented management programme could be a better alternative to control or delay resistance development in whitefly and can be used for pesticide clean-up in an agricultural field.
Collapse
Affiliation(s)
- Mritunjoy Barman
- Department of Agricultural Entomology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Snigdha Samanta
- Department of Agricultural Entomology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Gouranga Upadhyaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
- *Correspondence: Gouranga Upadhyaya
| | - Himanshu Thakur
- Department of Entomology, C.S.K. Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Swati Chakraborty
- Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Nadia, India
| | - Arunava Samanta
- Department of Agricultural Entomology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Jayanta Tarafdar
- Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Nadia, India
- Jayanta Tarafdar
| |
Collapse
|
16
|
Paredes‐Montero JR, Rizental M, Quintela ED, de Abreu AG, Brown JK. Earlier than expected introductions of the Bemisia tabaci B mitotype in Brazil reveal an unprecedented, rapid invasion history. Ecol Evol 2022; 12:e8557. [PMID: 35127052 PMCID: PMC8796915 DOI: 10.1002/ece3.8557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 11/09/2022] Open
Abstract
During 1991, in Brazil, the presence of the exotic Bemisia tabaci B mitotype was reported in São Paulo state. However, the duration from the time of initial introduction to population upsurges is not known. To investigate whether the 1991 B mitotype outbreaks in Brazil originated in São Paulo or from migrating populations from neighboring introduction sites, country-wide field samples of B. tabaci archived from 1989-2005 collections were subjected to analysis of mitochondrial cytochrome oxidase I (mtCOI) and nuclear RNA-binding protein 15 (RP-15) sequences. The results of mtCOI sequence analysis identified all B. tabaci as the NAFME 8 haplotype of the B mitotype. Phylogenetic analyses of RP-15 sequences revealed that the B mitotype was likely a hybrid between a B type parent related to a haplotype Ethiopian endemism (NAFME 1-3), and an unidentified parent from the North Africa-Middle East (NAF-ME) region. Results provide the first evidence that this widely invasive B mitotype has evolved from a previously undocumented hybridization event. Samples from Rio de Janeiro (1989) and Ceará state (1990), respectively, are the earliest known B mitotype records in Brazil. A simulated migration for the 1989 introduction predicted a dispersal rate of 200-500 km/year, indicating that the population was unlikely to have reached Ceará by 1990. Results implicated two independent introductions of the B mitotype in Brazil in 1989 and 1990, that together were predicted to have contributed to the complete invasion of Brazil in only 30 generations.
Collapse
Affiliation(s)
- Jorge R. Paredes‐Montero
- School of Plant SciencesThe University of ArizonaTucsonArizonaUSA
- Facultad de Ciencias de la VidaEscuela Superior Politécnica del LitoralESPOLGuayaquilEcuador
| | - Muriel Rizental
- Federal University of GoiásGoiâniaBrazil
- EMBRAPA Rice and BeansSanto Antônio de GoiásBrazil
| | | | | | - Judith K. Brown
- School of Plant SciencesThe University of ArizonaTucsonArizonaUSA
| |
Collapse
|
17
|
Mugerwa H, Wang H, Sseruwagi P, Seal S, Colvin J. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies. INSECT SCIENCE 2021; 28:1553-1566. [PMID: 33146464 PMCID: PMC9292209 DOI: 10.1111/1744-7917.12881] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/06/2020] [Accepted: 10/26/2020] [Indexed: 05/21/2023]
Abstract
In sub-Saharan Africa cassava growing areas, two members of the Bemisia tabaci species complex termed sub-Saharan Africa 1 (SSA1) and SSA2 have been reported as the prevalent whiteflies associated with the spread of viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) pandemics. At the peak of CMD pandemic in the late 1990s, SSA2 was the prevalent whitefly, although its numbers have diminished over the last two decades with the resurgence of SSA1 whiteflies. Three SSA1 subgroups (SG1 to SG3) are the predominant whiteflies in East Africa and vary in distribution and biological properties. Mating compatibility between SSA1 subgroups and SSA2 whiteflies was reported as the possible driver for the resurgence of SSA1 whiteflies. In this study, a combination of both phylogenomic methods and reciprocal crossing experiments were applied to determine species status of SSA1 subgroups and SSA2 whitefly populations. Phylogenomic analyses conducted with 26 548 205 bp whole genome single nucleotide polymorphisms (SNPs) and the full mitogenomes clustered SSA1 subgroups together and separate from SSA2 species. Mating incompatibility between SSA1 subgroups and SSA2 further demonstrated their distinctiveness from each other. Phylogenomic analyses conducted with SNPs and mitogenomes also revealed different genetic relationships among SSA1 subgroups. The former clustered SSA1-SG1 and SSA1-SG2 together but separate from SSA1-SG3, while the latter clustered SSA1-SG2 and SSA1-SG3 together but separate from SSA1-SG1. Mating compatibility was observed between SSA1-SG1 and SSA1-SG2, while incompatibility occurred between SSA1-SG1 and SSA1-SG3, and SSA1-SG2 and SSA1-SG3. Mating results among SSA1 subgroups were coherent with phylogenomics results based on SNPs but not the full mitogenomes. Furthermore, this study revealed that the secondary endosymbiont-Wolbachia-did not mediate reproductive success in the crossing assays carried out. Overall, using genome wide SNPs together with reciprocal crossings assays, this study established accurate genetic relationships among cassava-colonizing populations, illustrating that SSA1 and SSA2 are distinct species while at least two species occur within SSA1 species.
Collapse
Affiliation(s)
- Habibu Mugerwa
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
- Department of EntomologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Hua‐Ling Wang
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
- Institute of Insect SciencesZhejiang UniversityHangzhouChina
| | - Peter Sseruwagi
- Biotechnology DepartmentMikocheni Agricultural Research InstituteDar es SalaamTanzania
| | - Susan Seal
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
| | - John Colvin
- Natural Resources InstituteUniversity of GreenwichCentral AvenueChatham MaritimeKentUK
| |
Collapse
|
18
|
Phylogeographic and SNPs Analyses of Bemisia tabaci B Mitotype Populations Reveal Only Two of Eight Haplotypes Are Invasive. BIOLOGY 2021; 10:biology10101048. [PMID: 34681147 PMCID: PMC8533152 DOI: 10.3390/biology10101048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary The whitefly Bemisia tabaci taxon consists of an undefined number of morphologically identical genetic variants of which only a few, including the B, harbor invasive haplotypes. These haplotypes have potential to upsurge and become important pests and plant virus vectors in irrigated agroecosystems worldwide. In the 1980s, unprecedented outbreaks associated with the B variant were reported worldwide, however, the precise origin(s) of the invasive haplotypes has not been determined. In this study, available B. tabaci mitochondrial gene sequences were examined for patterns of conserved single nucleotide changes (SNPs). The whitefly sequence records represented North Africa-Middle Eastern habitats, the proposed B variant center of origin, and distant locales recently invaded by haplotype(s) of the B variant. Unexpectedly, the analysis revealed eight SNPs groups (haplotypes) demonstrating that the genetic architecture of the B mitoype is more complex than previously recognized. Also, the distribution patterns of the eight B haplotypes were tightly linked to well-defined eco-geographic regions, suggesting the different groups have diversified by geographic isolation. Contrary to claims that collectively, the B variant is invasive, only two of the eight haplotypic groups have established in geographical locations outside of their zone of endemism. Abstract The Bemisia tabaci cryptic species contains 39 known mitotypes of which the B and Q are best recognized for having established outside their extant endemic range. In the 1980s, previously uncharacterized haplotype(s) of the B mitotype rapidly established in tropical and subtropical locales distant from their presumed center of origin, leading to displacement of several native mitotypes and extreme damage to crops and other vegetation particularly in irrigated agroecosystems. To trace the natural and evolutionary history of the invasive B haplotypes, a phylo-biogeographic study was undertaken. Patterns of single nucleotide polymorphisms (SNPs) and signatures potentially indicative of geographic isolation were investigated using a globally representative mitochondrial cytochrome oxidase I gene (mtCOI) sequence database. Eight haplotype groups within the North Africa-Middle East (NAFME) region were differentiated, NAFME 1–8. The NAFME 1–3 haplotypes were members of the same population that is associated with warm desert climate niches of the Arabian Peninsula and east coastal Africa-Ethiopia. The NAFME 4 and 5 haplotypes are endemic to warm and cold semi-arid niches delimited by the Irano-Turanian floristic region, itself harboring extensive biodiversity. Haplotypes 6 and 7 co-occurred in the Middle East along eastern Mediterranean Sea landmasses, while NAFME 8 was found to be endemic to Cyprus, Turkey, and desert micro-niches throughout Egypt and Israel. Contrary to claims that collectively, the B mitotype is invasive, NAFME 6 and 8 are the only haplotypes to have established in geographical locations outside of their zone of endemism.
Collapse
|
19
|
Xavier CAD, Nogueira AM, Bello VH, Watanabe LFM, Barbosa TMC, Alves Júnior M, Barbosa L, Beserra-Júnior JEA, Boari A, Calegario R, Gorayeb ES, Honorato Júnior J, Koch G, Lima GSDA, Lopes C, de Mello RN, Pantoja K, Silva FN, Ramos Sobrinho R, Santana EN, da Silva JWP, Krause-Sakate R, Zerbini FM. Assessing the diversity of whiteflies infesting cassava in Brazil. PeerJ 2021; 9:e11741. [PMID: 34316398 PMCID: PMC8286705 DOI: 10.7717/peerj.11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background The necessity of a competent vector for transmission is a primary ecological factor driving the host range expansion of plant arthropod-borne viruses, with vectors playing an essential role in disease emergence. Cassava begomoviruses severely constrain cassava production in Africa. Curiously, begomoviruses have never been reported in cassava in South America, the center of origin for this crop. It has been hypothesized that the absence of a competent vector in cassava is the reason why begomoviruses have not emerged in South America. Methods We performed a country-wide whitefly diversity study in cassava in Brazil. Adults and/or nymphs of whiteflies were collected from sixty-six cassava fields in the main agroecological zones of the country. A total of 1,385 individuals were genotyped based on mitochondrial cytochrome oxidase I sequences. Results A high species richness was observed, with five previously described species and two putative new ones. The prevalent species were Tetraleurodes acaciae and Bemisia tuberculata, representing over 75% of the analyzed individuals. Although we detected, for the first time, the presence of Bemisia tabaci Middle East-Asia Minor 1 (BtMEAM1) colonizing cassava in Brazil, it was not prevalent. The species composition varied across regions, with fields in the Northeast region showing a higher diversity. These results expand our knowledge of whitefly diversity in cassava and support the hypothesis that begomovirus epidemics have not occurred in cassava in Brazil due to the absence of competent vector populations. However, they indicate an ongoing adaptation process of BtMEAM1 to cassava, increasing the likelihood of begomovirus emergence in this crop.
Collapse
Affiliation(s)
- Cesar A D Xavier
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | | | - Miguel Alves Júnior
- Faculdade de Engenharia Agronômica, Universidade Federal do Pará, Altamira, PA, Brazil
| | - Leonardo Barbosa
- Instituto Federal do Sudeste de Minas Gerais, Rio Pomba, MG, Brazil
| | | | | | - Renata Calegario
- Dep. de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Eduardo Silva Gorayeb
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brazil
| | - Jaime Honorato Júnior
- Centro Multidisciplinar do Campus de Barra, Universidade Federal do Oeste da Bahia, Barra, BA, Brazil
| | - Gabriel Koch
- Dep. de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Cristian Lopes
- Instituto Federal do Sudeste de Minas Gerais, Rio Pomba, MG, Brazil
| | | | | | - Fábio Nascimento Silva
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brazil
| | - Roberto Ramos Sobrinho
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, AL, Brazil
| | | | | | | | - Francisco M Zerbini
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
20
|
Liu B, Preisser EL, Jiao X, Xu W, Zhang Y. Lethal and Sublethal Effects of Flupyradifurone on Bemisia tabaci MED (Hemiptera: Aleyrodidae) Feeding Behavior and TYLCV Transmission in Tomato. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1072-1080. [PMID: 33825898 DOI: 10.1093/jee/toab040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Pesticides primarily affect target organisms via direct toxicity, but may also alter the feeding behaviors of surviving individuals in ways that alter their effect on host plants. The latter impact is especially important when pests can transmit plant pathogens. The Mediterranean (MED) population of the sweetpotato whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) transmits Tomato yellow leaf curl virus (TYLCV), a pathogen that can be economically devastating in field and greenhouse cropping systems. We first assessed the impact of sublethal (LC15) and label concentrations of flupyradifurone, a butenolide-derived insecticide, on the feeding behavior of TYLCV-infected MED on tomato. We next measured the effect of flupyradifurone on plant TYLCV load, vector transmission efficiency, and MED survival. Both the LC15 and label flupyradifurone concentrations dramatically altered MED feeding and caused the near cessation of both salivation and phloem ingestion (necessary for viral transmission and acquisition, respectively). Both concentrations also significantly reduced plant TYLCV load, and the label rate of flupyradifurone sharply decreased TYLCV transmission while killing >99% of MED. As the first report of pesticide-induced changes in the feeding behavior of viruliferous Bemisia, our findings highlight the potential importance of chemically driven feeding cessation in the control of TYLCV and other Bemisia-transmitted plant pathogens.
Collapse
Affiliation(s)
- Baiming Liu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Xiaoguo Jiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Center for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Weihong Xu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Youjun Zhang
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
21
|
Marchant WG, Legarrea S, Smeda JR, Mutschler MA, Srinivasan R. Evaluating Acylsugars-Mediated Resistance in Tomato against Bemisia tabaci and Transmission of Tomato Yellow Leaf Curl Virus. INSECTS 2020; 11:insects11120842. [PMID: 33260730 PMCID: PMC7760652 DOI: 10.3390/insects11120842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 02/02/2023]
Abstract
The sweetpotato whitefly, Bemisia tabaci, is a major pest of cultivated tomato. Whitefly feeding-related injuries and transmission of viruses including tomato yellow leaf curl virus (TYLCV) cause serious losses. Management strategy includes planting resistant cultivars/hybrids. However, TYLCV resistance is incomplete and whiteflies on TYLCV-resistant cultivars/hybrids are managed by insecticides. Acylsugars'-mediated resistance against whiteflies has been introgressed from wild solanums into cultivated tomato. This study evaluated acylsugar-producing tomato lines with quantitative trait loci (QTL) containing introgressions from Solanum pennellii LA716, known to alter acylsugars' levels or chemistry. Evaluated acylsugar-producing lines were the benchmark line CU071026, QTL6/CU071026-a CU071026 sister line with QTL6, and three other CU071026 sister lines with varying QTLs-FA2/CU71026, FA7/CU071026, and FA2/FA7/CU071026. Non-acylsugar tomato hybrid Florida 47 (FL47) was also evaluated. Acylsugars' amounts in FA7/CU071026 and FA2/FA7/CU071026 were 1.4 to 2.2 times greater than in other acylsugar-producing lines. Short chain fatty acid, i-C5, was dominant in all acylsugar-producing lines. Long chain fatty acids, n-C10 and n-C12, were more abundant in FA7/CU071026 and FA2/FA7/CU071026 than in other acylsugar-producing lines. Whiteflies preferentially settled on non-acylsugar hybrid FL47 leaves over three out of five acylsugar-producing lines, and whiteflies settled 5 to 85 times more on abaxial than adaxial leaf surface of FL47 than on acylsugar-producing lines. Whiteflies' survival was 1.5 to 1.9 times lower on acylsugar-producing lines than in FL47. Nevertheless, whiteflies' developmental time was up to 12.5% shorter on acylsugar-producing lines than on FL47. TYLCV infection following whitefly-mediated transmission to acylsugar-producing lines was 1.4 to 2.8 times lower than FL47, and TYLCV acquisition by whiteflies from acylsugar-producing lines was up to 77% lower than from FL47. However, TYLCV accumulation in acylsugar-producing lines following infection and TYLCV loads in whiteflies upon acquisition from acylsugar-producing lines were not different from FL47. Combining TYLCV resistance with acylsugars'-mediated whitefly resistance in cultivated tomato could substantially benefit whiteflies and TYLCV management.
Collapse
Affiliation(s)
- Wendy G. Marchant
- Department of Entomology, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA; (W.G.M.); (S.L.)
| | - Saioa Legarrea
- Department of Entomology, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA; (W.G.M.); (S.L.)
| | - John R. Smeda
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, 257 Emerson Hall, Ithaca, NY 30602, USA; (J.R.S.); (M.A.M.)
| | - Martha A. Mutschler
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, 257 Emerson Hall, Ithaca, NY 30602, USA; (J.R.S.); (M.A.M.)
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 310223, USA
- Correspondence: ; Tel.: +770-229-3099
| |
Collapse
|
22
|
Crossley MS, Snyder WE. What Is the Spatial Extent of a Bemisia tabaci Population? INSECTS 2020; 11:E813. [PMID: 33218155 PMCID: PMC7698913 DOI: 10.3390/insects11110813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Effective pest management depends on basic knowledge about insect dispersal patterns and gene flow in agroecosystems. The globally invasive sweet potato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is considered a weak flier whose life history nonetheless predisposes it to frequent dispersal, but the scale over which populations exchange migrants, and should therefore be managed, is uncertain. In this review, we synthesize the emergent literature on B. tabaci population genetics to address the question: What spatial scales define B. tabaci populations? We find that within-species genetic differentiation among sites is often low, and evidence of population structuring by host plant or geography is rare. Heterozygote deficits prevail among populations, indicating that migrants from divergent populations are frequently sampled together. Overall, these results suggest that there is high ongoing gene flow over large spatial extents. However, genetic homogeneity typical of recently invading populations could obscure power to detect real isolation among populations. Genome-wide data collected systematically across space and time could distinguish signatures of invasion history from those of ongoing gene flow. Characterizing the spatial extent of B. tabaci populations could reveal whether insecticide rotations can be tailored to specific commodities or if coordination across linked commodities and regions is justified.
Collapse
|
23
|
Andreason SA, Arif M, Brown JK, Ochoa-Corona F, Wayadande A. Exploring the Use of High-Resolution Melting Analysis and Helicase-Dependent Amplification for Discrimination of Bemisia tabaci (Hemiptera: Aleyrodidae) Cryptic Species and Trialeurodes vaporariorum. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2511-2520. [PMID: 32841358 DOI: 10.1093/jee/toaa180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera; Aleyrodidae), and greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae), are highly problematic plant pests and virus vectors with worldwide distributions. Identification of whitefly species is typically accomplished by observation of distinct morphological characters; however, because of morphological inconsistency and indistinguishability, the discrimination of B. tabaci species variants is dependent on molecular techniques based on genetic differences. New assays were designed for the detection of B. tabaci A, B, and Q mitotype groups, and T. vaporariorum. Specific primer sets were designed for amplification of the mitochondrial cytochrome c oxidase I gene of the four targets to perform in end-point PCR, real-time PCR coupled to high-resolution melting analysis (HRM), and the isothermal helicase-dependent amplification (HDA). Primer specificities were validated using end-point PCR, then tested in HRM and HDA. Bemisia tabaci A, B, and Q mitotypes, and T. vaporariorum-targeted primer sets discriminately amplified specimens of different populations within their target whitefly group. These tests provide three novel discrimination assays for the high-consequence, exotic B. tabaci B and Q groups, along with the native B. tabaci A group and T. vaporariorum.
Collapse
Affiliation(s)
- Sharon A Andreason
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI
| | - Judith K Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ
| | | | - Astri Wayadande
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK
| |
Collapse
|
24
|
Liu B, Preisser EL, Jiao X, Zhang Y. Tomato Yellow Leaf Curl Virus Infection Alters Bemisia tabaci MED (Hemiptera: Aleyrodidae) Vulnerability to Flupyradifurone. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1922-1926. [PMID: 32484504 DOI: 10.1093/jee/toaa118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Indexed: 06/11/2023]
Abstract
The whitefly, Bemisia tabaci Gennadius, is a major phloem-feeding pest of agricultural crops that is also an important vector of many plant diseases. The B. tabaci Mediterranean ('MED') biotype is a particularly effective vector of Tomato yellow leaf curl virus (TYLCV), a devastating plant pathogen. Although insecticides play an important role in the control of MED and TYLCV, little is known about how TYLCV infection affects MED susceptibility to insecticides. We conducted research addressing how MED susceptibility to flupyradifurone, the first commercially available systemic control agent derived from the butenolide class of insecticides, was affected by TYLCV infection. We first conducted bioassays determining the LC15 and LC50 for control and viruliferous MED feeding on either water- or insecticide-treated plants. We next measured several demographic parameters of control and viruliferous MED exposed to either insecticide- or water-treated plants. TYLCV infection increased MED tolerance of flupyradifurone: the LC15 and LC50 of viruliferous MED were double that of uninfected MED. Viral infection also altered MED demographic responses to flupyradifurone, but in an inconsistent manner. Although the ability of TYLCV and other persistently transmitted viruses to benefit Bemisia via manipulation of host plant defense is well known, this appears to be the first example of virally mediated changes in vector susceptibility to an insecticide.
Collapse
Affiliation(s)
- Baiming Liu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI
| | - Xiaoguo Jiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Center for Behavioral Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan, China
| | - Youjun Zhang
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Paredes‐Montero JR, Ibarra MA, Arias‐Zambrano M, Peralta EL, Brown JK. Phylo‐biogeographical distribution of whitefly
Bemisia tabaci
(Insecta: Aleyrodidae) mitotypes in Ecuador. Ecosphere 2020. [DOI: 10.1002/ecs2.3154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jorge R. Paredes‐Montero
- School of Plant Sciences The University of Arizona 1140 East South Campus Drive Tucson Arizona85721USA
- Facultad de Ciencias de la Vida Escuela Superior Politécnica del Litoral, ESPOL Campus Gustavo Galindo Km 30.5 Vía Perimetral GuayaquilEC090112Ecuador
| | - María A. Ibarra
- Facultad de Ciencias de la Vida Escuela Superior Politécnica del Litoral, ESPOL Campus Gustavo Galindo Km 30.5 Vía Perimetral GuayaquilEC090112Ecuador
| | - Myriam Arias‐Zambrano
- Instituto Nacional de Investigaciones Agropecuarias, Estación Experimental Litoral Sur Km. 26 Vía Durán‐Tambo GuayaquilEC090112Ecuador
- Bioversity International, Parc Scientifique Agropolis II Montpellier34397France
| | - Esther L. Peralta
- Facultad de Ciencias de la Vida Escuela Superior Politécnica del Litoral, ESPOL Campus Gustavo Galindo Km 30.5 Vía Perimetral GuayaquilEC090112Ecuador
| | - Judith K. Brown
- School of Plant Sciences The University of Arizona 1140 East South Campus Drive Tucson Arizona85721USA
| |
Collapse
|
26
|
Wosula EN, Chen W, Amour M, Fei Z, Legg JP. KASP Genotyping as a Molecular Tool for Diagnosis of Cassava-Colonizing Bemisia tabaci. INSECTS 2020; 11:insects11050305. [PMID: 32423055 PMCID: PMC7290743 DOI: 10.3390/insects11050305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/11/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022]
Abstract
Bemisia tabaci is a cryptic species complex that requires the use of molecular tools for identification. The most widely used approach for achieving this is the partial sequencing of the mitochondrial DNA cytochrome oxidase I gene (COI). A more reliable single nucleotide polymorphism (SNP)-based genotyping approach, using Nextera restriction-site-associated DNA (NextRAD) sequencing, has demonstrated the existence of six major haplogroups of B. tabaci on cassava in Africa. However, NextRAD sequencing is costly and time-consuming. We, therefore, developed a cheaper and more rapid diagnostic using the Kompetitive Allele-Specific PCR (KASP) approach. Seven sets of primers were designed to distinguish the six B. tabaci haplogroups based on the NextRAD data. Out of the 152 whitefly samples that were tested using these primer sets, 151 (99.3%) produced genotyping results consistent with NextRAD. The KASP assay was designed using NextRAD data on whiteflies from cassava in 18 countries across sub-Saharan Africa. This assay can, therefore, be routinely used to rapidly diagnose cassava B. tabaci by laboratories that are researching or monitoring this pest in Africa. This is the first study to develop an SNP-based assay to distinguish B. tabaci whiteflies on cassava in Africa, and the first application of the KASP technique for insect identification.
Collapse
Affiliation(s)
- Everlyne N. Wosula
- International Institute of Tropical Agriculture, P.O. Box 34441 Dar es Salaa, Tanzania; (M.A.); (J.P.L.)
- Correspondence: ; Tel.: +255-22-2700-092
| | - Wenbo Chen
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA; (W.C.); (Z.F.)
| | - Massoud Amour
- International Institute of Tropical Agriculture, P.O. Box 34441 Dar es Salaa, Tanzania; (M.A.); (J.P.L.)
| | - Zhangjun Fei
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA; (W.C.); (Z.F.)
- USDA-ARS Robert W. Holley Center for Agriculture and Health, 533 Tower Rd, Ithaca, NY 14853, USA
| | - James P. Legg
- International Institute of Tropical Agriculture, P.O. Box 34441 Dar es Salaa, Tanzania; (M.A.); (J.P.L.)
| |
Collapse
|
27
|
Yang C, Zhu EJ, He QJ, Yi CH, Wang XB, Hu SJ, Wei SJ. Strong genetic differentiation among populations of Cheirotonus gestroi (Coleoptera: Euchiridae) in its native area sheds lights on species conservation. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:108-119. [PMID: 32202195 DOI: 10.1080/24701394.2020.1741565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The long-armed scarab (Cheirotonus gestroi) is an endangered large insect in southwestern China and neighboring countries; however, limited information is available regarding its population genetics, hindering conservation efforts. Therefore, we investigated the population genetic structure and evolutionary history of C. gestroi in southwestern China. Twenty-five haplotypes were obtained from 47 specimens across five populations. The Dawei Mountain (DWS) population differed from other populations by a high genetic distance. Population structure analysis generated three distinct clades, corresponding to Hengduan Mountains (HM), Ailao Mountains (AM), and Dawei Mountains (DM), and high-level genetic diversity was found in two HM populations. Collectively, the strong genetic differentiation among populations might be due to limited gene flow, geographical isolation, and habitat fragmentation. Therefore, while developing a conservation strategy, HM, AM, and DM groups should be defined as separate management units. Additionally, the DWS population should be given priority protection due to its uniqueness and low genetic diversity.
Collapse
Affiliation(s)
- Chen Yang
- Key Lab Forest Disaster Warning and Control Yunnan, Southwest Forestry University, Kunming, China.,Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - En-Jiao Zhu
- Key Lab Forest Disaster Warning and Control Yunnan, Southwest Forestry University, Kunming, China.,Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Qiu-Ju He
- Key Lab Forest Disaster Warning and Control Yunnan, Southwest Forestry University, Kunming, China
| | - Chuan-Hui Yi
- Key Lab Forest Disaster Warning and Control Yunnan, Southwest Forestry University, Kunming, China.,Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Xu-Bo Wang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Shao-Ji Hu
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Yunnan University, Kunming, China.,Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
28
|
Misaka BC, Wosula EN, Marchelo-d’Ragga PW, Hvoslef-Eide T, Legg JP. Genetic Diversity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Colonizing Sweet Potato and Cassava in South Sudan. INSECTS 2020; 11:insects11010058. [PMID: 31963536 PMCID: PMC7022610 DOI: 10.3390/insects11010058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/13/2023]
Abstract
Bemisia tabaci (Gennadius) is a polyphagous, highly destructive pest that is capable of vectoring viruses in most agricultural crops. Currently, information regarding the distribution and genetic diversity of B. tabaci in South Sudan is not available. The objectives of this study were to investigate the genetic variability of B. tabaci infesting sweet potato and cassava in South Sudan. Field surveys were conducted between August 2017 and July and August 2018 in 10 locations in Juba County, Central Equatoria State, South Sudan. The sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) were used to determine the phylogenetic relationships between sampled B. tabaci. Six distinct genetic groups of B. tabaci were identified, including three non-cassava haplotypes (Mediterranean (MED), Indian Ocean (IO), and Uganda) and three cassava haplotypes (Sub-Saharan Africa 1 sub-group 1 (SSA1-SG1), SSA1-SG3, and SSA2). MED predominated on sweet potato and SSA2 on cassava in all of the sampled locations. The Uganda haplotype was also widespread, occurring in five of the sampled locations. This study provides important information on the diversity of B. tabaci species in South Sudan. A comprehensive assessment of the genetic diversity, geographical distribution, population dynamics, and host range of B. tabaci species in South Sudan is vital for its effective management.
Collapse
Affiliation(s)
- Beatrice C. Misaka
- Department of Agricultural Science, School of Natural Resources and Environmental Sciences, University of Juba, P.O. Box 82, Juba, South Sudan; (B.C.M.); (P.W.M.-d.)
- Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Everlyne N. Wosula
- International Institute of Tropical Agriculture, P.O. Box 34441, Dar es Salaam, Tanzania; (E.N.W.); (J.P.L.)
| | - Philip W. Marchelo-d’Ragga
- Department of Agricultural Science, School of Natural Resources and Environmental Sciences, University of Juba, P.O. Box 82, Juba, South Sudan; (B.C.M.); (P.W.M.-d.)
| | - Trine Hvoslef-Eide
- Department of Plant Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
- Correspondence: ; Tel.: +47-93433775
| | - James P. Legg
- International Institute of Tropical Agriculture, P.O. Box 34441, Dar es Salaam, Tanzania; (E.N.W.); (J.P.L.)
| |
Collapse
|
29
|
Ally HM, Hamss HE, Simiand C, Maruthi MN, Colvin J, Omongo CA, Delatte H. What has changed in the outbreaking populations of the severe crop pest whitefly species in cassava in two decades? Sci Rep 2019; 9:14796. [PMID: 31615997 PMCID: PMC6794263 DOI: 10.1038/s41598-019-50259-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/19/2019] [Indexed: 12/04/2022] Open
Abstract
High populations of African cassava whitefly (Bemisia tabaci) have been associated with epidemics of two viral diseases in Eastern Africa. We investigated population dynamics and genetic patterns by comparing whiteflies collected on cassava in 1997, during the first whitefly upsurges in Uganda, with collections made in 2017 from the same locations. Nuclear markers and mtCOI barcoding sequences were used on 662 samples. The composition of the SSA1 population changed significantly over the 20-year period with the SSA1-SG2 percentage increasing from 0.9 to 48.6%. SSA1-SG1 and SSA1-SG2 clearly interbreed, confirming that they are a single biological species called SSA1. The whitefly species composition changed: in 1997, SSA1, SSA2 and B. afer were present; in 2017, no SSA2 was found. These data and those of other publications do not support the 'invader' hypothesis. Our evidence shows that no new species or new population were found in 20 years, instead, the distribution of already present genetic clusters composing SSA1 species have changed over time and that this may be in response to several factors including the introduction of new cassava varieties or climate changes. The practical implications are that cassava genotypes possessing both whitefly and disease resistances are needed urgently.
Collapse
Affiliation(s)
- Hadija M Ally
- Université de La Réunion, 97715, 15 Avenue René Cassin, Sainte-Clotilde, La Reunion, France
- CIRAD, UMR PVBMT, 7 Chemin de l'Irat, Ligne Paradis, 97410, Saint Pierre, La Reunion, France
- Tanzania Agricultural Research Institute-Ukiriguru, P.O. Box, 1433, Mwanza, Tanzania
| | - Hajar El Hamss
- Natural Resources Institute (NRI), University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Christophe Simiand
- CIRAD, UMR PVBMT, 7 Chemin de l'Irat, Ligne Paradis, 97410, Saint Pierre, La Reunion, France
| | - M N Maruthi
- Natural Resources Institute (NRI), University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - John Colvin
- Natural Resources Institute (NRI), University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Christopher A Omongo
- Root Crops Programme, National Crops Resource Research Institute (RCP-NaCRRI), P.O. Box, 7084, Kampala, Uganda
| | - Helene Delatte
- CIRAD, UMR PVBMT, 7 Chemin de l'Irat, Ligne Paradis, 97410, Saint Pierre, La Reunion, France.
| |
Collapse
|
30
|
Lettuce Chlorosis Virus Disease: A New Threat to Cannabis Production. Viruses 2019; 11:v11090802. [PMID: 31470681 PMCID: PMC6784094 DOI: 10.3390/v11090802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022] Open
Abstract
In a survey conducted in Cannabis sativa L. (cannabis) authorized farms in Israel, plants showed disease symptoms characteristic of nutrition deprivation. Interveinal chlorosis, brittleness, and occasional necrosis were observed in older leaves. Next generation sequencing analysis of RNA extracted from symptomatic leaves revealed the presence of lettuce chlorosis virus (LCV), a crinivirus that belongs to the Closteroviridae family. The complete viral genome sequence was obtained using RT-PCR and Rapid Amplification of cDNA Ends (RACE) PCR followed by Sanger sequencing. The two LCV RNA genome segments shared 85-99% nucleotide sequence identity with LCV isolates from GenBank database. The whitefly Bemisia tabaci Middle Eastern Asia Minor1 (MEAM1) biotype transmitted the disease from symptomatic cannabis plants to un-infected 'healthy' cannabis, Lactuca sativa, and Catharanthus roseus plants. Shoots from symptomatic cannabis plants, used for plant propagation, constituted a primary inoculum of the disease. To the best of our knowledge, this is the first report of cannabis plant disease caused by LCV.
Collapse
|
31
|
Nuclear Orthologs Derived from Whole Genome Sequencing Indicate Cryptic Diversity in the Bemisia tabaci (Insecta: Aleyrodidae) Complex of Whiteflies. DIVERSITY-BASEL 2019. [DOI: 10.3390/d11090151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Bemisia tabaci complex of whiteflies contains globally important pests thought to contain cryptic species corresponding to geographically structured phylogenetic clades. Although mostly morphologically indistinguishable, differences have been shown to exist among populations in behavior, plant virus vector capacity, ability to hybridize, and DNA sequence divergence. These differences allow for certain populations to become invasive and cause great economic damage in a monoculture setting. Although high mitochondrial DNA divergences have been reported between putative conspecifics of the B. tabaci species complex, there is limited data that exists across the whole genome for this group. Using data from 2184 orthologs obtained from whole genome sequencing (Illumina), a phylogenetic analysis using maximum likelihood and coalescent methodologies was completed on ten individuals of the B. tabaci complex. In addition, automatic barcode gap discovery methods were employed, and results suggest the existence of five species. Although the divergences of the mitochondrial cytochrome oxidase I gene are high among members of this complex, nuclear divergences are much lower in comparison. Single-copy orthologs from whole genome sequencing demonstrate divergent population structures among members of the B. tabaci complex and the sequences provide an important resource to aid in future genomic studies of the group.
Collapse
|
32
|
A novel approach for exploring climatic factors limiting current pest distributions: A case study of Bemisia tabaci in north-west Europe and assessment of potential future establishment in the United Kingdom under climate change. PLoS One 2019; 14:e0221057. [PMID: 31454397 PMCID: PMC6711539 DOI: 10.1371/journal.pone.0221057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/29/2019] [Indexed: 11/23/2022] Open
Abstract
Bemisia tabaci (the tobacco whitefly) is an important agricultural pest of global significance primarily because of its ability to transmit multiple damaging plant viruses. To date, UK outbreaks of the whitefly have been restricted to glasshouses and there are no records of the whitefly establishing outdoors during the summer. This is despite the fact that annual degree-day models (that estimate accumulated warmth over the year above the development threshold), indicate that B. tabaci has the thermal potential for multiple summer generations in the UK. A set of 49 climate indices calculated using the present day climate (1986–2015) were therefore compared between the UK and the south of France, where B. tabaci is able to establish outdoors, to identify the factors limiting its establishment. The number of cold days and nights in summer, as well as the time spent within the whitefly’s optimum temperature range, were most significantly different between the two areas. These indices may impact the development of B. tabaci and offer an explanation for the absence of the whitefly outdoors in the UK during the summer. Further analyses undertaken with climate projections suggest that in a 2–4°C warmer world this pest could pose a risk to outdoor UK crops in July and August. A clear south-north gradient can be demonstrated for these indices. Linking any possible northwards spread of B. tabaci populations outdoors in France with changes in these indices could therefore provide an important indicator of any change in the risks of outdoor populations of this species developing in the UK. The effectiveness of climate indices in pest risk analysis is compellingly demonstrated, and it is recommended that in-depth comparisons of climatic indices between areas of pest presence and absence are conducted in other situations where forecasting the risks of pest establishment are complex and challenging.
Collapse
|
33
|
Population genetic structure of Bemisia tabaci MED (Hemiptera: Aleyrodidae) in Korea. PLoS One 2019; 14:e0220327. [PMID: 31344119 PMCID: PMC6657892 DOI: 10.1371/journal.pone.0220327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/12/2019] [Indexed: 11/19/2022] Open
Abstract
The sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a major agricultural pest that causes economic damages worldwide. In particular, B. tabaci MED (Mediterranean) has resulted in serious economic losses in tomato production of Korea. In this study, 1,145 B. tabaci MED females from 35 tomato greenhouses in different geographic regions were collected from 2016 to 2018 (17 populations in 2016, 13 in 2017, and five in 2018) and analyzed to investigate their population genetic structures using eight microsatellite markers. The average number of alleles per population (NA) ranged from 2.000 to 5.875, the expected heterozygosity (HE) ranged from 0.218 to 0.600, the observed heterozygosity (HO) ranged from 0.061 to 0.580, and the fixation index inbreeding coefficient (FIS) ranged from -0.391 to 0.872 over the three years of the study. Some significant correlation (p < 0.05) was present between genetic differentiations (FST) and geographical distance, and a comparatively high proportion of variation was found among the B. tabaci MED populations. The B. tabaci MED populations were divided into two well-differentiated genetic clusters within different geographic regions. Interestingly, its genetic structures converged into one genetic cluster during just one year. The reasons for this genetic change were speculated to arise from different fitness, insecticide resistance, and insect movement by human activities.
Collapse
|
34
|
Wosula EN, Chen W, Fei Z, Legg JP. Unravelling the Genetic Diversity among Cassava Bemisia tabaci Whiteflies Using NextRAD Sequencing. Genome Biol Evol 2018; 9:2958-2973. [PMID: 29096025 PMCID: PMC5714214 DOI: 10.1093/gbe/evx219] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 12/27/2022] Open
Abstract
Bemisia tabaci threatens production of cassava in Africa through vectoring viruses that cause cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). B. tabaci sampled from cassava in eight countries in Africa were genotyped using NextRAD sequencing, and their phylogeny and population genetics were investigated using the resultant single nucleotide polymorphism (SNP) markers. SNP marker data and short sequences of mitochondrial DNA cytochrome oxidase I (mtCOI) obtained from the same insect were compared. Eight genetically distinct groups were identified based on mtCOI, whereas phylogenetic analysis using SNPs identified six major groups, which were further confirmed by PCA and multidimensional analyses. STRUCTURE analysis identified four ancestral B. tabaci populations that have contributed alleles to the six SNP-based groups. Significant gene flows were detected between several of the six SNP-based groups. Evidence of gene flow was strongest for SNP-based groups occurring in central Africa. Comparison of the mtCOI and SNP identities of sampled insects provided a strong indication that hybrid populations are emerging in parts of Africa recently affected by the severe CMD pandemic. This study reveals that mtCOI is not an effective marker at distinguishing cassava-colonizing B. tabaci haplogroups, and that more robust SNP-based multilocus markers should be developed. Significant gene flows between populations could lead to the emergence of haplogroups that might alter the dynamics of cassava virus spread and disease severity in Africa. Continuous monitoring of genetic compositions of whitefly populations should be an essential component in efforts to combat cassava viruses in Africa.
Collapse
Affiliation(s)
- Everlyne N Wosula
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | - Wenbo Chen
- Boyce Thompson Institute, Ithaca, New York
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, New York.,USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, New York
| | - James P Legg
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| |
Collapse
|
35
|
Masood M, Briddon RW. Transmission of cotton leaf curl disease: answer to a long-standing question. Virus Genes 2018; 54:743-745. [DOI: 10.1007/s11262-018-1605-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/03/2018] [Indexed: 11/28/2022]
|
36
|
de Moraes LA, Muller C, Bueno RCODF, Santos A, Bello VH, De Marchi BR, Watanabe LFM, Marubayashi JM, Santos BR, Yuki VA, Takada HM, de Barros DR, Neves CG, da Silva FN, Gonçalves MJ, Ghanim M, Boykin L, Pavan MA, Krause-Sakate R. Distribution and phylogenetics of whiteflies and their endosymbiont relationships after the Mediterranean species invasion in Brazil. Sci Rep 2018; 8:14589. [PMID: 30275487 PMCID: PMC6167372 DOI: 10.1038/s41598-018-32913-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
The Bemisia tabaci is a polyphagous insect and a successful vector of plant viruses. B. tabaci is a species complex and in Brazil native species from the New World (NW) group, as well as the invasive species, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) were reported. For better understanding the distribution of the different species four years after the Mediterranean species invasion in Brazil, whiteflies were collected from 237 locations throughout the country between the years of 2013 and 2017, species were identified and the facultative endosymbionts detected. The survey revealed that MEAM1 was the prevalent species found on major crops across Brazil. It is the only species present in North, Northwestern and Central Brazil and was associated with virus-infected plants. MED was found in five States from Southeast to South regions, infesting mainly ornamental plants and was not associated with virus-infected plants. The prevalent endosymbionts identified in MEAM1 were Hamiltonella and Rickettsia; and the mtCOI analysis revealed low genetic diversity for MEAM1. In contrast, several different endosymbionts were identified in MED including Hamiltonella, Rickettsia, Wolbachia and Arsenophonus; and two distinct genetic groups were found based on the mtCOI analysis. Monitoring the distribution of the whiteflies species in Brazil is essential for proper management of this pest.
Collapse
Affiliation(s)
- Letícia Aparecida de Moraes
- São Paulo State University, UNESP-FCA, Department of Plant Protection, CEP, 18610-034, Botucatu, (SP), Brazil
| | | | | | - Antônio Santos
- Corteva Agriscience, 13801-540, Mogi-Mirim, (SP), Brazil
| | - Vinicius Henrique Bello
- São Paulo State University, UNESP-FCA, Department of Plant Protection, CEP, 18610-034, Botucatu, (SP), Brazil
| | - Bruno Rossitto De Marchi
- São Paulo State University, UNESP-FCA, Department of Plant Protection, CEP, 18610-034, Botucatu, (SP), Brazil
| | | | - Julio Massaharu Marubayashi
- São Paulo State University, UNESP-FCA, Department of Plant Protection, CEP, 18610-034, Botucatu, (SP), Brazil
| | - Beatriz Rosa Santos
- São Paulo State University, UNESP-FCA, Department of Plant Protection, CEP, 18610-034, Botucatu, (SP), Brazil
| | | | | | | | - Carolina Garcia Neves
- Universidade Federal de Pelotas, Department of Plant Protection, CEP, 96010-610, Pelotas, (RS), Brazil
| | - Fábio Nascimento da Silva
- Santa Catarina State University UDESC, Department of Agronomy/Plant Pathology, 88520-000, Lages, (SC), Brazil
| | - Mayra Juline Gonçalves
- Santa Catarina State University UDESC, Department of Agronomy/Plant Pathology, 88520-000, Lages, (SC), Brazil
| | - Murad Ghanim
- Institute of Plant Protection, Department of Entomology, The Volcani Center, Rishon LeZion, Israel
| | - Laura Boykin
- The University of Western Australia, ARC Centre of Excellence in Plant Energy Biology and School of Chemistry and Biochemistry, Crawley, Perth, 6009, Western Australia, Australia
| | - Marcelo Agenor Pavan
- São Paulo State University, UNESP-FCA, Department of Plant Protection, CEP, 18610-034, Botucatu, (SP), Brazil
| | - Renate Krause-Sakate
- São Paulo State University, UNESP-FCA, Department of Plant Protection, CEP, 18610-034, Botucatu, (SP), Brazil.
| |
Collapse
|
37
|
Jacobson AL, Duffy S, Sseruwagi P. Whitefly-transmitted viruses threatening cassava production in Africa. Curr Opin Virol 2018; 33:167-176. [PMID: 30243102 DOI: 10.1016/j.coviro.2018.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Emerging plant viruses are one of the greatest problems facing crop production worldwide, and have severe consequences in the developing world where subsistence farming is a major source of food production, and knowledge and resources for management are limited. In Africa, evolution of two viral disease complexes, cassava mosaic begomoviruses (CMBs) (Geminiviridae) and cassava brown streak viruses (CBSVs) (Potyviridae), have resulted in severe pandemics that continue to spread and threaten cassava production. Identification of genetically diverse and rapidly evolving CMBs and CBSVs, extensive genetic variation in the vector, Bemisia tabaci (Hemiptera: Aleyrodidae), and numerous secondary endosymbiont profiles that influence vector phenotypes suggest that complex local and regional vector-virus-plant-environment interactions may be driving the evolution and epidemiology of these viruses.
Collapse
Affiliation(s)
- Alana Lynn Jacobson
- Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL 36849, USA.
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Rd, New Brunswick, NJ 08901, USA
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar es Salaam, Tanzania
| |
Collapse
|
38
|
Vyskočilová S, Tay WT, van Brunschot S, Seal S, Colvin J. An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Sci Rep 2018; 8:10886. [PMID: 30022040 PMCID: PMC6052153 DOI: 10.1038/s41598-018-29305-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/05/2018] [Indexed: 11/26/2022] Open
Abstract
Bemisia tabaci is a cryptic whitefly-species complex that includes some of the most damaging pests and plant-virus vectors of a diverse range of food and fibre crops worldwide. We combine experimental evidence of: (i) differences in reproductive compatibility, (ii) hybrid verification using a specific nuclear DNA marker and hybrid fertility confirmation and (iii) high-throughput sequencing-derived mitogenomes, to show that the "Mediterranean" (MED) B. tabaci comprises at least two distinct biological species; the globally invasive MED from the Mediterranean Basin and the "African silver-leafing" (ASL) from sub-Saharan Africa, which has no associated invasion records. We demonstrate that, contrary to its common name, the "ASL" does not induce squash silver-leafing symptoms and show that species delimitation based on the widely applied 3.5% partial mtCOI gene sequence divergence threshold produces discordant results, depending on the mtCOI region selected. Of the 292 published mtCOI sequences from MED/ASL groups, 158 (54%) are low quality and/or potential pseudogenes. We demonstrate fundamental deficiencies in delimiting cryptic B. tabaci species, based solely on partial sequences of a mitochondrial barcoding gene. We advocate an integrative approach to reveal the true species richness within cryptic species complexes, which is integral to the deployment of effective pest and disease management strategies.
Collapse
Affiliation(s)
- Soňa Vyskočilová
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, United Kingdom.
| | - Wee Tek Tay
- CSIRO Black Mountain Laboratories, Clunies Ross Street, ACT 2601, Canberra, Australia
| | - Sharon van Brunschot
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, United Kingdom
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, United Kingdom
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, United Kingdom
| |
Collapse
|
39
|
Wang Y, Lu J, Beattie GA, Islam MR, Om N, Dao HT, Van Nguyen L, Zaka SM, Guo J, Tian M, Deng X, Tan S, Holford P, He Y, Cen Y. Phylogeography of Diaphorina citri (Hemiptera: Liviidae) and its primary endosymbiont, 'Candidatus Carsonella ruddii': an evolutionary approach to host-endosymbiont interaction. PEST MANAGEMENT SCIENCE 2018; 74:2185-2194. [PMID: 29575777 DOI: 10.1002/ps.4917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND In insects, little is known about the co-evolution between their primary endosymbionts and hosts at the intraspecific level. This study examined co-diversification between the notorious agricultural pest Diaphorina citri and its primary endosymbionts (P-endosymbiont), 'Candidatus Carsonella ruddii' at the population level. RESULTS Maximum likelihood, haplotype network, principal components and Bayesian clustering identified three lineages for D. citri and its P-endosymbiont: a Western clade containing individuals from Pakistan, Bhutan (Phuentsholing), Vietnam (Son La), USA, Myanmar and China (Ruili, Yunnan); a Central clade, with accessions originating from Southwest China, Bhutan (Tsirang) and Bangladesh; and an Eastern clade containing individuals from Southeast Asia, and East and South China. A more diverse genetic structure was apparent in the host mitochondrial DNA than their P-endosymbionts; however, the two sets of data were strongly congruent. CONCLUSION This study provides evidence for the co-diversification of D. citri and its P-endosymbiont during the migration from South Asia to East and Southeast Asia. We also suggest that the P-endosymbiont may facilitate investigations into the genealogy and migration history of the host. The biogeography of D. citri and its P-endosymbiont indicated that D. citri colonized and underwent a secondary dispersal from South Asia to East and Southeast Asia. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanjing Wang
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Jinming Lu
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - George Ac Beattie
- School of Science and Health, Western Sydney University, Penrith, Australia
| | - Mohammad R Islam
- Laboratory of Plant Bacteriology and Biotechnology, Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Namgay Om
- National Plant Protection Centre, Department of Agriculture, Ministry of Agriculture and Forests, Thimphu, Bhutan
| | - Hang T Dao
- Plant Protection Research Institute, Hanoi, Vietnam
| | | | - Syed M Zaka
- Faculty of Agricultural Science and Technology, Department of Entomology, Bahauddin Zakariya University, Multan, Pakistan
| | - Jun Guo
- Ruili Experiment Station, Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agriculture Science, Ruili, China
| | - Mingyi Tian
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Xiaoling Deng
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Shunyun Tan
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Paul Holford
- School of Science and Health, Western Sydney University, Penrith, Australia
| | - Yurong He
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| | - Yijing Cen
- Citrus Huanglongbing Research Laboratory/Key Laboratory of Bio-Pesticide Innovation and Application, South China Agricultural University, Guangzhou, China
| |
Collapse
|
40
|
Masood M, Amin I, Hassan I, Mansoor S, Brown JK, Briddon RW. Diversity and Distribution of Cryptic Species of the Bemisia tabaci (Hemiptera: Aleyrodidae) complex in Pakistan. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2295-2300. [PMID: 29029216 DOI: 10.1093/jee/tox221] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 06/07/2023]
Abstract
Bemisia tabaci (Gennadius; Hempitera: Aleyrodidae) is considered to be a cryptic (sibling) species complex, the members of which exhibit morphological invariability while being genetically and behaviorally distinct. Members of the complex are agricultural pests that cause direct damage by feeding on plants, and indirectly by transmitting viruses that cause diseases leading to reduced crop yield and quality. In Pakistan, cotton leaf curl disease, caused by multiple begomovirus species, is the most economically important viral disease of cotton. In the study outlined here, the diversity and geographic distribution of B. tabaci cryptic species was investigated by analyzing a taxonomically informative fragment of the mitochondrial cytochrome c oxidase 1 gene (mtCOI-3'). The mtCOI-3' sequence was determined for 285 adult whiteflies and found to represent six cryptic species, the most numerous being Asia II-1 and Middle East Asia Minor 1 (MEAM-1), the later also referred to as the B-biotype, which was previously thought to be confined to Sindh province but herein, was also found to be present in the Punjab province. The endemic Asia I was restricted to Sindh province, while an individual in the Asia II-8 was identified in Pakistan for the first time. Also for the first time, samples were collected from northwestern Pakistan and Asia II-1 was identified. Results indicate that in Pakistan the overall diversity of B. tabaci cryptic species is high and, based on comparisons with findings from previous studies, the distribution is dynamic.
Collapse
Affiliation(s)
- Mariyam Masood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Pakistan
| | - Ishtiaq Hassan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Pakistan
| | | | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Pakistan
| |
Collapse
|
41
|
Ben Abdelkrim A, Hattab T, Fakhfakh H, Belkadhi MS, Gorsane F. A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci. PLoS One 2017; 12:e0185724. [PMID: 28972992 PMCID: PMC5626470 DOI: 10.1371/journal.pone.0185724] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/18/2017] [Indexed: 11/19/2022] Open
Abstract
Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest.
Collapse
Affiliation(s)
- Ahmed Ben Abdelkrim
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie. Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisie
- Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Tarek Hattab
- Institut Français de Recherche pour l’Exploitation de la Mer, IFREMER, UMR 248 MARBEC, Avenue Jean Monnet CS, Sète, France
| | - Hatem Fakhfakh
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie. Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisie
- Faculté des Sciences de Bizerte, Zarzouna, Université de Carthage, Bizerte, Tunisie
| | | | - Faten Gorsane
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie. Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisie
- Faculté des Sciences de Bizerte, Zarzouna, Université de Carthage, Bizerte, Tunisie
| |
Collapse
|
42
|
Wang Y, Xu C, Tian M, Deng X, Cen Y, He Y. Genetic diversity of Diaphorina citri and its endosymbionts across east and south-east Asia. PEST MANAGEMENT SCIENCE 2017; 73:2090-2099. [PMID: 28374537 DOI: 10.1002/ps.4582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 03/15/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Diaphorina citri is the vector of 'Candidatus Liberibacter asiaticus', the most widespread pathogen associated huanglongbing, the most serious disease of citrus. To enhance our understanding of the distribution and origin of the psyllid, we investigated the genetic diversity and population structures of 24 populations in Asia and one from Florida based on the mtCOI gene. Simultaneously, genetic diversity and population structures of the primary endosymbiont (P-endosymbiont) 'Candidatus Carsonella ruddii' and secondary endosymbiont (S-endosymbiont) 'Candidatus Profftella armatura' of D. citri were determined with the housekeeping genes. RESULT AMOVA analysis indicated that populations of D. citri and its endosymbionts in east and south-east Asia were genetically distinct from populations in Pakistan and Florida. Furthermore, P-endosymbiont populations displayed a strong geographical structure across east and south-east Asia, while low genetic diversity indicated the absence of genetic structure among the populations of D. citri and its S-endosymbiont across these regions. CONCLUSION The 'Ca. C. ruddii' is more diverse and structured than the D. citri and the 'Ca. P. armatura' across east and south-east Asia. Multiple introductions of the psyllid have occurred in China. Management application for controlling the pest is proposed based on the genetic information of D. citri and its endosymbionts. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanjing Wang
- Laboratory of Insect Ecology/Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Changbao Xu
- Laboratory of Insect Ecology/Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Mingyi Tian
- Laboratory of Insect Ecology/Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Xiaoling Deng
- Laboratory of Insect Ecology/Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Yijing Cen
- Laboratory of Insect Ecology/Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, China
| | - Yurong He
- Laboratory of Insect Ecology/Citrus Huanglongbing Research Laboratory, South China Agricultural University, Guangzhou, China
| |
Collapse
|
43
|
Karut K, Mete Karaca M, Döker I, Kazak C. Analysis of Species, Subgroups, and Endosymbionts of Bemisia tabaci (Hemiptera: Aleyrodidae) From Southwestern Cotton Fields in Turkey. ENVIRONMENTAL ENTOMOLOGY 2017; 46:1035-1040. [PMID: 28505238 DOI: 10.1093/ee/nvx093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Indexed: 06/07/2023]
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of the most important insect pests worldwide including Turkey. Although there are substantial data regarding species composition of Turkish B. tabaci populations, the situation is still not clear and further investigations are needed. Therefore, in this study, species and subgroups of B. tabaci collected from cotton fields in southwestern part of Turkey (Antalya, Aydın, Denizli, and Muğla) were determined using microsatellite analysis, AluI-based mtCOI polymerase chain reaction-random length polymorphism, and sequencing. Secondary endosymbionts were also determined using diagnostic species-specific PCR. Middle East Asia Minor 1 (MEAM1), Mediterranean (MED) Q1, and MED Q2 were the species and subgroups found in this study. The MED species (85.3%) were found to be more dominant than MEAM1. Species status of B. tabaci varied depending on the location. Although all samples collected from Aydın were found to be Q1, three species and subgroups were found in Muğla. Secondary endosymbionts varied according to species and subgroups. Arsenophonus was found only from Q2, while Hamiltonella was detected in MEAM1 and Q1. In addition, high Rickettsia and low Wolbachia infections were detected in MEAM1 and Q1 populations, respectively. In conclusion, for the first time, we report the presence and symbiotic communities of Q1 from Turkey. We also found that the symbiont complement of the Q1 is more congruent with Q1 from Greece than other regions of the world, which may have some interesting implications for movement of this invasive subgroup.
Collapse
Affiliation(s)
- Kamil Karut
- Agricultural Faculty, Department of Plant Protection, Laboratory of Insect Molecular Genetics and Biotechnology, Çukurova University, 01330 Adana, Turkey
| | - M Mete Karaca
- Agricultural Faculty, Department of Plant Protection, Laboratory of Insect Molecular Genetics and Biotechnology, Çukurova University, 01330 Adana, Turkey
| | - Ismail Döker
- Agricultural Faculty, Department of Plant Protection, Laboratory of Acarology, Çukurova University, 01330 Adana, Turkey
| | - Cengiz Kazak
- Agricultural Faculty, Department of Plant Protection, Laboratory of Acarology, Çukurova University, 01330 Adana, Turkey
| |
Collapse
|
44
|
Genetic variability and population structure of the New World begomovirus Euphorbia yellow mosaic virus. J Gen Virol 2017; 98:1537-1551. [DOI: 10.1099/jgv.0.000784] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
45
|
Hu J, Zhang X, Jiang Z, Zhang F, Liu Y, Li Z, Zhang Z. New putative cryptic species detection and genetic network analysis of Bemisia tabaci (Hempitera: Aleyrodidae) in China based on mitochondrial COI sequences. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:474-484. [PMID: 28366102 DOI: 10.1080/24701394.2017.1307974] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex and widely distributed throughout tropical and subtropical regions. To understand the B. tabaci cryptic species diversity in China more comprehensively, in the year 2014 and 2016, a large-scale sampling was conducted from the famous biodiversity hotspot of China, Yunnan province. Mitochondrial cytochrome oxidase I gene sequences were used to identify new putative cryptic species. Phylogenetic analyses were performed using Bayesian methods to evaluate the position of new cryptic species in the context of the B. tabaci diversity in Asia. Two new cryptic species, China 5 and Asia V were identified. In total, 19 B. tabaci cryptic species are present in China, two invasive (MED and MEAM1) and 17 indigenous. A new sibling species of B. tabaci was first defined and reported. Based on the mtCOI sequences and haplotype network analyses, the genetic diversity of MED was far higher than MEAM1. We confirmed the exotic MED was originated from the western Mediterranean regions and first invaded into Yunnan, China. The genetic structures of other four indigenous species (Asia I, Asia II 1, Asia II 6, and China 1) with relatively wide distribution ranges in China were also discussed.
Collapse
Affiliation(s)
- Jian Hu
- a Ministry of Agriculture Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation , Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences , Kunming , China
| | - Xiaoyun Zhang
- a Ministry of Agriculture Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation , Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences , Kunming , China
| | - Zhilin Jiang
- b School of Biology and Chemistry, Pu'er University , Pu'er , China
| | - Feifei Zhang
- a Ministry of Agriculture Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation , Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences , Kunming , China
| | - Yuanyuan Liu
- a Ministry of Agriculture Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation , Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences , Kunming , China
| | - Zhan Li
- a Ministry of Agriculture Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation , Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences , Kunming , China
| | - Zhongkai Zhang
- a Ministry of Agriculture Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation , Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences , Kunming , China
| |
Collapse
|