1
|
Kozlov MV, Zverev V. Losses of Foliage to Defoliating Insects Increase with Leaf Damage Diversity Due to the Complementarity Effect. INSECTS 2025; 16:139. [PMID: 40003769 PMCID: PMC11855602 DOI: 10.3390/insects16020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
The functioning of ecosystems critically depends on biodiversity. However, the effects of herbivore diversity on plant damage caused by herbivore feeding remain underexplored. In this study, we tested the prediction that relative losses of foliage to defoliating insects increase with leaf damage diversity (LDD), and we also explored the mechanisms underlying the observed LDD patterns. We measured insect herbivory in 501 individuals of three deciduous woody species (Betula pubescens, Salix phylicifolia, and Vaccinium uliginosum) across 38 localities in north-western Russia, collected 8844 leaves damaged by defoliating insects, classifying the 21,073 feeding events observed in these leaves into 29 damage types. Overall, LDD significantly decreased with increasing latitude but showed no variation along elevation or pollution gradients. Herbivory weakly but significantly increased with increasing LDD, and a strong positive correlation between the rarefied number of leaf damage types and their evenness provided evidence for the complementarity effect underlying this herbivory increase, indicating that insects producing different leaf damage types differ in their resource use.
Collapse
|
2
|
Hou Y, Li J, Li G, Qi W. Negative effects of urbanization on plants: A global meta-analysis. Ecol Evol 2023; 13:e9894. [PMID: 37013099 PMCID: PMC10065982 DOI: 10.1002/ece3.9894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 04/03/2023] Open
Abstract
Understanding the response of plant diversity to urbanization is essential for conserving urban biodiversity. In this paper, a meta-analysis of 34 articles and 163 observations regarding the impact of urbanization on plant diversity was conducted. The results revealed that urbanization had marked negative effects on plants. Urbanization had positive effects on introduced species and negative effects on native species. In the subgroup analysis, we found that trees responded better to the effect of urbanization than herbs and shrubs. There was no evidence that urban size, population density, nighttime light, and GDP per capita had moderating effects on plant richness. Based on meta-regression analyses, native species in urban areas were less affected by urbanization at lower latitudes. Overall, urbanization had a marginally negative effect on plant abundance. The effects of urbanization on plant diversity during different stages of urban development were inconsistent. Our research shows that the suburbs play a crucial role in the urbanization gradient; there, plants survive with high species richness.
Collapse
Affiliation(s)
- Yuchen Hou
- Institute of EcologyChinese Research Academy of Environmental SciencesBeijingChina
- State Key Laboratory of Grassland Agroecosystems, College of EcologyLanzhou UniversityLanzhouChina
| | - Junsheng Li
- Command Center for Comprehensive Survey of Natural ResourcesChina Geological Survey BureauBeijingChina
| | - Guo Li
- Institute of EcologyChinese Research Academy of Environmental SciencesBeijingChina
| | - Wei Qi
- State Key Laboratory of Grassland Agroecosystems, College of EcologyLanzhou UniversityLanzhouChina
| |
Collapse
|
3
|
Matevski D, Foltran E, Lamersdorf N, Schuldt A. Introduction of non-native Douglas fir reduces leaf damage on beech saplings and mature trees in European beech forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2786. [PMID: 36477972 DOI: 10.1002/eap.2786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 06/17/2023]
Abstract
Recent ecological research suggests that, in general, mixtures are more resistant to insect herbivores and pathogens than monocultures. However, we know little about mixtures with non-native trees, where enemy release could lead to patterns that differ from commonly observed relationships among native species. This becomes particularly relevant when considering that adaptation strategies to climate change increasingly promote a larger share of non-native tree species, such as North American Douglas fir in Central Europe. We studied leaf damage on European beech (Fagus sylvatica) saplings and mature trees across a wide range of site conditions in monocultures and mixtures with phylogenetically distant conifers native Norway spruce (Picea abies) and non-native Douglas fir (Pseudotsuga menziesii). We analyzed leaf herbivory and pathogen damage in relation to tree diversity and composition effects, as well as effects of environmental factors and plant characteristics. We observed lower sapling herbivory and tree sucking damage on beech in non-native Douglas fir mixtures than in beech monocultures, probably due to a lower herbivore diversity on Douglas fir trees, and higher pathogen damage on beech saplings in Norway spruce than Douglas fir mixtures, possibly because of higher canopy openness. Our findings suggest that for low diversity gradients, tree diversity effects on leaf damage can strongly depend on tree species composition, in addition to modifications caused by feeding guild and tree ontogeny. Moreover, we found that nutrient capacity modulated the effects of tree diversity, composition, and environmental factors, with different responses in sites with low or high nutrient capacity. The existence of contrasting diversity effects based on tree species composition provides important information on our understanding of the relationships between tree diversity and plant-herbivore interactions in light of non-native tree species introductions. Especially with recent Norway spruce die-off, the planting of Douglas fir as replacement is likely to strongly increase in Central Europe. Our findings suggest that mixtures with Douglas fir could benefit the survival or growth rates of beech saplings and mature trees due to lower leaf damage, emphasizing the need to clearly identify and compare the potential benefits and ecological trade-offs of non-native tree species in forest management under ongoing environmental change.
Collapse
Affiliation(s)
- Dragan Matevski
- Forest Nature Conservation, Faculty of Forest Science and Ecology, University of Göttingen, Göttingen, Germany
| | - Estela Foltran
- Bordeaux-Sciences-Agro, INRAE, UMR ISPA, Villenave d'Ornon, France
- Büsgen-Institute, Soil Science of Temperate Ecosystems, Göttingen, Germany
| | - Norbert Lamersdorf
- Büsgen-Institute, Soil Science of Temperate Ecosystems, Göttingen, Germany
| | - Andreas Schuldt
- Forest Nature Conservation, Faculty of Forest Science and Ecology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Rotter MC, Christie K, Holeski LM. Climate and the biotic community structure plant resistance across biogeographic groups of yellow monkeyflower. Ecol Evol 2022; 12:e9520. [PMID: 36440318 PMCID: PMC9682197 DOI: 10.1002/ece3.9520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Characterizing correlates of phytochemical resistance trait variation across a landscape can provide insight into the ecological factors that have shaped the evolution of resistance arsenals. Using field-collected data and a greenhouse common garden experiment, we assessed the relative influences of abiotic and biotic drivers of genetic-based defense trait variation across 41 yellow monkeyflower populations from western and eastern North America and the United Kingdom. Populations experience different climates, herbivore communities, and neighboring vegetative communities, and have distinct phytochemical resistance arsenals. Similarities in climate as well as herbivore and vegetative communities decline with increasing physical distance separating populations, and phytochemical resistance arsenal composition shows a similarly decreasing trend. Of the abiotic and biotic factors examined, temperature and the neighboring vegetation community had the strongest relative effects on resistance arsenal differentiation, whereas herbivore community composition and precipitation have relatively small effects. Rather than simply controlling for geographic proximity, we jointly assessed the relative strengths of both geographic and ecological variables on phytochemical arsenal compositional dissimilarity. Overall, our results illustrate how abiotic conditions and biotic interactions shape plant defense traits in natural populations.
Collapse
Affiliation(s)
- Michael C. Rotter
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of BiologyUtah Valley UniversityOremUtahUSA
| | - Kyle Christie
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Liza M. Holeski
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
5
|
Wang X, Verschut TA, Billeter JC, Maan ME. Seven Questions on the Chemical Ecology and Neurogenetics of Resource-Mediated Speciation. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.640486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Adaptation to different environments can result in reproductive isolation between populations and the formation of new species. Food resources are among the most important environmental factors shaping local adaptation. The chemosensory system, the most ubiquitous sensory channel in the animal kingdom, not only detects food resources and their chemical composition, but also mediates sexual communication and reproductive isolation in many taxa. Chemosensory divergence may thus play a crucial role in resource-mediated adaptation and speciation. Understanding how the chemosensory system can facilitate resource-mediated ecological speciation requires integrating mechanistic studies of the chemosensory system with ecological studies, to link the genetics and physiology of chemosensory properties to divergent adaptation. In this review, we use examples of insect research to present seven key questions that can be used to understand how the chemosensory system can facilitate resource-mediated ecological speciation in consumer populations.
Collapse
|
6
|
Jactel H, Moreira X, Castagneyrol B. Tree Diversity and Forest Resistance to Insect Pests: Patterns, Mechanisms, and Prospects. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:277-296. [PMID: 32903046 DOI: 10.1146/annurev-ento-041720-075234] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ecological research conducted over the past five decades has shown that increasing tree species richness at forest stands can improve tree resistance to insect pest damage. However, the commonality of this finding is still under debate. In this review, we provide a quantitative assessment (i.e., a meta-analysis) of tree diversity effects on insect herbivory and discuss plausible mechanisms underlying the observed patterns. We provide recommendations and working hypotheses that can serve to lay the groundwork for research to come. Based on more than 600 study cases, our quantitative review indicates that insect herbivory was, on average, lower in mixed forest stands than in pure stands, but these diversity effects were contingent on herbivore diet breadth and tree species composition. In particular, tree species diversity mainly reduced damage of specialist insect herbivores in mixed stands with phylogenetically distant tree species. Overall, our findings provide essential guidance for forest pest management.
Collapse
Affiliation(s)
- Hervé Jactel
- INRAE, University of Bordeaux, BIOGECO, F-33610 Cestas, France;
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), 36080 Pontevedra, Galicia, Spain
| | | |
Collapse
|
7
|
Kankaanpää T, Abrego N, Vesterinen E, Roslin T. Microclimate structures communities, predation and herbivory in the High Arctic. J Anim Ecol 2020; 90:859-874. [PMID: 33368254 PMCID: PMC8049004 DOI: 10.1111/1365-2656.13415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/14/2020] [Indexed: 01/26/2023]
Abstract
In a warming world, changes in climate may result in species‐level responses as well as changes in community structure through knock‐on effects on ecological interactions such as predation and herbivory. Yet, the links between these responses at different levels are still inadequately understood. Assessing how microclimatic conditions affect each of them at local scales provides information essential for understanding the consequences of macroclimatic changes projected in the future. Focusing on the rapidly changing High Arctic, we examine how a community based on a common resource species (avens, Dryas spp.), a specialist insect herbivore (Sympistis zetterstedtii) and natural enemies of lepidopteran herbivores (parasitoids) varies along a multidimensional microclimatic gradient. We ask (a) how parasitoid community composition varies with local abiotic conditions, (b) how the community‐level response of parasitoids is linked to species‐specific traits (koino‐ or idiobiont life cycle strategy and phenology) and (c) whether the effects of varying abiotic conditions extend to interaction outcomes (parasitism rates on the focal herbivore and realized herbivory rates). We recorded the local communities of parasitoids, herbivory rates on Dryas flowers and parasitism rates in Sympistis larvae at 20 sites along a mountain slope. For linking community‐level responses to microclimatic conditions with parasitoid traits, we used joint species distribution modelling. We then assessed whether the same abiotic variables also affect parasitism and herbivory rates, by applying generalized linear and additive mixed models. We find that parasitism strategy and phenology explain local variation in parasitoid community structure. Parasitoids with a koinobiont strategy preferred high‐elevation sites with higher summer temperatures or sites with earlier snowmelt and lower humidity. Species of earlier phenology occurred with higher incidence at sites with cooler summer temperatures or later snowmelt. Microclimatic effects also extend to parasitism and herbivory, with an increase in the parasitism rates of the main herbivore S. zetterstedtii with higher temperature and lower humidity, and a matching increase in herbivory rates. Our results show that microclimatic variation is a strong driver of local community structure, species interactions and interaction outcomes in Arctic ecosystems. In view of ongoing climate change, these results predict that macroclimatic changes will profoundly affect arctic communities.
Collapse
Affiliation(s)
- Tuomas Kankaanpää
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Nerea Abrego
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Eero Vesterinen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland.,Biodiversity Unit, University of Turku, Turku, Finland
| | - Tomas Roslin
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland.,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Poeydebat C, Jactel H, Moreira X, Koricheva J, Barsoum N, Bauhus J, Eisenhauer N, Ferlian O, Francisco M, Gottschall F, Gravel D, Mason B, Muiruri E, Muys B, Nock C, Paquette A, Ponette Q, Scherer-Lorenzen M, Stokes V, Staab M, Verheyen K, Castagneyrol B. Climate affects neighbour-induced changes in leaf chemical defences and tree diversity-herbivory relationships. Funct Ecol 2020; 35:67-81. [PMID: 33746332 DOI: 10.1111/1365-2435.13700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Associational resistance theory predicts that insect herbivory decreases with increasing tree diversity in forest ecosystems. However, the generality of this effect and its underlying mechanisms are still debated, particularly since evidence has accumulated that climate may influence the direction and strength of the relationship between diversity and herbivory.We quantified insect leaf herbivory and leaf chemical defences (phenolic compounds) of silver birch Betula pendula in pure and mixed plots with different tree species composition across 12 tree diversity experiments in different climates. We investigated whether the effects of neighbouring tree species diversity on insect herbivory in birch, that is, associational effects, were dependent on the climatic context, and whether neighbour-induced changes in birch chemical defences were involved in associational resistance to insect herbivory.We showed that herbivory on birch decreased with tree species richness (i.e. associational resistance) in colder environments but that this relationship faded as mean annual temperature increased.Birch leaf chemical defences increased with tree species richness but decreased with the phylogenetic distinctiveness of birch from its neighbours, particularly in warmer and more humid environments.Herbivory was negatively correlated with leaf chemical defences, particularly when birch was associated with closely related species. The interactive effect of tree diversity and climate on herbivory was partially mediated by changes in leaf chemical defences.Our findings confirm that tree species diversity can modify the leaf chemistry of a focal species, hence its quality for herbivores. They further stress that such neighbour-induced changes are dependent on climate and that tree diversity effects on insect herbivory are partially mediated by these neighbour-induced changes in chemical defences.
Collapse
Affiliation(s)
- Charlotte Poeydebat
- INRAE, UMR 1202 BIOGECO, Cestas, France.,Université de Bordeaux, BIOGECO, UMR 1202, Talence, France
| | - Hervé Jactel
- INRAE, UMR 1202 BIOGECO, Cestas, France.,Université de Bordeaux, BIOGECO, UMR 1202, Talence, France
| | | | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | | | - Jürgen Bauhus
- Chair of Silviculture, University of Freiburg, Freiburg, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | | | - Felix Gottschall
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Leipzig University, Leipzig, Germany
| | - Dominique Gravel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Bill Mason
- Forest Research, Northern Research Station, Roslin Midlothian, UK
| | - Evalyne Muiruri
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Bart Muys
- Division of Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Charles Nock
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada.,Faculty of Biology, Department of Geobotany, University of Freiburg, Freiburg, Germany
| | - Alain Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montreal, QC, Canada
| | - Quentin Ponette
- Faculty of Bioscience Engineering & Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Victoria Stokes
- Forest Research, Northern Research Station, Roslin Midlothian, UK
| | - Michael Staab
- Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Kris Verheyen
- Forest & Nature Lab, Department of Environment, Ghent University, Melle-Gontrode, Belgium
| | - Bastien Castagneyrol
- INRAE, UMR 1202 BIOGECO, Cestas, France.,Université de Bordeaux, BIOGECO, UMR 1202, Talence, France
| |
Collapse
|
9
|
Mottl O, Fibich P, Klimes P, Volf M, Tropek R, Anderson-Teixeira K, Auga J, Blair T, Butterill P, Carscallen G, Gonzalez-Akre E, Goodman A, Kaman O, Lamarre GPA, Libra M, Losada ME, Manumbor M, Miller SE, Molem K, Nichols G, Plowman NS, Redmond C, Seifert CL, Vrana J, Weiblen GD, Novotny V. Spatial covariance of herbivorous and predatory guilds of forest canopy arthropods along a latitudinal gradient. Ecol Lett 2020; 23:1499-1510. [PMID: 32808457 DOI: 10.1111/ele.13579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 11/28/2022]
Abstract
In arthropod community ecology, species richness studies tend to be prioritised over those investigating patterns of abundance. Consequently, the biotic and abiotic drivers of arboreal arthropod abundance are still relatively poorly known. In this cross-continental study, we employ a theoretical framework in order to examine patterns of covariance among herbivorous and predatory arthropod guilds. Leaf-chewing and leaf-mining herbivores, and predatory ants and spiders, were censused on > 1000 trees in nine 0.1 ha forest plots. After controlling for tree size and season, we found no negative pairwise correlations between guild abundances per plot, suggestive of weak signals of both inter-guild competition and top-down regulation of herbivores by predators. Inter-guild interaction strengths did not vary with mean annual temperature, thus opposing the hypothesis that biotic interactions intensify towards the equator. We find evidence for the bottom-up limitation of arthropod abundances via resources and abiotic factors, rather than for competition and predation.
Collapse
Affiliation(s)
- Ondrej Mottl
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 1160/31, 370 05, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Branisovska 1760, 370 05, Czech Republic.,Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Pavel Fibich
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 1160/31, 370 05, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Branisovska 1760, 370 05, Czech Republic
| | - Petr Klimes
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 1160/31, 370 05, Ceske Budejovice, Czech Republic
| | - Martin Volf
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 1160/31, 370 05, Ceske Budejovice, Czech Republic.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, DE, Germany
| | - Robert Tropek
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 1160/31, 370 05, Ceske Budejovice, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Vinicna 7, Prague, 12843, Czech Republic
| | - Kristina Anderson-Teixeira
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, USA.,Center for Tropical Forest Science- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Ancon, Panama
| | - John Auga
- The New Guinea Binatang Research Center, P.O. Box 604, Madang, Papua New Guinea
| | - Thomas Blair
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Phil Butterill
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 1160/31, 370 05, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Branisovska 1760, 370 05, Czech Republic.,Department of Ecology, Faculty of Science, Charles University, Vinicna 7, Prague, 12843, Czech Republic
| | - Grace Carscallen
- Department of Biology, The University of Western Ontario, London, Canada
| | - Erika Gonzalez-Akre
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Aaron Goodman
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Ondrej Kaman
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 1160/31, 370 05, Ceske Budejovice, Czech Republic
| | - Greg P A Lamarre
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 1160/31, 370 05, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Branisovska 1760, 370 05, Czech Republic.,Center for Tropical Forest Science- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Ancon, Panama
| | - Martin Libra
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 1160/31, 370 05, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Branisovska 1760, 370 05, Czech Republic
| | - Maria E Losada
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Markus Manumbor
- The New Guinea Binatang Research Center, P.O. Box 604, Madang, Papua New Guinea
| | - Scott E Miller
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Kenneth Molem
- The New Guinea Binatang Research Center, P.O. Box 604, Madang, Papua New Guinea
| | - Geoffrey Nichols
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Nichola S Plowman
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 1160/31, 370 05, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Branisovska 1760, 370 05, Czech Republic
| | - Conor Redmond
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 1160/31, 370 05, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Branisovska 1760, 370 05, Czech Republic
| | - Carlo L Seifert
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 1160/31, 370 05, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Branisovska 1760, 370 05, Czech Republic
| | - Jan Vrana
- The Czech University of Life Sciences, Prague, Czech Republic
| | - George D Weiblen
- Bell Museum and Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, MN, USA
| | - Vojtech Novotny
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 1160/31, 370 05, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Branisovska 1760, 370 05, Czech Republic
| |
Collapse
|
10
|
Shao X, Zhang Q, Liu Y, Yang X. Effects of wind speed on background herbivory of an insect herbivore. ECOSCIENCE 2020. [DOI: 10.1080/11956860.2019.1666549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Xinliang Shao
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Qin Zhang
- Department of Research and Development, Zhengzhou Yaoling Technology Co., Ltd, Zhengzhou, China
| | - Yuhui Liu
- Department of Research and Development, Zhengzhou Yaoling Technology Co., Ltd, Zhengzhou, China
| | - Xitian Yang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
11
|
Field E, Schönrogge K, Barsoum N, Hector A, Gibbs M. Individual tree traits shape insect and disease damage on oak in a climate-matching tree diversity experiment. Ecol Evol 2019; 9:8524-8540. [PMID: 31410259 PMCID: PMC6686283 DOI: 10.1002/ece3.5357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 11/09/2022] Open
Abstract
Diversifying planted forests by increasing genetic and species diversity is often promoted as a method to improve forest resilience to climate change and reduce pest and pathogen damage. In this study, we used a young tree diversity experiment replicated at two sites in the UK to study the impacts of tree diversity and tree provenance (geographic origin) on the oak (Quercus robur) insect herbivore community and a specialist biotrophic pathogen, oak powdery mildew. Local UK, French, and Italian provenances were planted in monocultures, provenance mixtures, and species mixes, allowing us to test whether: (a) local and nonlocal provenances differ in their insect herbivore and pathogen communities, and (b) admixing trees leads to associational effects on insect herbivore and pathogen damage. Tree diversity had variable impacts on foliar organisms across sites and years, suggesting that diversity effects can be highly dependent on environmental context. Provenance identity impacted upon both herbivores and powdery mildew, but we did not find consistent support for the local adaptation hypothesis for any group of organisms studied. Independent of provenance, we found tree vigor traits (shoot length, tree height) and tree apparency (the height of focal trees relative to their surroundings) were consistent positive predictors of powdery mildew and insect herbivory. Synthesis. Our results have implications for understanding the complex interplay between tree identity and diversity in determining pest damage, and show that tree traits, partially influenced by tree genotype, can be important drivers of tree pest and pathogen loads.
Collapse
Affiliation(s)
- Elsa Field
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | | | | | - Andrew Hector
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Melanie Gibbs
- Centre for Ecology & HydrologyCrowmarsh GiffordWallingfordUK
| |
Collapse
|
12
|
Guyot V, Jactel H, Imbaud B, Burnel L, Castagneyrol B, Heinz W, Deconchat M, Vialatte A. Tree diversity drives associational resistance to herbivory at both forest edge and interior. Ecol Evol 2019; 9:9040-9051. [PMID: 31463002 PMCID: PMC6706233 DOI: 10.1002/ece3.5450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 11/12/2022] Open
Abstract
Tree diversity is increasingly acknowledged as an important driver of insect herbivory. However, there is still a debate about the direction of associational effects that can range from associational resistance (i.e., less damage in mixed stands than in monocultures) to the opposite, associational susceptibility. Discrepancies among published studies may be due to the overlooked effect of spatially dependent processes such as tree location within forests. We addressed this issue by measuring crown defoliation and leaf damage made by different guilds of insect herbivores on oaks growing among conspecific versus heterospecific neighbors at forest edges versus interior, in two closed sites in SW France forests. Overall, oaks were significantly less defoliated among heterospecific neighbors (i.e., associational resistance), at both forest edge and interior. At the leaf level, guild diversity and leaf miner herbivory significantly increased with tree diversity regardless of oak location within stands. Other guilds showed no clear response to tree diversity or oak location. We showed that herbivore response to tree diversity varied among insect feeding guilds but not between forest edges and interior, with inconsistent patterns between sites. Importantly, we show that oaks were more defoliated in pure oak plots than in mixed plots at both edge and forest interior and that, on average, defoliation decreased with increasing tree diversity from one to seven species. We conclude that edge conditions could be interacting with tree diversity to regulate insect defoliation, but future investigations are needed to integrate them into the management of temperate forests, notably by better understanding the role of the landscape context.
Collapse
Affiliation(s)
- Virginie Guyot
- DYNAFOR, INRA, Université de ToulouseCastanet TolosanFrance
- BIOGECO, INRA, Univ. BordeauxCestasFrance
- LTSER Zone Atelier «PYRÉNÉES GARONNE»Auzeville‐TolosaneFrance
| | | | | | - Laurent Burnel
- DYNAFOR, INRA, Université de ToulouseCastanet TolosanFrance
- LTSER Zone Atelier «PYRÉNÉES GARONNE»Auzeville‐TolosaneFrance
| | | | - Wilfried Heinz
- DYNAFOR, INRA, Université de ToulouseCastanet TolosanFrance
- LTSER Zone Atelier «PYRÉNÉES GARONNE»Auzeville‐TolosaneFrance
| | - Marc Deconchat
- DYNAFOR, INRA, Université de ToulouseCastanet TolosanFrance
- LTSER Zone Atelier «PYRÉNÉES GARONNE»Auzeville‐TolosaneFrance
| | - Aude Vialatte
- DYNAFOR, INRA, Université de ToulouseCastanet TolosanFrance
- LTSER Zone Atelier «PYRÉNÉES GARONNE»Auzeville‐TolosaneFrance
| |
Collapse
|
13
|
Eisenhauer N, Schielzeth H, Barnes AD, Barry K, Bonn A, Brose U, Bruelheide H, Buchmann N, Buscot F, Ebeling A, Ferlian O, Freschet GT, Giling DP, Hättenschwiler S, Hillebrand H, Hines J, Isbell F, Koller-France E, König-Ries B, de Kroon H, Meyer ST, Milcu A, Müller J, Nock CA, Petermann JS, Roscher C, Scherber C, Scherer-Lorenzen M, Schmid B, Schnitzer SA, Schuldt A, Tscharntke T, Türke M, van Dam NM, van der Plas F, Vogel A, Wagg C, Wardle DA, Weigelt A, Weisser WW, Wirth C, Jochum M. A multitrophic perspective on biodiversity-ecosystem functioning research. ADV ECOL RES 2019; 61:1-54. [PMID: 31908360 PMCID: PMC6944504 DOI: 10.1016/bs.aecr.2019.06.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Concern about the functional consequences of unprecedented loss in biodiversity has prompted biodiversity-ecosystem functioning (BEF) research to become one of the most active fields of ecological research in the past 25 years. Hundreds of experiments have manipulated biodiversity as an independent variable and found compelling support that the functioning of ecosystems increases with the diversity of their ecological communities. This research has also identified some of the mechanisms underlying BEF relationships, some context-dependencies of the strength of relationships, as well as implications for various ecosystem services that mankind depends upon. In this paper, we argue that a multitrophic perspective of biotic interactions in random and non-random biodiversity change scenarios is key to advance future BEF research and to address some of its most important remaining challenges. We discuss that the study and the quantification of multitrophic interactions in space and time facilitates scaling up from small-scale biodiversity manipulations and ecosystem function assessments to management-relevant spatial scales across ecosystem boundaries. We specifically consider multitrophic conceptual frameworks to understand and predict the context-dependency of BEF relationships. Moreover, we highlight the importance of the eco-evolutionary underpinnings of multitrophic BEF relationships. We outline that FAIR data (meeting the standards of findability, accessibility, interoperability, and reusability) and reproducible processing will be key to advance this field of research by making it more integrative. Finally, we show how these BEF insights may be implemented for ecosystem management, society, and policy. Given that human well-being critically depends on the multiple services provided by diverse, multitrophic communities, integrating the approaches of evolutionary ecology, community ecology, and ecosystem ecology in future BEF research will be key to refine conservation targets and develop sustainable management strategies.
Collapse
Affiliation(s)
- Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Holger Schielzeth
- Department of Population Ecology, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Andrew D Barnes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Kathryn Barry
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Aletta Bonn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- EcoNetLab, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology / Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, Universitätstr. 2, 8092 Zurich, Switzerland
| | - François Buscot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- UFZ - Helmholtz Centre for Environmental Research, Soil Ecology Department, Theodor-Lieser-Straße 4, 06120 Halle Saale, Germany
| | - Anne Ebeling
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Grégoire T Freschet
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Darren P Giling
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Stephan Hättenschwiler
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Helmut Hillebrand
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute for Chemistry and Biology of Marine Environments [ICBM], Carl-von-Ossietzky University Oldenburg, Schleusenstrasse 1, 26382 Wilhelmshaven, Germany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN 55108, USA
| | - Eva Koller-France
- Karlsruher Institut für Technologie (KIT), Institut für Geographie und Geoökologie, Reinhard-Baumeister-Platz 1, 76131 Karlsruhe, Germany
| | - Birgitta König-Ries
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Computer Science, Friedrich Schiller Universität Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
| | - Hans de Kroon
- Radboud University, Institute for Water and Wetland Research, Animal Ecology and Physiology & Experimental Plant Ecology, PO Box 9100, 6500 GL Nijmegen, The Netherlands
| | - Sebastian T Meyer
- Terrestrial Ecology Research Group, Technical University of Munich, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Alexandru Milcu
- Ecotron Européen de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Propre de Service 3248, Campus Baillarguet, Montferrier-sur-Lez, France
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 (CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE), 1919 Route de Mende, Montpellier 34293, France
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstraße 5, 96181 Rauhenebrach, Germany
- Bavarian Forest National Park, Freyunger Str. 2, 94481 Grafenau, Germany
| | - Charles A Nock
- Geobotany, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
- Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Canada, T6G 2H1
| | - Jana S Petermann
- Department of Biosciences, University of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- UFZ - Helmholtz Centre for Environmental Research, Department Physiological Diversity, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Christoph Scherber
- Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149 Münster, Germany
| | - Michael Scherer-Lorenzen
- Geobotany, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | - Bernhard Schmid
- Department of Geography, University of Zürich, 190 Winterthurerstrasse, 8057, Zürich, Switzerland
| | | | - Andreas Schuldt
- Forest Nature Conservation, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Buesgenweg 3, 37077 Goettingen, Germany
| | - Teja Tscharntke
- Agroecology, Dept. of Crop Sciences, University of Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Germany
| | - Manfred Türke
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München (HMGU) - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Nicole M van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| | - Fons van der Plas
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Anja Vogel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
| | - Cameron Wagg
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, E3B 8B7, Fredericton, Canada
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, 190 Winterthurerstrasse, 8057, Zürich, Switzerland
| | - David A Wardle
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Alexandra Weigelt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Wolfgang W Weisser
- Terrestrial Ecology Research Group, Technical University of Munich, School of Life Sciences Weihenstephan, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| | - Malte Jochum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
14
|
Odell EH, Stork NE, Kitching RL. Lianas as a food resource for herbivorous insects: a comparison with trees. Biol Rev Camb Philos Soc 2019; 94:1416-1429. [DOI: 10.1111/brv.12508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Erica H. Odell
- Environmental Futures Research Institute and School of Environment and ScienceGriffith University Nathan Queensland Australia
| | - Nigel E. Stork
- Environmental Futures Research Institute and School of Environment and ScienceGriffith University Nathan Queensland Australia
| | - Roger L. Kitching
- Environmental Futures Research Institute and School of Environment and ScienceGriffith University Nathan Queensland Australia
| |
Collapse
|
15
|
Barantal S, Castagneyrol B, Durka W, Iason G, Morath S, Koricheva J. Contrasting effects of tree species and genetic diversity on the leaf-miner communities associated with silver birch. Oecologia 2019; 189:687-697. [PMID: 30799514 PMCID: PMC6418074 DOI: 10.1007/s00442-019-04351-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/30/2019] [Indexed: 11/29/2022]
Abstract
Both species and genetic diversity of plant communities can affect insect herbivores, but a few studies have compared the effects of both diversity levels within the same experimental context. We compared the effects of tree species and genetic diversity on abundance, species richness, and β-diversity of leaf-miner communities associated with silver birch using two long-term forest diversity experiments in Finland where birch trees were planted in monocultures and mixtures of birch genotypes or other trees species. Although both abundance and species richness of leaf miners differed among birch genotypes at the tree level, birch genetic diversity had no significant effect on miner abundance and species richness at the plot level. Instead, birch genetic diversity affected leaf-miner β-diversity with species turnover being higher among trees within genotypic mixtures than among trees within monoclonal plots. In contrast, tree species diversity had a significant negative effect on both leaf-miner abundance and species richness at plot level, but no effect on miner β-diversity. Significant tree species diversity effects on leaf-miner abundance and species richness were found only in plots with high tree density. We have demonstrated that plant species and genetic diversity play important but contrasting roles in structuring associated herbivore communities. Tree species diversity largely affects miner abundance and species richness, whereas tree genetic diversity affects miner β-diversity. These results have important implications for conservation and management of woodlands.
Collapse
Affiliation(s)
- Sandra Barantal
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK. .,Ecotron-CNRS, 1 Chemin du Rioux, 34980, Monferrier, France.
| | | | - Walter Durka
- Helmholtz Centre for Environmental Research-UFZ, 06120, Halle, Germany
| | - Glenn Iason
- James Hutton Institute, Aberdeen, AB15 8QH, UK
| | - Simon Morath
- Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK
| | - Julia Koricheva
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
16
|
Verschut TA, Hambäck PA. A random survival forest illustrates the importance of natural enemies compared to host plant quality on leaf beetle survival rates. BMC Ecol 2018; 18:33. [PMID: 30200936 PMCID: PMC6131828 DOI: 10.1186/s12898-018-0187-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/31/2018] [Indexed: 11/11/2022] Open
Abstract
Background Wetlands are habitats where variation in soil moisture content and associated environmental conditions can strongly affect the survival of herbivorous insects by changing host plant quality and natural enemy densities. In this study, we combined natural enemy exclusion experiments with random survival forest analyses to study the importance of local variation in host plant quality and predation by natural enemies on the egg and larval survival of the leaf beetle Galerucella sagittariae along a soil moisture gradient. Results Our results showed that the exclusion of natural enemies substantially increased the survival probability of G. sagittariae eggs and larvae. Interestingly, the egg survival probability decreased with soil moisture content, while the larval survival probability instead increased with soil moisture content. For both the egg and larval survival, we found that host plant height, the number of eggs or larvae, and vegetation height explained more of the variation than the soil moisture gradient by itself. Moreover, host plant quality related variables, such as leaf nitrogen, carbon and phosphorus content did not influence the survival of G. sagittariae eggs and larvae. Conclusion Our results suggest that the soil moisture content is not an overarching factor that determines the interplay between factors related to host plant quality and factors relating to natural enemies on the survival of G. sagittariae in different microhabitats. Moreover, the natural enemy exclusion experiments and the random survival forest analysis suggest that natural enemies have a stronger indirect impact on the survival of G. sagittariae offspring than host plant quality. Electronic supplementary material The online version of this article (10.1186/s12898-018-0187-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas A Verschut
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden.
| | - Peter A Hambäck
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
17
|
Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat Commun 2018; 9:2989. [PMID: 30065285 PMCID: PMC6068104 DOI: 10.1038/s41467-018-05421-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
Human-induced biodiversity change impairs ecosystem functions crucial to human well-being. However, the consequences of this change for ecosystem multifunctionality are poorly understood beyond effects of plant species loss, particularly in regions with high biodiversity across trophic levels. Here we adopt a multitrophic perspective to analyze how biodiversity affects multifunctionality in biodiverse subtropical forests. We consider 22 independent measurements of nine ecosystem functions central to energy and nutrient flow across trophic levels. We find that individual functions and multifunctionality are more strongly affected by the diversity of heterotrophs promoting decomposition and nutrient cycling, and by plant functional-trait diversity and composition, than by tree species richness. Moreover, cascading effects of higher trophic-level diversity on functions originating from lower trophic-level processes highlight that multitrophic biodiversity is key to understanding drivers of multifunctionality. A broader perspective on biodiversity-multifunctionality relationships is crucial for sustainable ecosystem management in light of non-random species loss and intensified biotic disturbances under future environmental change. Biodiversity change can impact ecosystem functioning, though this is primarily studied at lower trophic levels. Here, Schuldt et al. find that biodiversity components other than tree species richness are particularly important, and higher trophic level diversity plays a role in multifunctionality.
Collapse
|
18
|
Drought and plant neighbourhood interactively determine herbivore consumption and performance. Sci Rep 2018; 8:5930. [PMID: 29651050 PMCID: PMC5897364 DOI: 10.1038/s41598-018-24299-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/08/2018] [Indexed: 12/02/2022] Open
Abstract
Both plant neighbourhood composition and drought have well-known independent effects on insect herbivore performance, but their interactive effects remain elusive. In this study we performed a laboratory experiment to investigate the independent and combined effects of plant neighbourhood composition and drought on the performance of Gypsy moth larvae (Lymantria dispar) feeding on silver birch (Betula pendula) leaves. For this, we collected leaf samples from birch trees growing in a field experiment where we manipulated both host-tree species diversity (three levels: birch monocultures, two-species mixtures associating birch with the pedunculate oak Quercus robur or maritime pine Pinus pinaster, and three-species mixture with pedunculate oak, the maritime pine and birch) and water availability (two levels: irrigated vs. non-irrigated). In most cases, plant neighbourhood composition and irrigation treatments independently and interactively affected herbivore performance traits, especially those related to growth and food (i.e. birch leaves) processing. By addressing the interactive effects of tree species diversity and drought on insect herbivory from the herbivore’s point of view, our study builds toward a better understanding of the multiple ecological drivers of plant-insect interactions.
Collapse
|
19
|
Koricheva J, Hayes D. The relative importance of plant intraspecific diversity in structuring arthropod communities: A meta‐analysis. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13062] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Julia Koricheva
- School of Biological SciencesRoyal Holloway University of London Egham Surrey UK
| | - Dexter Hayes
- School of Biological SciencesRoyal Holloway University of London Egham Surrey UK
| |
Collapse
|
20
|
Fernandez-Conradi P, Borowiec N, Capdevielle X, Castagneyrol B, Maltoni A, Robin C, Selvi F, Van Halder I, Vétillard F, Jactel H. Plant neighbour identity and invasive pathogen infection affect associational resistance to an invasive gall wasp. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1637-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Muzika RM. Opportunities for silviculture in management and restoration of forests affected by invasive species. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1549-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Schuldt A, Hönig L, Li Y, Fichtner A, Härdtle W, von Oheimb G, Welk E, Bruelheide H. Herbivore and pathogen effects on tree growth are additive, but mediated by tree diversity and plant traits. Ecol Evol 2017; 7:7462-7474. [PMID: 28944031 PMCID: PMC5606881 DOI: 10.1002/ece3.3292] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 01/06/2023] Open
Abstract
Herbivores and fungal pathogens are key drivers of plant community composition and functioning. The effects of herbivores and pathogens are mediated by the diversity and functional characteristics of their host plants. However, the combined effects of herbivory and pathogen damage, and their consequences for plant performance, have not yet been addressed in the context of biodiversity–ecosystem functioning research. We analyzed the relationships between herbivory, fungal pathogen damage and their effects on tree growth in a large‐scale forest‐biodiversity experiment. Moreover, we tested whether variation in leaf trait and climatic niche characteristics among tree species influenced these relationships. We found significant positive effects of herbivory on pathogen damage, and vice versa. These effects were attenuated by tree species richness—because herbivory increased and pathogen damage decreased with increasing richness—and were most pronounced for species with soft leaves and narrow climatic niches. However, herbivory and pathogens had contrasting, independent effects on tree growth, with pathogens decreasing and herbivory increasing growth. The positive herbivory effects indicate that trees might be able to (over‐)compensate for local damage at the level of the whole tree. Nevertheless, we found a dependence of these effects on richness, leaf traits and climatic niche characteristics of the tree species. This could mean that the ability for compensation is influenced by both biodiversity loss and tree species identity—including effects of larger‐scale climatic adaptations that have been rarely considered in this context. Our results suggest that herbivory and pathogens have additive but contrasting effects on tree growth. Considering effects of both herbivory and pathogens may thus help to better understand the net effects of damage on tree performance in communities differing in diversity. Moreover, our study shows how species richness and species characteristics (leaf traits and climatic niches) can modify tree growth responses to leaf damage under real‐world conditions.
Collapse
Affiliation(s)
- Andreas Schuldt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute of Biology/Geobotany and Botanical Garden Martin-Luther-University Halle-Wittenberg Halle Germany
| | - Lydia Hönig
- Institute of Biology/Geobotany and Botanical Garden Martin-Luther-University Halle-Wittenberg Halle Germany
| | - Ying Li
- Institute of Ecology Leuphana University Lüneburg Lüneburg Germany
| | - Andreas Fichtner
- Institute of Ecology Leuphana University Lüneburg Lüneburg Germany
| | - Werner Härdtle
- Institute of Ecology Leuphana University Lüneburg Lüneburg Germany
| | - Goddert von Oheimb
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute of General Ecology and Environmental Protection Technische Universität Dresden Tharandt Germany
| | - Erik Welk
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute of Biology/Geobotany and Botanical Garden Martin-Luther-University Halle-Wittenberg Halle Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig Leipzig Germany.,Institute of Biology/Geobotany and Botanical Garden Martin-Luther-University Halle-Wittenberg Halle Germany
| |
Collapse
|
23
|
Egorov E, Gossner MM, Meyer ST, Weisser WW, Brändle M. Does plant phylogenetic diversity increase invertebrate herbivory in managed grasslands? Basic Appl Ecol 2017. [DOI: 10.1016/j.baae.2017.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|