1
|
Choo N, Keerthikumar S, Ramm S, Ashikari D, Teng L, Niranjan B, Hedwards S, Porter LH, Goode DL, Simpson KJ, Taylor RA, Risbridger GP, Lawrence MG. Co-targeting BET, CBP, and p300 inhibits neuroendocrine signalling in androgen receptor-null prostate cancer. J Pathol 2024; 263:242-256. [PMID: 38578195 DOI: 10.1002/path.6280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/30/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
There are diverse phenotypes of castration-resistant prostate cancer, including neuroendocrine disease, that vary in their sensitivity to drug treatment. The efficacy of BET and CBP/p300 inhibitors in prostate cancer is attributed, at least in part, to their ability to decrease androgen receptor (AR) signalling. However, the activity of BET and CBP/p300 inhibitors in prostate cancers that lack the AR is unclear. In this study, we showed that BRD4, CBP, and p300 were co-expressed in AR-positive and AR-null prostate cancer. A combined inhibitor of these three proteins, NEO2734, reduced the growth of both AR-positive and AR-null organoids, as measured by changes in viability, size, and composition. NEO2734 treatment caused consistent transcriptional downregulation of cell cycle pathways. In neuroendocrine models, NEO2734 treatment reduced ASCL1 levels and other neuroendocrine markers, and reduced tumour growth in vivo. Collectively, these results show that epigenome-targeted inhibitors cause decreased growth and phenotype-dependent disruption of lineage regulators in neuroendocrine prostate cancer, warranting further development of compounds with this activity in the clinic. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nicholas Choo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Shivakumar Keerthikumar
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susanne Ramm
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Daisaku Ashikari
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Linda Teng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Birunthi Niranjan
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Shelley Hedwards
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - Laura H Porter
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Computational Cancer Biology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kaylene J Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Renea A Taylor
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
| | - Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
| |
Collapse
|
2
|
Kufe D. Dependence on MUC1-C in Progression of Neuroendocrine Prostate Cancer. Int J Mol Sci 2023; 24:3719. [PMID: 36835130 PMCID: PMC9967814 DOI: 10.3390/ijms24043719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/11/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Castration resistant prostate cancer (CRPC) is responsive to androgen receptor (AR) axis targeted agents; however, patients invariably relapse with resistant disease that often progresses to neuroendocrine prostate cancer (NEPC). Treatment-related NEPC (t-NEPC) is highly aggressive with limited therapeutic options and poor survival outcomes. The molecular basis for NEPC progression remains incompletely understood. The MUC1 gene evolved in mammals to protect barrier tissues from loss of homeostasis. MUC1 encodes the transmembrane MUC1-C subunit, which is activated by inflammation and contributes to wound repair. However, chronic activation of MUC1-C contributes to lineage plasticity and carcinogenesis. Studies in human NEPC cell models have demonstrated that MUC1-C suppresses the AR axis and induces the Yamanaka OSKM pluripotency factors. MUC1-C interacts directly with MYC and activates the expression of the BRN2 neural transcription factor (TF) and other effectors, such as ASCL1, of the NE phenotype. MUC1-C also induces the NOTCH1 stemness TF in promoting the NEPC cancer stem cell (CSC) state. These MUC1-C-driven pathways are coupled with activation of the SWI/SNF embryonic stem BAF (esBAF) and polybromo-BAF (PBAF) chromatin remodeling complexes and global changes in chromatin architecture. The effects of MUC1-C on chromatin accessibility integrate the CSC state with the control of redox balance and induction of self-renewal capacity. Importantly, targeting MUC1-C inhibits NEPC self-renewal, tumorigenicity and therapeutic resistance. This dependence on MUC1-C extends to other NE carcinomas, such as SCLC and MCC, and identify MUC1-C as a target for the treatment of these aggressive malignancies with the anti-MUC1 agents now under clinical and preclinical development.
Collapse
Affiliation(s)
- Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
3
|
Soltani S, Cheng B, Osunkoya AO, Robles FE. Deep UV Microscopy Identifies Prostatic Basal Cells: An Important Biomarker for Prostate Cancer Diagnostics. BME FRONTIERS 2022; 2022:9847962. [PMID: 37850167 PMCID: PMC10521648 DOI: 10.34133/2022/9847962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/05/2022] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. Identifying benign mimics of prostatic adenocarcinoma remains a significant diagnostic challenge. In this work, we developed an approach based on label-free, high-resolution molecular imaging with multispectral deep ultraviolet (UV) microscopy which identifies important prostate tissue components, including basal cells. This work has significant implications towards improving the pathologic assessment and diagnosis of prostate cancer. Introduction. One of the most important indicators of prostate cancer is the absence of basal cells in glands and ducts. However, identifying basal cells using hematoxylin and eosin (H&E) stains, which is the standard of care, can be difficult in a subset of cases. In such situations, pathologists often resort to immunohistochemical (IHC) stains for a definitive diagnosis. However, IHC is expensive and time-consuming and requires more tissue sections which may not be available. In addition, IHC is subject to false-negative or false-positive stains which can potentially lead to an incorrect diagnosis. Methods. We leverage the rich molecular information of label-free multispectral deep UV microscopy to uniquely identify basal cells, luminal cells, and inflammatory cells. The method applies an unsupervised geometrical representation of principal component analysis to separate the various components of prostate tissue leading to multiple image representations of the molecular information. Results. Our results show that this method accurately and efficiently identifies benign and malignant glands with high fidelity, free of any staining procedures, based on the presence or absence of basal cells. We further use the molecular information to directly generate a high-resolution virtual IHC stain that clearly identifies basal cells, even in cases where IHC stains fail. Conclusion. Our simple, low-cost, and label-free deep UV method has the potential to improve and facilitate prostate cancer diagnosis by enabling robust identification of basal cells and other important prostate tissue components.
Collapse
Affiliation(s)
- Soheil Soltani
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Brian Cheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Adeboye O. Osunkoya
- Departments of Pathology and Urology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Francisco E. Robles
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Departments of Pathology and Urology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Wen R, Zhao H, Zhang D, Chiu CL, Brooks JD. Sialylated glycoproteins as biomarkers and drivers of progression in prostate cancer. Carbohydr Res 2022; 519:108598. [PMID: 35691122 DOI: 10.1016/j.carres.2022.108598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Sialic acids have been implicated in cancer initiation, progression, and immune evasion in diverse human malignancies. Sialylation of terminal glycans on cell surface and secreted glycoproteins is a long-recognized feature of cancer cells. Recently, immune checkpoint inhibitor immunotherapy has tremendously improved the outcomes of patients with various cancers. However, available immunotherapy approaches have had limited efficacy in metastatic castration-resistant prostate cancer. Sialic acid modified glycoproteins in prostate cancers and their interaction with Siglec receptors on tumor infiltrating immune cells might underlie immunosuppressive signaling in prostate cancer. Here, we summarize the function of sialic acids and relevant glycosynthetic enzymes in cancer initiation and progression. We also discuss the possible uses of sialic acids as biomarkers in prostate cancer and the potential methods for targeting Siglec-sialic acid interactions for prostate cancer treatment.
Collapse
Affiliation(s)
- Ru Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Hagiwara M, Fushimi A, Bhattacharya A, Yamashita N, Morimoto Y, Oya M, Withers HG, Hu Q, Liu T, Liu S, Wong KK, Long MD, Kufe D. MUC1-C integrates type II interferon and chromatin remodeling pathways in immunosuppression of prostate cancer. Oncoimmunology 2022; 11:2029298. [PMID: 35127252 PMCID: PMC8812775 DOI: 10.1080/2162402x.2022.2029298] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The oncogenic MUC1-C protein drives dedifferentiation of castrate resistant prostate cancer (CRPC) cells in association with chromatin remodeling. The present work demonstrates that MUC1-C is necessary for expression of IFNGR1 and activation of the type II interferon-gamma (IFN-γ) pathway. We show that MUC1-C→ARID1A/BAF signaling induces IFNGR1 transcription and that MUC1-C-induced activation of the NuRD complex suppresses FBXW7 in stabilizing the IFNGR1 protein. MUC1-C and NuRD were also necessary for expression of the downstream STAT1 and IRF1 transcription factors. We further demonstrate that MUC1-C and PBRM1/PBAF are necessary for IRF1-induced expression of (i) IDO1, WARS and PTGES, which metabolically suppress the immune tumor microenvironment (TME), and (ii) the ISG15 and SERPINB9 inhibitors of T cell function. Of translational relevance, we show that MUC1 associates with expression of IFNGR1, STAT1 and IRF1, as well as the downstream IDO1, WARS, PTGES, ISG15 and SERPINB9 immunosuppressive effectors in CRPC tumors. Analyses of scRNA-seq data further demonstrate that MUC1 correlates with cancer stem cell (CSC) and IFN gene signatures across CRPC cells. Consistent with these results, MUC1 associates with immune cell-depleted "cold" CRPC TMEs. These findings demonstrate that MUC1-C integrates chronic activation of the type II IFN-γ pathway and induction of chromatin remodeling complexes in linking the CSC state with immune evasion.
Collapse
Affiliation(s)
- Masayuki Hagiwara
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Atsushi Fushimi
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Nami Yamashita
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Henry G. Withers
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kwok K. Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Donald Kufe
- Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
6
|
Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics. Pharmacol Ther 2021; 228:107932. [PMID: 34174272 DOI: 10.1016/j.pharmthera.2021.107932] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
Collapse
|
7
|
|
8
|
Mucin expression, epigenetic regulation and patient survival: A toolkit of prognostic biomarkers in epithelial cancers. Biochim Biophys Acta Rev Cancer 2021; 1876:188538. [PMID: 33862149 DOI: 10.1016/j.bbcan.2021.188538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
Twenty mucin genes have been identified and classified in two groups (encoding secreted and membrane-bound proteins). Secreted mucins participate in mucus formation by assembling a 3-dimensional network via oligomerization, whereas membrane-bound mucins are anchored to the outer membrane mediating extracellular interactions and cell signaling. Both groups have been associated with carcinogenesis progression in epithelial cancers, and are therefore considered as potential therapeutic targets. In the present review, we discuss the link between mucin expression patterns and patient survival and propose mucins as prognosis biomarkers of epithelial cancers (esophagus, gastric, pancreatic, colorectal, lung, breast or ovarian cancers). We also investigate the relationship between mucin expression and overall survival in the TCGA dataset. In particular, epigenetic mechanisms regulating mucin gene expression, such as aberrant DNA methylation and histone modification, are interesting as they are also associated with diagnosis or prognosis significance. Indeed, mucin hypomethylation has been shown to be associated with carcinogenesis progression and was linked to prognosis in colon cancer or pancreatic cancer patients. Finally we describe the relationship between mucin expression and non-coding RNAs that also may serve as biomarkers. Altogether the concomitant knowledge of specific mucin-pattern expression and epigenetic regulation could be translated as biomarkers with a better specificity/sensitivity performance in several epithelial cancers.
Collapse
|
9
|
Liu S, Garcia-Marques F, Zhang CA, Lee JJ, Nolley R, Shen M, Hsu EC, Aslan M, Koul K, Pitteri SJ, Brooks JD, Stoyanova T. Discovery of CASP8 as a potential biomarker for high-risk prostate cancer through a high-multiplex immunoassay. Sci Rep 2021; 11:7612. [PMID: 33828176 PMCID: PMC8027881 DOI: 10.1038/s41598-021-87155-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 01/22/2023] Open
Abstract
Prostate cancer remains the most common non-cutaneous malignancy among men in the United States. To discover potential serum-based biomarkers for high-risk prostate cancer, we performed a high-multiplex immunoassay utilizing patient-matched pre-operative and post-operative serum samples from ten men with high-grade and high-volume prostate cancer. Our study identified six (CASP8, MSLN, FGFBP1, ICOSLG, TIE2 and S100A4) out of 174 proteins that were significantly decreased after radical prostatectomy. High levels of CASP8 were detected in pre-operative serum samples when compared to post-operative serum samples and serum samples from patients with benign prostate hyperplasia (BPH). By immunohistochemistry, CASP8 protein was expressed at higher levels in prostate cancer tissues compared to non-cancerous and BPH tissues. Likewise, CASP8 mRNA expression was significantly upregulated in prostate cancer when compared to benign prostate tissues in four independent clinical datasets. In addition, mRNA levels of CASP8 were higher in patients with recurrent prostate cancer when compared to patients with non-recurrent prostate cancer and high expression of CASP8 was associated with worse disease-free survival and overall survival in renal cancer. Together, our results suggest that CASP8 may potentially serve as a biomarker for high-risk prostate cancer and possibly renal cancer.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Fernando Garcia-Marques
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | | | - Jordan John Lee
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University, Stanford, CA, USA
| | - Michelle Shen
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - En-Chi Hsu
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Merve Aslan
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Kashyap Koul
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Sharon J Pitteri
- Department of Radiology, Stanford University, Stanford, CA, USA.,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - James D Brooks
- Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA.,Department of Urology, Stanford University, Stanford, CA, USA
| | - Tanya Stoyanova
- Department of Radiology, Stanford University, Stanford, CA, USA. .,Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA. .,, 3155 Porter Drive, Palo Alto, CA, 94304, USA.
| |
Collapse
|
10
|
Szlendak M, Sitarz R, Berbecka M, Mielko J, Morsink F, Maciejewski R, Offerhaus GJA, Polkowski WP. Expression of cyclooxygenase-2 and mucin 1 in colorectal cancer. Mol Clin Oncol 2020; 13:52. [PMID: 32874582 PMCID: PMC7453394 DOI: 10.3892/mco.2020.2122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/09/2020] [Indexed: 02/05/2023] Open
Abstract
In colorectal cancer (CRC), pathological factors that correlate with negative prognosis include, among others, overexpression of cyclooxygenase-2 (COX-2) and abundant expression of mucin 1 (MUC1). COX-2 overexpression may therefore be associated with MUC1 overexpression. The aim of the present study was to investigate the possible correlation between COX-2 and MUC1 expression and to assess the correlation between their individual expression and the clinicopathological features of patients, paying particular attention to survival. The following data was collected from the 170 patients with CRC included in the present study: Age, sex, tumour localization, disease stage and survival. Tumour samples were immunostained with antibodies against COX-2 and MUC1. Protein expression was scored, relative to reference staining, and correlated with the clinicopathological data of patients. The results revealed no correlation between the expressions of COX-2 and MUC1, or with any of the studied clinicopathological variables. In addition, the expression of the two proteins were not associated. Neither of the proteins demonstrated prognostic value for survival. The present study did not confirm a direct relationship between the expressions of COX-2 and MUC1, or between the expression of either protein and the clinicopathological features of patients, including survival.
Collapse
Affiliation(s)
- Małgorzata Szlendak
- Department of Human Anatomy, Medical University of Lublin, Lublin 20-090, Poland
- Department of Surgical Oncology, Medical University of Lublin, Lublin 20-090, Poland
| | - Robert Sitarz
- Department of Human Anatomy, Medical University of Lublin, Lublin 20-090, Poland
- Department of Surgery, Center of Oncology of The Lublin Region St. Jana z Dukli, Lublin 20-090, Poland
- Department of Pathology, University Medical Center, Utrecht 3508 GA, The Netherlands
| | - Monika Berbecka
- Department of Human Anatomy, Medical University of Lublin, Lublin 20-090, Poland
| | - Jerzy Mielko
- Department of Surgical Oncology, Medical University of Lublin, Lublin 20-090, Poland
| | - Folkert Morsink
- Department of Pathology, University Medical Center, Utrecht 3508 GA, The Netherlands
| | - Ryszard Maciejewski
- Department of Human Anatomy, Medical University of Lublin, Lublin 20-090, Poland
| | - G. Johan A. Offerhaus
- Department of Pathology, University Medical Center, Utrecht 3508 GA, The Netherlands
| | - Wojciech P. Polkowski
- Department of Surgical Oncology, Medical University of Lublin, Lublin 20-090, Poland
| |
Collapse
|
11
|
Guo M, You C, Dong W, Luo B, Wu Y, Chen Y, Li J, Pan M, Li M, Zhao F, Dou J. The surface dominant antigen MUC1 is required for colorectal cancer stem cell vaccine to exert anti-tumor efficacy. Biomed Pharmacother 2020; 132:110804. [PMID: 33017767 DOI: 10.1016/j.biopha.2020.110804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC), initiated and maintained by colorectal cancer stem cells (CCSCs), ranks the third most common cancers and has drawn wide attentions worldwide. Therefore, targeting clearance of CCSCs has become an important strategy of CRC immunotherapy. Mucin1 (MUC1) is a tumor-associated cell surface antigen of CRC, but its role in CCSC vaccine remains unclear. In the study, we demonstrated that MUC1 may be a dominant antigen to exert antitumor immunity in CCSC vaccine. First, CCSCs were enriched from CT26 cell line via a serum-free sphere formation approach, and were identified by detecting expression of CD133, ALDH, and ALCAM. Then, the isolated CCSCs were frozen for 30 min and thawed for 30 min to prepare the cell lysate. The specific anti-MUC1 antibody was added to the cell lysate to neutralize the dominant antigen MUC1. Finally, mice were subcutaneously immunized with the cell lysate, followed by a challenge with CT26 cells at one week after final vaccination. Attractively, CCSC vaccine significantly activated the NK cells, T cells, and B cells, resulting in inhibiting the tumor growth via a target killing of CCSCs as evidenced by a decrease of CD133+cells in tumor compared to CCSC vaccine with specific anti-MUC1 antibody. In addition, CCSC vaccine reduced expression of inflammatory factors in vaccinated mice. As expected, neutralizing antibody against MUC1 significantly impaired the antitumor efficacy of CCSC vaccine. Overall, CCSC vaccine could serve as a potent vaccine for CRC immunotherapy. The surface dominant antigen MUC1 may play a key role in regulating immunogenicity of CCSCs.
Collapse
Affiliation(s)
- Mei Guo
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Chengzhong You
- Department of General Surgery, Zhongda Hospital Affiliated to Southeast University, Nanjing 210009, China
| | - Wenqi Dong
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Biao Luo
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Yuheng Wu
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Yanuo Chen
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Jianping Li
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Meng Pan
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Miao Li
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
12
|
Simpson BS, Camacho N, Luxton HJ, Pye H, Finn R, Heavey S, Pitt J, Moore CM, Whitaker HC. Genetic alterations in the 3q26.31-32 locus confer an aggressive prostate cancer phenotype. Commun Biol 2020; 3:440. [PMID: 32796921 PMCID: PMC7429505 DOI: 10.1038/s42003-020-01175-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Large-scale genetic aberrations that underpin prostate cancer development and progression, such as copy-number alterations (CNAs), have been described but the consequences of specific changes in many identified loci is limited. Germline SNPs in the 3q26.31 locus are associated with aggressive prostate cancer, and is the location of NAALADL2, a gene overexpressed in aggressive disease. The closest gene to NAALADL2 is TBL1XR1, which is implicated in tumour development and progression. Using publicly-available cancer genomic data we report that NAALADL2 and TBL1XR1 gains/amplifications are more prevalent in aggressive sub-types of prostate cancer when compared to primary cohorts. In primary disease, gains/amplifications occurred in 15.99% (95% CI: 13.02–18.95) and 14.96% (95% CI: 12.08–17.84%) for NAALADL2 and TBL1XR1 respectively, increasing in frequency in higher Gleason grade and stage tumours. Gains/amplifications result in transcriptional changes and the development of a pro-proliferative and aggressive phenotype. These results support a pivotal role for copy-number gains in this genetic region. Benjamin Simpson et al. use publicly available cancer genomic data to investigate copy number changes at the 3q26.31–32 locus, which has been associated with aggressive prostate cancer based on single-nucleotide polymorphisms. They find that gains of NAALADL2 and TBL1XR1 in this locus are associated with more aggressive subtypes of prostate cancer and the transcription of pro-proliferative signalling processes.
Collapse
Affiliation(s)
- Benjamin S Simpson
- Molecular Diagnostics and Therapeutics Group, Research Department of Targeted Intervention, Division of Surgery & Interventional Science, University College London, London, UK
| | - Niedzica Camacho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hayley J Luxton
- Molecular Diagnostics and Therapeutics Group, Research Department of Targeted Intervention, Division of Surgery & Interventional Science, University College London, London, UK
| | - Hayley Pye
- Molecular Diagnostics and Therapeutics Group, Research Department of Targeted Intervention, Division of Surgery & Interventional Science, University College London, London, UK
| | - Ron Finn
- Molecular Diagnostics and Therapeutics Group, Research Department of Targeted Intervention, Division of Surgery & Interventional Science, University College London, London, UK
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, Research Department of Targeted Intervention, Division of Surgery & Interventional Science, University College London, London, UK
| | - Jason Pitt
- Cancer Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Hayley C Whitaker
- Molecular Diagnostics and Therapeutics Group, Research Department of Targeted Intervention, Division of Surgery & Interventional Science, University College London, London, UK.
| |
Collapse
|
13
|
Guo M, Luo B, Pan M, Li M, Xu H, Zhao F, Dou J. Colorectal cancer stem cell vaccine with high expression of MUC1 serves as a novel prophylactic vaccine for colorectal cancer. Int Immunopharmacol 2020; 88:106850. [PMID: 32777675 DOI: 10.1016/j.intimp.2020.106850] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 12/18/2022]
Abstract
Targeted clearance of colorectal cancer stem cells (CCSCs) has become a novel strategy for tumor immunotherapy. Molecule mucin1 (MUC1) is one of targetable cell surface antigens in CCSCs. However, the critical role of MUC1 in anti-tumor effects of CCSC vaccine remains unclear. In the present study, we showed that MUC1 may be required for CCSC vaccine to exert tumor immunity. CD133+CCSCs were isolated from CT26 cell line using a magnetic-activated cell sorting system, and MUC1 shRNA or recombinant plasmid was further used to decrease or increase the expression of MUC1 in CD133+CCSCs. Mice were subcutaneously immunized with the CCSC lysates, MUC1 knockin CCSCs, and MUC1 knockdown CCSCs respectively, followed by a challenge with CT26 cells. We found that CCSC vaccine significantly reduced the tumor growth via a target killing of CCSCs as evidenced by a decrease of CD133+ cells and ALDH+ cells in tumors. Moreover, CCSC vaccine markedly increased the cytotoxicity of NK cells and the splenocytes, and promoted the release of IFN-γ, Perforin, and Granzyme B, and also reduced the TGF-β1 expression. Additionally, CCSC vaccination enhanced the antibody production and decreased the myeloid derived suppressor cells and Treg subsets. More importantly, MUC1 knockdown partly impaired the anti-tumor efficacy of CCSC vaccine, whereas MUC1 overexpression dramatically enhanced the CCSC vaccine immunity. Overall, these results reveal a novel role and molecular mechanisms of MUC1 in CCSC vaccine against colorectal cancer.
Collapse
Affiliation(s)
- Mei Guo
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Biao Luo
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Meng Pan
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Miao Li
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Hui Xu
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
14
|
Basili T, Dopeso H, Kim SH, Ferrando L, Pareja F, Da Cruz Paula A, da Silva EM, Stylianou A, Maroldi A, Marchiò C, Rubin BP, Papotti M, Weigelt B, Moreira Ferreira CG, Lapa E Silva JR, Reis-Filho JS. Oncogenic properties and signaling basis of the PAX8-GLIS3 fusion gene. Int J Cancer 2020; 147:2253-2264. [PMID: 32383186 DOI: 10.1002/ijc.33040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/01/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
Abstract
Hyalinizing trabecular tumors of the thyroid are rare and mostly benign epithelial neoplasms of follicular cell origin, which have recently been shown to be underpinned by the PAX8-GLIS3 fusion gene. In our study, we sought to investigate the potential oncogenic mechanisms of the PAX8-GLIS3 fusion gene. Forced expression of PAX8-GLIS3 was found to increase proliferation, clonogenic potential and migration of human nonmalignant thyroid (Nthy-ori 3-1) and embryonic kidney (HEK-293) cells. Moreover, in xenografts, Nthy-ori 3-1 PAX8-GLIS3 expressing cells generated significantly larger and more proliferative tumors compared to controls. These oncogenic effects were found to be mediated through activation of the Sonic Hedgehog (SHH) pathway. Targeting of smoothened (SMO), a key protein in the SHH pathway, using the small molecule inhibitor Cyclopamine partially reversed the increased proliferation, colony formation and migration in PAX8-GLIS3 expressing cells. Our data demonstrate that the oncogenic effects of the PAX8-GLIS3 fusion gene are, at least in part, due to an increased activation of the SHH pathway.
Collapse
Affiliation(s)
- Thais Basili
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Higinio Dopeso
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sarah H Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lorenzo Ferrando
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arnaud Da Cruz Paula
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Edaise M da Silva
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Anthe Stylianou
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ana Maroldi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Caterina Marchiò
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Sciences, University of Turin, Torino, Italy
| | - Brian P Rubin
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mauro Papotti
- Department of Oncology, University of Turin, at Città della Salute Hospital, Torino, Italy
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Carlos Gil Moreira Ferreira
- Oncoclinicas Institute for Research and Education, Sao Paulo, Brazil
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
15
|
Yasumizu Y, Rajabi H, Jin C, Hata T, Pitroda S, Long MD, Hagiwara M, Li W, Hu Q, Liu S, Yamashita N, Fushimi A, Kui L, Samur M, Yamamoto M, Zhang Y, Zhang N, Hong D, Maeda T, Kosaka T, Wong KK, Oya M, Kufe D. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Nat Commun 2020; 11:338. [PMID: 31953400 PMCID: PMC6969104 DOI: 10.1038/s41467-019-14219-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is an aggressive malignancy with no effective targeted therapies. The oncogenic MUC1-C protein is overexpressed in castration-resistant prostate cancer (CRPC) and NEPC, but its specific role is unknown. Here, we demonstrate that upregulation of MUC1-C in androgen-dependent PC cells suppresses androgen receptor (AR) axis signaling and induces the neural BRN2 transcription factor. MUC1-C activates a MYC→BRN2 pathway in association with induction of MYCN, EZH2 and NE differentiation markers (ASCL1, AURKA and SYP) linked to NEPC progression. Moreover, MUC1-C suppresses the p53 pathway, induces the Yamanaka pluripotency factors (OCT4, SOX2, KLF4 and MYC) and drives stemness. Targeting MUC1-C decreases PC self-renewal capacity and tumorigenicity, suggesting a potential therapeutic approach for CRPC and NEPC. In PC tissues, MUC1 expression associates with suppression of AR signaling and increases in BRN2 expression and NEPC score. These results highlight MUC1-C as a master effector of lineage plasticity driving progression to NEPC.
Collapse
Affiliation(s)
- Yota Yasumizu
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Hasan Rajabi
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Caining Jin
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Tsuyoshi Hata
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA.,Department of Gastrointestinal Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Masayuki Hagiwara
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Wei Li
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Nami Yamashita
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Ling Kui
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Mehmet Samur
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Masaaki Yamamoto
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA.,Department of Gastrointestinal Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yan Zhang
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Ning Zhang
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Deli Hong
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Takahiro Maeda
- Department of Urology, Keio University School of Medicine Shinjuku-ku, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine Shinjuku-ku, Tokyo, Japan
| | - Kwok K Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine Shinjuku-ku, Tokyo, Japan
| | - Donald Kufe
- Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Lin X, Kapoor A, Gu Y, Chow MJ, Xu H, Major P, Tang D. Assessment of biochemical recurrence of prostate cancer (Review). Int J Oncol 2019; 55:1194-1212. [PMID: 31638194 PMCID: PMC6831208 DOI: 10.3892/ijo.2019.4893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The assessment of the risk of biochemical recurrence (BCR) is critical in the management of males with prostate cancer (PC). Over the past decades, a comprehensive effort has been focusing on improving risk stratification; a variety of models have been constructed using PC-associated pathological features and molecular alterations occurring at the genome, protein and RNA level. Alterations in RNA expression (lncRNA, miRNA and mRNA) constitute the largest proportion of the biomarkers of BCR. In this article, we systemically review RNA-based BCR biomarkers reported in PubMed according to the PRISMA guidelines. Individual miRNAs, mRNAs, lncRNAs and multi-gene panels, including the commercially available signatures, Oncotype DX and Prolaris, will be discussed; details related to cohort size, hazard ratio and 95% confidence intervals will be provided. Mechanistically, these individual biomarkers affect multiple pathways critical to tumorigenesis and progression, including epithelial-mesenchymal transition (EMT), phosphatase and tensin homolog (PTEN), Wnt, growth factor receptor, cell proliferation, immune checkpoints and others. This variety in the mechanisms involved not only validates their associations with BCR, but also highlights the need for the coverage of multiple pathways in order to effectively stratify the risk of BCR. Updates of novel biomarkers and their mechanistic insights are considered, which suggests new avenues to pursue in the prediction of BCR. Additionally, the management of patients with BCR and the potential utility of the stratification of the risk of BCR in salvage treatment decision making for these patients are briefly covered. Limitations will also be discussed.
Collapse
Affiliation(s)
- Xiaozeng Lin
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Anil Kapoor
- The Research Institute of St. Joe's Hamilton, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Yan Gu
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mathilda Jing Chow
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pierre Major
- Division of Medical Oncology, Department of Oncology, McMaster University, Hamilton, ON L8V 5C2, Canada
| | - Damu Tang
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
17
|
Jiang Y, Mei W, Gu Y, Lin X, He L, Zeng H, Wei F, Wan X, Yang H, Major P, Tang D. Construction of a set of novel and robust gene expression signatures predicting prostate cancer recurrence. Mol Oncol 2018; 12:1559-1578. [PMID: 30024105 PMCID: PMC6120243 DOI: 10.1002/1878-0261.12359] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 01/06/2023] Open
Abstract
We report here numerous novel genes and multiple new signatures which robustly predict prostate cancer (PC) recurrence. We extracted 696 differentially expressed genes relative to a reported PC signature from the TCGA dataset (n = 492) and built a 15‐gene signature (SigMuc1NW) using Elastic‐net with 10‐fold cross‐validation through analyzing their expressions at 1.5 standard deviation/SD below and 2 SD above a population mean. SigMuc1NW predicts biochemical recurrence (BCR) following surgery with 56.4% sensitivity, 72.6% specificity, and 63.24 median months disease free (MMDF) (P = 1.12e‐12). The prediction accuracy is improved with the use of SigMuc1NW's cutpoint (P = 3e‐15) and is further enhanced (sensitivity 67%, specificity 75.7%, MMDF 45.2, P = 0) when all 15 genes were analyzed through their cutpoints instead of their SDs. These genes individually associate with BCR using either SD or cutpoint as the cutoff points. Eight of 15 genes are individual risk factors after adjusting for age at diagnosis, Gleason score, surgical margin, and tumor stage. Eleven of 15 genes are novel to PC. SigMuc1NW discriminates BCR with time‐dependent AUC (tAUC) values of 76.6% at 11.5 months (76.6%–11.5 m), 73.8%‐22.3 m, 78.5%‐32.1 m, and 76.4%–48.4 m. SigMuc1NW is correlated with adverse features of PC, high Gleason scores (odds ratio/OR 1.48, P < 2e‐16), and advanced tumor stages (OR 1.33, P = 4.37e‐13). SigMuc1NW remains an independent risk factor of BCR (HR 2.44, 95% CI 1.53–3.87, P = 1.62e‐4) after adjusting for age at diagnosis, Gleason score, surgical margin, and tumor stage. In an independent PC (MSKCC) cohort (n = 140), these 15 genes were altered in PC vs normal tissue, metastatic PCs vs primary PCs, and recurrent PCs vs nonrecurrent PCs. Importantly, a 10‐gene subsignature SigMuc1NW1 predicts BCR in MSKCC (P = 3.11e‐15) and TCGA (P = 3.13e‐12); SigMuc1NW1 discriminates BCR at 18.4 m with tAUC as 82.5%. Collectively, our analyses support SigMuc1NW as a novel and robust signature in predicting BCR of PC.
Collapse
Affiliation(s)
- Yanzhi Jiang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsa, Hunan, China.,Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Father Sean O'Sullivan Research Institute, Hamilton, Canada.,The Hamilton Center for Kidney Research, St. Joseph's Hospital, Canada
| | - Wenjuan Mei
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Father Sean O'Sullivan Research Institute, Hamilton, Canada.,The Hamilton Center for Kidney Research, St. Joseph's Hospital, Canada.,Department of Nephrology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yan Gu
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Father Sean O'Sullivan Research Institute, Hamilton, Canada.,The Hamilton Center for Kidney Research, St. Joseph's Hospital, Canada
| | - Xiaozeng Lin
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Father Sean O'Sullivan Research Institute, Hamilton, Canada.,The Hamilton Center for Kidney Research, St. Joseph's Hospital, Canada
| | - Lizhi He
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Hui Zeng
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Father Sean O'Sullivan Research Institute, Hamilton, Canada.,The Hamilton Center for Kidney Research, St. Joseph's Hospital, Canada.,Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang City, China
| | - Fengxiang Wei
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Xinhong Wan
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsa, Hunan, China
| | - Pierre Major
- Division of Medical Oncology, Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Father Sean O'Sullivan Research Institute, Hamilton, Canada.,The Hamilton Center for Kidney Research, St. Joseph's Hospital, Canada
| |
Collapse
|
18
|
Zhang L, Wu B, Zha Z, Zhao H, Yuan J, Jiang Y, Yang W. Surgical margin status and its impact on prostate cancer prognosis after radical prostatectomy: a meta-analysis. World J Urol 2018; 36:1803-1815. [PMID: 29766319 PMCID: PMC6208659 DOI: 10.1007/s00345-018-2333-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022] Open
Abstract
Background and purpose Positive surgical margins (PSMs) correlate with adverse outcomes in numerous solid tumours. However, the prognostic value of PSMs in prostate cancer (PCa) patients who underwent radical prostatectomy remains unclear. Herein, we performed a meta-analysis to evaluate the association between PSMs and the prognostic value for biochemical recurrence-free survival (BRFS), cancer-specific survival (CSS), overall survival (OS), cancer-specific mortality (CSM) and overall mortality (OM) in PCa patients. Materials and methods According to the PRISMA statement, online databases PubMed, EMBASE and Web of Science were searched to identify relevant studies published prior to February 2018. The hazard ratios (HRs) and 95% confidence intervals (95% CIs) were calculated to evaluate the relationship between PSMs and PCa. Results Ultimately, 32 cohort studies that met the eligibility criteria and involved 141,222 patients (51–65,633 per study) were included in this meta-analysis. The results showed that PSMs were significantly predictive of poorer BRFS (HR = 1.35, 95% CI 1.28–1.48, p < 0.001), CSS (HR = 1.49, 95% CI 1.16–1.90, p = 0.001) and OS (HR = 1.11, 95% CI 1.02–1.20, p = 0.014). In addition, PSMs were significantly associated with higher risk of CSM (HR = 1.23, 95% CI 1.16–1.30, p < 0.001) and OM (HR = 1.09, 95% CI 1.02–1.16, p = 0.009) in patients with PCa. Conclusions Our study suggests that the presence of a histopathologic PSM is associated with the clinical outcomes BRFS, CSS, OS, CSM and OM in patients with PCa, and PSMs could serve as a poor prognostic factor for patients with PCa. Electronic supplementary material The online version of this article (10.1007/s00345-018-2333-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lijin Zhang
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, 163 Shou-shan Road, Jiangyin, 214400, Jiangsu, People's Republic of China
| | - Bin Wu
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, 163 Shou-shan Road, Jiangyin, 214400, Jiangsu, People's Republic of China.
| | - Zhenlei Zha
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, 163 Shou-shan Road, Jiangyin, 214400, Jiangsu, People's Republic of China
| | - Hu Zhao
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, 163 Shou-shan Road, Jiangyin, 214400, Jiangsu, People's Republic of China
| | - Jun Yuan
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, 163 Shou-shan Road, Jiangyin, 214400, Jiangsu, People's Republic of China
| | - Yuefang Jiang
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, 163 Shou-shan Road, Jiangyin, 214400, Jiangsu, People's Republic of China
| | - Wei Yang
- Department of Urology, Affiliated Jiang-yin Hospital of the Southeast University Medical College, 163 Shou-shan Road, Jiangyin, 214400, Jiangsu, People's Republic of China
| |
Collapse
|
19
|
Lin X, Gu Y, Kapoor A, Wei F, Aziz T, Ojo D, Jiang Y, Bonert M, Shayegan B, Yang H, Al-Nedawi K, Major P, Tang D. Overexpression of MUC1 and Genomic Alterations in Its Network Associate with Prostate Cancer Progression. Neoplasia 2017; 19:857-867. [PMID: 28930697 PMCID: PMC5605493 DOI: 10.1016/j.neo.2017.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 12/01/2022] Open
Abstract
We investigate the association of MUC1 with castration-resistant prostate cancer (CRPC), bone metastasis, and PC recurrence. MUC1 expression was studied in patient-derived bone metastasis and CRPCs produced by prostate-specific PTEN−/− mice and LNCaP xenografts. Elevations in MUC1 expression occur in CRPC. Among nine patients with hormone-naïve bone metastasis, eight express MUC1 in 61% to 100% of PC cells. Utilizing cBioPortal PC genomic data, we organized a training (n = 300), testing (n = 185), and validation (n = 194) cohort. Using the Cox model, a nine-gene signature was derived, including eight genes from a MUC1-related network (APC, CTNNB1/β-catenin, GALNT10, GRB2, LYN, SIGLEC1, SOS1, and ZAP70) and FAM84B. Genomic alterations in these genes reduce disease-free survival (DFS) in the training (P = .00161), testing (P = .00699), entire (training + testing, P = 5.557e-5), and a validation cohort (P = 3.326e-5). The signature independently predicts PC recurrence [hazard ratio (HR) = 1.731; 95% confidence interval (CI): 1.104-2.712; P = .0167] after adjusting for known clinical factors and stratifies patients with high risk of PC recurrence using the median (HR 2.072; 95% CI: 1.245-3.450, P = .0051) and quartile 3 (HR 3.707, 95% CI: 1.949-7.052, P = 6.51e-5) scores. Several novel β-catenin mutants are identified in PCs leading to a rapid onset of death and recurrence. Genomic alterations in APC and CTNNB1/β-catenin reduce DFS in two independent PC cohorts (n = 485, P = .0369; n = 84, P = .0437). The nine-gene signature also associates with reductions in overall survival (P = .0458) and DFS (P = .0163) in melanoma patients (n = 367). MUC1 upregulation is associated with CRPC and bone metastasis. A nine-gene signature derived from a MUC1 network predicts PC recurrence.
Collapse
Affiliation(s)
- Xiaozeng Lin
- Division of Nephrology, Department of Medicine, McMaster University; Father Sean O'Sullivan Research Institute; Hamilton Center for Kidney Research, St. Joseph's Hospital
| | - Yan Gu
- Division of Nephrology, Department of Medicine, McMaster University; Father Sean O'Sullivan Research Institute; Hamilton Center for Kidney Research, St. Joseph's Hospital
| | - Anil Kapoor
- Father Sean O'Sullivan Research Institute; Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Fengxiang Wei
- Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital, Longgang District, Shenzhen, Guangdong, PR China
| | - Tariq Aziz
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Diane Ojo
- Division of Nephrology, Department of Medicine, McMaster University; Father Sean O'Sullivan Research Institute; Hamilton Center for Kidney Research, St. Joseph's Hospital
| | - Yanzhi Jiang
- Division of Nephrology, Department of Medicine, McMaster University; Father Sean O'Sullivan Research Institute; Hamilton Center for Kidney Research, St. Joseph's Hospital; Department of Gastroenterology, Xiangya Hospital, Central South University, Changsa, Hunan, PR China
| | - Michael Bonert
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Bobby Shayegan
- Father Sean O'Sullivan Research Institute; Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsa, Hunan, PR China.
| | - Khalid Al-Nedawi
- Division of Nephrology, Department of Medicine, McMaster University; Father Sean O'Sullivan Research Institute; Hamilton Center for Kidney Research, St. Joseph's Hospital
| | - Pierre Major
- Division of Medical Oncology, Department of Oncology, McMaster University, Hamilton, Ontario, Canada.
| | - Damu Tang
- Division of Nephrology, Department of Medicine, McMaster University; Father Sean O'Sullivan Research Institute; Hamilton Center for Kidney Research, St. Joseph's Hospital.
| |
Collapse
|
20
|
Abstract
In the United States, prostate cancer is the second leading cause of cancer-related deaths among men with an approximately 220,000 patients diagnosed with the disease in 2015. Prostate cancer is a hormone-driven tumor, and a common therapy is androgen-deprivation therapy (ADT) that involves anti-androgen treatments and/or castration therapy. Understanding the molecular basis for androgen-independent tumors is crucial toward developing new therapies for these patients. Understanding how androgen receptor itself functions is an important step in elucidating this process. Androgen receptor (AR), NR3C4, is a nuclear hormone receptor and functions as a DNA-binding transcription factor that regulates the expression of protein-coding genes. Translocation of AR to improper gene promoter elements or DNA-binding sites can result in an alteration in gene expression and thus normal prostate function. Therefore, it is crucial to understand which AR-promoter interactions are drivers of disease, as compared to promiscuous or benign AR-binding interactions. While a large portion of our genome is considered a gene desert, it is now appreciated that these regions of the genome contain non-coding RNA genes such as microRNAs (miRNAs). These non-coding RNAs have enormous regulatory potential, as they post-transcriptionally regulate gene expression by binding to messenger RNAs (mRNAs) to promote degradation or intervention of translational processes. In this review, we focus specifically on the notion that mis-regulation of non-coding RNAs such as miRNAs by improper AR-DNA binding are an important component that promotes prostate cancer. We also highlight the role of miR-206 and the interaction of miR-206 and AR within this process, given this is a miRNA known to be regulated by hormones in both breast and prostate cancer.
Collapse
Affiliation(s)
- Fu Y Chua
- a State University of New York - University at Albany , Albany , NY , USA.,b The RNA Institute, State University of New York - University at Albany , Albany , NY , USA
| | - Brian D Adams
- b The RNA Institute, State University of New York - University at Albany , Albany , NY , USA.,c Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|