1
|
Kominami T, Tan TE, Ushida H, Jain K, Goto K, Bylstra YM, Sajiki AF, Mathur RS, Ota J, Lim WK, Nishiguchi KM, Fenner BJ. Fundus autofluorescence features specific for EYS-associated retinitis pigmentosa. PLoS One 2025; 20:e0318857. [PMID: 39970144 PMCID: PMC11838866 DOI: 10.1371/journal.pone.0318857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
PURPOSE To assess the utility of fundus autofluorescence (FAF) patterns for predicting the EYS genotype in retinitis pigmentosa (RP) patients. METHODS This retrospective, multi-institutional study analyzed FAF images from 200 RP patients (74 with EYS and 126 without EYS) from Singapore and Japan. Seven FAF patterns including the infinity sign and a broad banded hyper-autofluorescent leading edge were evaluated for their association with the EYS genotype. RESULTS The infinity sign and broad banded hyperautofluorescent leading edge occurred more frequently in EYS eyes (p = 0.0014 and p = 0.036 respectively). Logistic regression analysis showed that the infinity sign was predictive of EYS (p = 0.003). The combined FAF parameters predicted EYS with a specificity of 95.20%, sensitivity of 25.68% and accuracy of 69.50%, with a cut-off value 0.5 based on the probability of seven FAF parameters. CONCLUSIONS In this multinational cohort study of patients with RP, we demonstrated that specific FAF patterns, particularly the infinity sign, have clinical utility in identifying patients with EYS-associated disease. These findings may be useful for clinicians and geneticists when genotyping patients with RP, and may also enhance our understanding of underlying pathophysiology of EYS-associated RP, which is a prevalent cause of RP in Asia and elsewhere.
Collapse
Affiliation(s)
- Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tien-En Tan
- Singapore National Eye Centre, Singapore Eye Research Institute, and Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Hiroaki Ushida
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Kanika Jain
- Genome Institute of Singapore, Singapore, Singapore
| | - Kensuke Goto
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yasmin M. Bylstra
- Institute for Precision Medicine, SingHealth Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Ai Fujita Sajiki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Division for Advanced Medical Research, Center for Research of Laboratory Animals and Medical Research Engineering, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Ranjana S. Mathur
- Singapore National Eye Centre, Singapore Eye Research Institute, and Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Junya Ota
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Weng Khong Lim
- Institute for Precision Medicine, SingHealth Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Koji M Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Beau J. Fenner
- Singapore National Eye Centre, Singapore Eye Research Institute, and Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
2
|
da Costa BL, Knudsen AS, Alves CH, Tsang SH, Quinn PMJ. Megabase Deletion of the Human EYS Locus Using CRISPR/Cas9. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:107-111. [PMID: 39930181 DOI: 10.1007/978-3-031-76550-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Mutations in the Eyes Shut Homolog (EYS) gene are associated with autosomal recessive retinitis pigmentosa (arRP). To date, four retinal isoforms of EYS have been identified. However, the precise retinal function of EYS is not fully understood, but it has apparent roles in retinal morphogenesis, architecture, and ciliary transport. Clustered-regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas) nuclease-mediated approaches are powerful tools for genome engineering in mammalian cells. The use of paired CRISPR/Cas9-induced double-strand breaks (DSBs) using dual single guide RNAs (sgRNA) can lead to precise genomic deletions. In this study, we developed a dual sgRNA strategy to facilitate CRISPR/Cas9-mediated deletion of 1,988,210 bp of the EYS locus, removing the four currently identified human retinal EYS isoforms. This approach can be used to produce EYSdel induced pluripotent stem cell (iPSC) lines to explore the function of EYS in human iPSC-derived retinal organoids.
Collapse
Affiliation(s)
- Bruna Lopes da Costa
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Anders Steen Knudsen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
| | - C Henrique Alves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Stephen H Tsang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University, New York, NY, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter M J Quinn
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA.
- FM Kirby Center for Molecular Ophthalmology, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Natsume K, Kominami T, Goto K, Koyanagi Y, Inooka T, Ota J, Kawano K, Yamada K, Okuda D, Yuki K, Nishiguchi KM, Ushida H. Phenotypic variability of RP1-related inherited retinal dystrophy associated with the c.5797 C > T (p.Arg1933*) variant in the Japanese population. Sci Rep 2024; 14:25669. [PMID: 39463394 PMCID: PMC11514212 DOI: 10.1038/s41598-024-77441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
The phenotypes of RP1-related inherited retinal dystrophies (RP1-IRD), causing autosomal dominant (AD) and autosomal recessive (AR) diseases, vary depending on specific RP1 variants. A common nonsense mutation near the C-terminus, c.5797 C > T (p.Arg1933*), is associated with RP1-IRD, but the exact role of this mutation in genotype-phenotype correlation remains unclear. In this study, we retrospectively analyzed patients with RP1-IRD (N = 42) from a single center in Japan. AR RP1-IRD patients with the c.5797 C > T mutation (N = 14) mostly displayed macular dystrophy but rarely retinitis pigmentosa or cone-rod dystrophy. Conversely, AR RP1-IRD patients without the c.5797 C > T mutation, including those with other pathogenic RP1 variants, were mostly diagnosed with severe retinitis pigmentosa. Full-field electroretinograms were significantly better in patients homozygous or compound heterozygous for the c.5797 C > T mutation than in those without this mutation, corresponding to their milder phenotypes. Clinical tests also revealed a slower onset of age and a better mean deviation value with the static visual field in AR RP1-IRD patients with the c.5797 C > T mutation compared to those without. Therefore, the presence of c.5797 C > T may partly account for the phenotypic variety of RP1-IRD and may yield milder phenotypes. These findings may be useful for predicting the prognosis of RP1-IRD patients.
Collapse
Affiliation(s)
- Keigo Natsume
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Taro Kominami
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan.
| | - Kensuke Goto
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Yoshito Koyanagi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Taiga Inooka
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Junya Ota
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Kenichi Kawano
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Kazuhisa Yamada
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Daishi Okuda
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Kenya Yuki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Hiroaki Ushida
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| |
Collapse
|
4
|
Ruiz-Justiz AJ, Molina Thurin LJ, Emanuelli A, Izquierdo N. Retinitis Pigmentosa Associated With EYS Gene Mutations in Puerto Rico: A Case Series. Cureus 2024; 16:e72440. [PMID: 39588395 PMCID: PMC11588300 DOI: 10.7759/cureus.72440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Mutations in the EYS (eyes shut homolog) gene are a known cause of autosomal recessive retinitis pigmentosa (arRP). Pathogenic variants in EYS have been associated with a more severe clinical course compared to mutations in other retinitis pigmentosa (RP)-related genes. The prevalence of EYS-related arRP varies among different populations. To date, no studies have described the presence of EYS mutations in Puerto Rican patients. This case series aims to report and characterize EYS mutations in RP patients from Puerto Rico. METHODS This retrospective case series was conducted at two major ophthalmology clinics in Puerto Rico from 2019 to 2023. A chart review was performed to identify RP patients who had mutations in the EYS gene, identified through the Invitae Inherited Retinal Disease Panel, which evaluates more than 300 genes. Collected data included demographic information (age and gender), ocular and medical history, clinical presentation of RP, best corrected visual acuity (BCVA), and genetic testing results. RESULTS Seven Puerto Rican patients, three females (43%) and four males (57%), with a clinical diagnosis of RP, were found to have pathogenic EYS variants. Among them, four patients (57%) carried the c.5928-2A>G variant, two (29%) had c.6794del, one (14%) had c.1211dup, and one (14%) had c.3443+1G>T. Compound heterozygosity in the EYS gene was observed in two patients. Additionally, three variants of unknown significance (VUS) were identified. Patients exhibited a wide range of visual acuity; however, those older than 40 were found to be legally blind. Conclusions: This study provides evidence of EYS-related RP in Puerto Rican patients. Four truncating mutations in the EYS gene were identified, with c.5928-2A>G being the most frequent. Additionally, the novel EYS variant c.9263G>A (p.Gly3088Glu), classified as VUS, was identified in one patient.
Collapse
Affiliation(s)
- Armando J Ruiz-Justiz
- Department of Ophthalmology, University of Puerto Rico, Medical Sciences Campus, San Juan, PRI
| | | | - Andres Emanuelli
- Department of Ophthalmology, University of Puerto Rico, Medical Sciences Campus, San Juan, PRI
| | - Natalio Izquierdo
- Department of Surgery, University of Puerto Rico, Medical Sciences Campus, San Juan, PRI
| |
Collapse
|
5
|
Di Iorio E, Adamo GG, Sorrentino U, De Nadai K, Barbaro V, Mura M, Pellegrini M, Boaretto F, Tavolato M, Suppiej A, Nasini F, Salviati L, Parmeggiani F. Pseudodominant inheritance of retinitis pigmentosa in a family with mutations in the Eyes Shut Homolog (EYS) gene. Sci Rep 2024; 14:18580. [PMID: 39127808 PMCID: PMC11316741 DOI: 10.1038/s41598-024-69640-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
Sequence variants in Eyes Shut Homolog (EYS) gene are one of the most frequent causes of autosomal recessive retinitis pigmentosa (RP). Herein, we describe an Italian RP family characterized by EYS-related pseudodominant inheritance. The female proband, her brother, and both her sons showed typical RP, with diminished or non-recordable full-field electroretinogram, narrowing of visual field, and variable losses of central vision. To investigate this apparently autosomal dominant pedigree, next generation sequencing (NGS) of a custom panel of RP-related genes was performed, further enhanced by bioinformatic detection of copy-number variations (CNVs). Unexpectedly, all patients had a compound heterozygosity involving two known pathogenic EYS variants i.e., the exon 33 frameshift mutation c.6714delT and the exon 29 deletion c.(5927þ1_5928-1)_(6078þ1_6079-1)del, with the exception of the youngest son who was homozygous for the above-detailed frameshift mutation. No pathologic eye conditions were instead observed in the proband's husband, who was a heterozygous healthy carrier of the same c.6714delT variant in exon 33 of EYS gene. These findings provide evidence that pseudodominant pattern of inheritance can hide an autosomal recessive RP partially or totally due to CNVs, recommending CNVs study in those pedigrees which remain genetically unsolved after the completion of NGS or whole exome sequencing analysis.
Collapse
Affiliation(s)
- Enzo Di Iorio
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
- Clinical Genetics Unit, Azienda Ospedaliero Universitaria di Padova, 35121, Padova, Italy
| | - Ginevra Giovanna Adamo
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy
| | - Ugo Sorrentino
- Clinical Genetics Unit, Azienda Ospedaliero Universitaria di Padova, 35121, Padova, Italy
- Department of Women and Children's Health, University of Padova, 35121, Padova, Italy
| | - Katia De Nadai
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy
- ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Azienda ULSS 6 Euganea, 35012, Camposampiero, Padova, Italy
| | | | - Marco Mura
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy
- King Khaled Eye Specialist Hospital, 11462, Riyadh, Saudi Arabia
| | - Marco Pellegrini
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy
| | - Francesca Boaretto
- Clinical Genetics Unit, Azienda Ospedaliero Universitaria di Padova, 35121, Padova, Italy
| | - Marco Tavolato
- ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Azienda ULSS 6 Euganea, 35012, Camposampiero, Padova, Italy
| | - Agnese Suppiej
- ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Azienda ULSS 6 Euganea, 35012, Camposampiero, Padova, Italy
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Francesco Nasini
- Ophthalmic Unit, Azienda Ospedaliero Universitaria di Ferrara, 44124, Cona, Ferrara, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Azienda Ospedaliero Universitaria di Padova, 35121, Padova, Italy
- Department of Women and Children's Health, University of Padova, 35121, Padova, Italy
| | - Francesco Parmeggiani
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121, Ferrara, Italy.
- ERN-EYE Network - Center for Retinitis Pigmentosa of Veneto Region, Camposampiero Hospital, Azienda ULSS 6 Euganea, 35012, Camposampiero, Padova, Italy.
| |
Collapse
|
6
|
Melrose J. CNS/PNS proteoglycans functionalize neuronal and astrocyte niche microenvironments optimizing cellular activity by preserving membrane polarization dynamics, ionic microenvironments, ion fluxes, neuronal activation, and network neurotransductive capacity. J Neurosci Res 2024; 102:e25361. [PMID: 39034899 DOI: 10.1002/jnr.25361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/22/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024]
Abstract
Central and peripheral nervous system (CNS/PNS) proteoglycans (PGs) have diverse functional roles, this study examined how these control cellular behavior and tissue function. The CNS/PNS extracellular matrix (ECM) is a dynamic, responsive, highly interactive, space-filling, cell supportive, stabilizing structure maintaining tissue compartments, ionic microenvironments, and microgradients that regulate neuronal activity and maintain the neuron in an optimal ionic microenvironment. The CNS/PNS contains a high glycosaminoglycan content (60% hyaluronan, HA) and a diverse range of stabilizing PGs. Immobilization of HA in brain tissues by HA interactive hyalectan PGs preserves tissue hydration and neuronal activity, a paucity of HA in brain tissues results in a pro-convulsant epileptic phenotype. Diverse CS, KS, and HSPGs stabilize the blood-brain barrier and neurovascular unit, provide smart gel neurotransmitter neuron vesicle storage and delivery, organize the neuromuscular junction basement membrane, and provide motor neuron synaptic plasticity, and photoreceptor and neuron synaptic functions. PG-HA networks maintain ionic fluxes and microgradients and tissue compartments that contribute to membrane polarization dynamics essential to neuronal activation and neurotransduction. Hyalectans form neuroprotective perineuronal nets contributing to synaptic plasticity, memory, and cognitive learning. Sialoglycoprotein associated with cones and rods (SPACRCAN), an HA binding CSPG, stabilizes the inter-photoreceptor ECM. HSPGs pikachurin and eyes shut stabilize the photoreceptor synapse aiding in phototransduction and neurotransduction with retinal bipolar neurons crucial to visual acuity. This is achieved through Laminin G motifs in pikachurin, eyes shut, and neurexins that interact with the dystroglycan-cytoskeleton-ECM-stabilizing synaptic interconnections, neuronal interactive specificity, and co-ordination of regulatory action potentials in neural networks.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Sydney Medical School, Northern, The University of Sydney Faculty of Medicine and Health, Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| |
Collapse
|
7
|
Otsuka Y, Imamura K, Oishi A, Asakawa K, Kondo T, Nakai R, Suga M, Inoue I, Sagara Y, Tsukita K, Teranaka K, Nishimura Y, Watanabe A, Umeyama K, Okushima N, Mitani K, Nagashima H, Kawakami K, Muguruma K, Tsujikawa A, Inoue H. Phototoxicity avoidance is a potential therapeutic approach for retinal dystrophy caused by EYS dysfunction. JCI Insight 2024; 9:e174179. [PMID: 38646933 PMCID: PMC11141876 DOI: 10.1172/jci.insight.174179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024] Open
Abstract
Inherited retinal dystrophies (IRDs) are progressive diseases leading to vision loss. Mutation in the eyes shut homolog (EYS) gene is one of the most frequent causes of IRD. However, the mechanism of photoreceptor cell degeneration by mutant EYS has not been fully elucidated. Here, we generated retinal organoids from induced pluripotent stem cells (iPSCs) derived from patients with EYS-associated retinal dystrophy (EYS-RD). In photoreceptor cells of RD organoids, both EYS and G protein-coupled receptor kinase 7 (GRK7), one of the proteins handling phototoxicity, were not in the outer segment, where they are physiologically present. Furthermore, photoreceptor cells in RD organoids were vulnerable to light stimuli, and especially to blue light. Mislocalization of GRK7, which was also observed in eys-knockout zebrafish, was reversed by delivering control EYS into photoreceptor cells of RD organoids. These findings suggest that avoiding phototoxicity would be a potential therapeutic approach for EYS-RD.
Collapse
Affiliation(s)
- Yuki Otsuka
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keiko Imamura
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Nagasaki University, Nagasaki, Japan
| | - Kazuhide Asakawa
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Takayuki Kondo
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Risako Nakai
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mika Suga
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ikuyo Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Yukako Sagara
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
| | - Kayoko Tsukita
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kaori Teranaka
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yu Nishimura
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Watanabe
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | - Nanako Okushima
- Division of Systems Medicine and Gene Therapy, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Kohnosuke Mitani
- Division of Systems Medicine and Gene Therapy, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Keiko Muguruma
- Department of iPS Cell Applied Medicine, Graduate School of Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haruhisa Inoue
- iPSC-based Drug discovery and Development Team, RIKEN BioResource Research Center, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| |
Collapse
|
8
|
Farrugia BL, Melrose J. The Glycosaminoglycan Side Chains and Modular Core Proteins of Heparan Sulphate Proteoglycans and the Varied Ways They Provide Tissue Protection by Regulating Physiological Processes and Cellular Behaviour. Int J Mol Sci 2023; 24:14101. [PMID: 37762403 PMCID: PMC10531531 DOI: 10.3390/ijms241814101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This review examines the roles of HS-proteoglycans (HS-PGs) in general, and, in particular, perlecan and syndecan as representative examples and their interactive ligands, which regulate physiological processes and cellular behavior in health and disease. HS-PGs are essential for the functional properties of tissues both in development and in the extracellular matrix (ECM) remodeling that occurs in response to trauma or disease. HS-PGs interact with a biodiverse range of chemokines, chemokine receptors, protease inhibitors, and growth factors in immune regulation, inflammation, ECM stabilization, and tissue protection. Some cell regulatory proteoglycan receptors are dually modified hybrid HS/CS proteoglycans (betaglycan, CD47). Neurexins provide synaptic stabilization, plasticity, and specificity of interaction, promoting neurotransduction, neurogenesis, and differentiation. Ternary complexes of glypican-1 and Robbo-Slit neuroregulatory proteins direct axonogenesis and neural network formation. Specific neurexin-neuroligin complexes stabilize synaptic interactions and neural activity. Disruption in these interactions leads to neurological deficits in disorders of functional cognitive decline. Interactions with HS-PGs also promote or inhibit tumor development. Thus, HS-PGs have complex and diverse regulatory roles in the physiological processes that regulate cellular behavior and the functional properties of normal and pathological tissues. Specialized HS-PGs, such as the neurexins, pikachurin, and Eyes-shut, provide synaptic stabilization and specificity of neural transduction and also stabilize the axenome primary cilium of phototoreceptors and ribbon synapse interactions with bipolar neurons of retinal neural networks, which are essential in ocular vision. Pikachurin and Eyes-Shut interactions with an α-dystroglycan stabilize the photoreceptor synapse. Novel regulatory roles for HS-PGs controlling cell behavior and tissue function are expected to continue to be uncovered in this fascinating class of proteoglycan.
Collapse
Affiliation(s)
- Brooke L. Farrugia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory of Bone and Joint Research, Kolling Institute of Medical Research, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School (Northern), University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
9
|
Boothman I, Clayton LM, McCormack M, Driscoll AM, Stevelink R, Moloney P, Krause R, Kunz WS, Diehl S, O’Brien TJ, Sills GJ, de Haan GJ, Zara F, Koeleman BP, Depondt C, Marson AG, Stefansson H, Stefansson K, Craig J, Johnson MR, Striano P, Lerche H, Furney SJ, Delanty N, Sisodiya SM, Cavalleri GL. Testing for pharmacogenomic predictors of ppRNFL thinning in individuals exposed to vigabatrin. Front Neurosci 2023; 17:1156362. [PMID: 37790589 PMCID: PMC10542409 DOI: 10.3389/fnins.2023.1156362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Background The anti-seizure medication vigabatrin (VGB) is effective for controlling seizures, especially infantile spasms. However, use is limited by VGB-associated visual field loss (VAVFL). The mechanisms by which VGB causes VAVFL remains unknown. Average peripapillary retinal nerve fibre layer (ppRNFL) thickness correlates with the degree of visual field loss (measured by mean radial degrees). Duration of VGB exposure, maximum daily VGB dose, and male sex are associated with ppRNFL thinning. Here we test the hypothesis that common genetic variation is a predictor of ppRNFL thinning in VGB exposed individuals. Identifying pharmacogenomic predictors of ppRNFL thinning in VGB exposed individuals could potentially enable safe prescribing of VGB and broader use of a highly effective drug. Methods Optical coherence topography (OCT) and GWAS data were processed from VGB-exposed individuals (n = 71) recruited through the EpiPGX Consortium. We conducted quantitative GWAS analyses for the following OCT measurements: (1) average ppRNFL, (2) inferior quadrant, (3) nasal quadrant, (4) superior quadrant, (5) temporal quadrant, (6) inferior nasal sector, (7) nasal inferior sector, (8) superior nasal sector, and (9) nasal superior sector. Using the summary statistics from the GWAS analyses we conducted gene-based testing using VEGAS2. We conducted nine different PRS analyses using the OCT measurements. To determine if VGB-exposed individuals were predisposed to having a thinner RNFL, we calculated their polygenic burden for retinal thickness. PRS alleles for retinal thickness were calculated using published summary statistics from a large-scale GWAS of inner retinal morphology using the OCT images of UK Biobank participants. Results The GWAS analyses did not identify a significant association after correction for multiple testing. Similarly, the gene-based and PRS analyses did not reveal a significant association that survived multiple testing. Conclusion We set out to identify common genetic predictors for VGB induced ppRNFL thinning. Results suggest that large-effect common genetic predictors are unlikely to exist for ppRNFL thinning (as a marker of VAVFL). Sample size was a limitation of this study. However, further recruitment is a challenge as VGB is rarely used today because of this adverse reaction. Rare variants may be predictors of this adverse drug reaction and were not studied here.
Collapse
Affiliation(s)
- Isabelle Boothman
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- The SFI Futureneuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
| | - Lisa M. Clayton
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Bucks, United Kingdom
| | - Mark McCormack
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Remi Stevelink
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Patrick Moloney
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Wolfram S. Kunz
- Division of Neurochemistry, Department of Epileptology, University Bonn Medical Center, Bonn, Germany
| | - Sarah Diehl
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Terence J. O’Brien
- Departments of Neuroscience and Neurology, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Graeme J. Sills
- School of Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gerrit-Jan de Haan
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Federico Zara
- "IRCCS”G. Gaslini" Institute, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Bobby P. Koeleman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Anthony G. Marson
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | | | | | - John Craig
- Department of Neurology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Michael R. Johnson
- Division of Brain Sciences, Imperial College Faculty of Medicine, London, United Kingdom
| | - Pasquale Striano
- "IRCCS”G. Gaslini" Institute, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Simon J. Furney
- Genomic Oncology Research Group, Deptartment of Physiology and Medical Physics, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Norman Delanty
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Chalfont Centre for Epilepsy, Bucks, United Kingdom
| | - Gianpiero L. Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- The SFI Futureneuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
| |
Collapse
|
10
|
Dai C, Ren W, Wei Y, Xie C, Duan S, Li Q, Jiang L, Shi Y. A Novel Pair of Compound Heterozygous Mutation of EYS in a Han Chinese Family with Retinitis Pigmentosa. Genet Test Mol Biomarkers 2023; 27:258-266. [PMID: 37643323 DOI: 10.1089/gtmb.2023.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Background: Retinitis pigmentosa (RP) is a complex inherited and progressive degenerative retinal disease. The eyes shut homolog (EYS) is frequently associated with RP is surprisingly high. Exploring the function of EYS is quite difficult due to the unique gene size and species specificity. Gene therapy may provide a breakthrough to treat this disease. Therefore, exploring and clarifying pathogenic mutations of EYS-associated RP has important guiding significance for clinical treatment. Methods: Clinical and molecular genetic data for EYS-associated RP were retrospectively analyzed. Sanger sequencing was applied to identify novel mutations in these patients. Candidate pathogenic variants were subsequently evaluated using bioinformatic tools. Results: A novel pair of compound heterozygous mutations was identified: a novel stop-gain mutation c.2439C>A (p.C813fsX) and a frameshift deletion mutation c.6714delT (p. P2238fsX) of the EYS gene in the RP family. Both of these mutations were rare or absent in the 1000 Genomes Project, dbSNP, and Genome Aggregation Database (gnomAD). These two mutations would result in a lack of multiple functionally important epidermal growth factor-like and Laminin G-like coding regions in EYS. Conclusions: A novel compound heterozygote of the EYS gene in a Chinese family with an autosomal inheritance pattern of RP was identified. Identifying more pathogenic mutations and expanding the mutation spectrum of the EYS gene will contribute to a more comprehensive understanding of the molecular pathogenesis of RP disease that could be gained in the future. It also could provide an important basis for the diagnosis, clinical management, and genetic counseling of the disease.
Collapse
Affiliation(s)
- Chao Dai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Weiming Ren
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yao Wei
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Chunbao Xie
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Suyang Duan
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Marques JP, Machado Soares R, Simão S, Abuzaitoun R, Andrews C, Alves CH, Ambrósio AF, Murta J, Silva R, Abalem MF, Jayasundera KT. Self-reported visual function and psychosocial impact of visual loss in EYS-associated retinal degeneration in a Portuguese population. Ophthalmic Genet 2023:1-7. [PMID: 36946380 DOI: 10.1080/13816810.2023.2191708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
PURPOSE To evaluate self-reported visual function and the psychosocial impact of visual loss EYS-associated retinal degeneration (EYS-RD) using two patient-reported outcome (PRO) measures: Michigan Retinal Degeneration Questionnaire (MRDQ) and Michigan Vision-related Anxiety Questionnaire (MVAQ). METHODS Cross-sectional, single-center study conducted at a tertiary care hospital in Portugal. Patients with biallelic EYS variants were invited to participate. Clinical data including demographics, ETDRS best-corrected visual acuity (BCVA) in the better-seeing eye and genetic testing results were collected. Interviews were carried out during clinic visits or by phone between November 2021 and February 2022. A blind grader used horizontal and vertical spectral domain optical coherence tomography (SD-OCT) scans to manually measure ellipsoid zone (EZ) width in the nasal, temporal, superior and inferior macular quadrants to calculate the EZ area. RESULTS Forty-nine patients (53.1% males; mean age 53 ± 14 years) were included. A positive correlation (p < .05) was found between age and most MRDQ domain scores (central vision, color vision, contrast sensitivity, scotopic function, photopic peripheral vision and mesopic peripheral vision). A negative correlation was found between both BCVA and EZ area across all MRDQ domains. In MVAQ, SD-OCT EZ area negatively correlated with both rod function and cone function-related anxiety. Neither age, BCVA or gender correlated with MVAQ domains. CONCLUSIONS This study provides strong evidence supporting a correlation between PRO measures and both functional and structural clinician-reported outcomes. The use of MRDQ and MVAQ adds a new dimension to our understanding of EYS-RD and establishes both PRO measures as important disease outcome measures.
Collapse
Affiliation(s)
- João Pedro Marques
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Ricardo Machado Soares
- Department of Ophthalmology, Centro Hospitalar de Vila Nova de Gaia e Espinho (CHVNGE), Gaia, Portugal
| | - Sílvia Simão
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Rebhi Abuzaitoun
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Chris Andrews
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - C Henrique Alves
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Joaquim Murta
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Rufino Silva
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
- University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Maria Fernanda Abalem
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Ophthalmology and Otolaryngology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - K Thiran Jayasundera
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Retinitis Pigmentosa Associated with EYS Gene Mutations: Disease Severity Staging and Central Retina Atrophy. Diagnostics (Basel) 2023; 13:diagnostics13050850. [PMID: 36899994 PMCID: PMC10000790 DOI: 10.3390/diagnostics13050850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Eyes shut homolog (EYS) gene mutations are estimated to affect at least 5% of patients with autosomal recessive retinitis pigmentosa. Since there is no mammalian model of human EYS disease, it is important to investigate its age-related changes and the degree of central retinal impairment. METHODS A cohort of EYS patients was studied. They underwent full ophthalmic examination as well as assessment of retinal function and structure, by full-field and focal electroretinograms (ERGs) and spectral domain optical coherence tomography (OCT), respectively. The disease severity stage was determined by the RP stage scoring system (RP-SSS). Central retina atrophy (CRA) was estimated from the automatically calculated area of the sub-retinal pigment epithelium (RPE) illumination (SRI). RESULTS The RP-SSS was positively correlated with age, showing an advanced severity score (≥8) at an age of 45 and a disease duration of 15 years. The RP-SSS was positively correlated with the CRA area. LogMAR visual acuity and ellipsoid zone width, but not ERG, were correlated with CRA. CONCLUSIONS In EYS-related disease, the RP-SSS showed advanced severity at a relative early age and was correlated with the central area of the RPE/photoreceptor atrophy. These correlations may be relevant in view of therapeutic interventions aimed at rescuing rods and cones in EYS-retinopathy.
Collapse
|
13
|
Soares RM, Carvalho AL, Simão S, Soares CA, Raimundo M, Alves CH, Ambrósio AF, Murta J, Saraiva J, Silva R, Marques JP. Eyes Shut Homolog-Associated Retinal Degeneration: Natural History, Genetic Landscape, and Phenotypic Spectrum. Ophthalmol Retina 2023:S2468-6530(23)00054-4. [PMID: 36764454 DOI: 10.1016/j.oret.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE To describe the natural history, genetic landscape, and phenotypic spectrum of Eyes shut homolog (EYS)-associated retinal degeneration (EYS-RD). DESIGN Retrospective, single-center cohort study complemented by a cross-sectional examination. SUBJECTS Patients with biallelic EYS variants were recruited at an inherited RD referral center in Portugal. METHODS Every patient underwent a cross-sectional examination comprising a comprehensive ophthalmic examination including best-corrected visual acuity (BCVA), dilated slit-lamp anterior segment, and fundus biomicroscopy; ultrawide-field color fundus photography and fundus autofluorescence imaging; and spectral domain-OCT. In the setting of a retinitis pigmentosa (RP) diagnosis, every patient was classified as typical or atypical RP according to imaging criteria. Baseline demographics, age at onset of symptoms, family history, history of consanguinity, symptoms, age at diagnosis, BCVA at baseline and throughout follow-up, and EYS variants were collected from each individual patient file. MAIN OUTCOME MEASURES Clinical/demographic, genetic, multimodal imaging data, and BCVA variation were compared between typical and atypical RP. Additionally, BCVA variation during follow-up was used as an endpoint to describe EYS-RD natural history. RESULTS Fifty-eight patients (59% men; mean age 52 ± 14 years) from 48 White families of Portuguese ancestry were included. Twenty distinct EYS variants were identified, 8 of which are novel. In 32.8% of patients, onset of symptoms was in early adulthood (21-30 years). A clinical diagnosis of RP was established in 57 patients and cone-rod dystrophy in 1 patient. Regarding RP, 75.0% of the patients were graded as typical and 25.0% as atypical. Atypical EYS-RP commonly presents with inferior crescent-shaped macular atrophy with superior midperipheral sparing. In EYS-RD, a negative correlation was found between age and BCVA (r = -0.50; P < 0.001), with an average loss of 1.45 letters per year. When stratifying for RP phenotype, lower average loss of letters per year (P < 0.001), higher BCVA (P < 0.001), and larger ellipsoid zone widths (P < 0.001) were found in atypical RP. CONCLUSIONS This study expands the genetic spectrum of EYS-RD by reporting 8 novel variants. A high frequency of atypical phenotypes was identified. These patients have better BCVA and larger ellipsoidal zone widths, thus presenting an overall better prognosis. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Ricardo Machado Soares
- Department of Ophthalmology, Centro Hospitalar de Vila Nova de Gaia e Espinho (CHVNGE), Gaia, Portugal
| | - Ana Luísa Carvalho
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Medical Genetics Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Medical Genetics, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Sílvia Simão
- Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Célia Azevedo Soares
- Centro de Genética Médica Jacinto Magalhães, Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar/Universidade do Porto, Porto, Portugal; Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Miguel Raimundo
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - C Henrique Alves
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra (UC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - António Francisco Ambrósio
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra (UC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Joaquim Murta
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Jorge Saraiva
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Medical Genetics Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Rufino Silva
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - João Pedro Marques
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Ophthalmology Unit, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; University Clinic of Ophthalmology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal.
| |
Collapse
|
14
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
15
|
HS, an Ancient Molecular Recognition and Information Storage Glycosaminoglycan, Equips HS-Proteoglycans with Diverse Matrix and Cell-Interactive Properties Operative in Tissue Development and Tissue Function in Health and Disease. Int J Mol Sci 2023; 24:ijms24021148. [PMID: 36674659 PMCID: PMC9867265 DOI: 10.3390/ijms24021148] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Heparan sulfate is a ubiquitous, variably sulfated interactive glycosaminoglycan that consists of repeating disaccharides of glucuronic acid and glucosamine that are subject to a number of modifications (acetylation, de-acetylation, epimerization, sulfation). Variable heparan sulfate chain lengths and sequences within the heparan sulfate chains provide structural diversity generating interactive oligosaccharide binding motifs with a diverse range of extracellular ligands and cellular receptors providing instructional cues over cellular behaviour and tissue homeostasis through the regulation of essential physiological processes in development, health, and disease. heparan sulfate and heparan sulfate-PGs are integral components of the specialized glycocalyx surrounding cells. Heparan sulfate is the most heterogeneous glycosaminoglycan, in terms of its sequence and biosynthetic modifications making it a difficult molecule to fully characterize, multiple ligands also make an elucidation of heparan sulfate functional properties complicated. Spatio-temporal presentation of heparan sulfate sulfate groups is an important functional determinant in tissue development and in cellular control of wound healing and extracellular remodelling in pathological tissues. The regulatory properties of heparan sulfate are mediated via interactions with chemokines, chemokine receptors, growth factors and morphogens in cell proliferation, differentiation, development, tissue remodelling, wound healing, immune regulation, inflammation, and tumour development. A greater understanding of these HS interactive processes will improve therapeutic procedures and prognoses. Advances in glycosaminoglycan synthesis and sequencing, computational analytical carbohydrate algorithms and advanced software for the evaluation of molecular docking of heparan sulfate with its molecular partners are now available. These advanced analytic techniques and artificial intelligence offer predictive capability in the elucidation of heparan sulfate conformational effects on heparan sulfate-ligand interactions significantly aiding heparan sulfate therapeutics development.
Collapse
|
16
|
Genotypic and phenotypic profiles of EYS gene-related retinitis pigmentosa: a retrospective study. Sci Rep 2022; 12:21494. [PMID: 36513702 PMCID: PMC9748023 DOI: 10.1038/s41598-022-26017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Retinitis pigmentosa (RP) affects 1:5000 individuals worldwide. Interestingly, variations in 271 RP-related genes are indicated to vary among populations. We aimed to evaluate the genetic prevalence and phenotypic profiles of Thai patients with RP. The clinical and whole exome sequencing data of 125 patients suggestive of inherited retinal diseases (IRD), particularly non-syndromic RP, were assessed. We found a total of 258 variants (63% of which remained unavailable in the ClinVar database) in 91 IRD-associated genes. Among the detected genes, the eyes shut homolog (EYS) gene showed the highest prevalence. We also provide insights into the genotypic, baseline, and follow-up clinical presentations of seven patients with disease-causing EYS variations. This study could provide comprehension of the prevalence of RP-related genes involved in the Asian population. It might also provide information to establish advanced and personalised therapy for RP in the Thai population.
Collapse
|
17
|
Zebrafish and inherited photoreceptor disease: Models and insights. Prog Retin Eye Res 2022; 91:101096. [PMID: 35811244 DOI: 10.1016/j.preteyeres.2022.101096] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022]
Abstract
Photoreceptor dysfunctions and degenerative diseases are significant causes of vision loss in patients, with few effective treatments available. Targeted interventions to prevent or reverse photoreceptor-related vision loss are not possible without a thorough understanding of the underlying mechanism leading to disease, which is exceedingly difficult to accomplish in the human system. Cone diseases are particularly challenging to model, as some popular genetically modifiable model animals are nocturnal with a rod-dominant visual system and cones that have dissimilarities to human cones. As a result, cone diseases, which affect visual acuity, colour perception, and central vision in patients, are generally poorly understood in terms of pathology and mechanism. Zebrafish (Danio rerio) provide the opportunity to model photoreceptor diseases in a diurnal vertebrate with a cone-rich retina which develops many macular degeneration-like pathologies. Zebrafish undergo external development, allowing early-onset retinal diseases to be detected and studied, and many ophthalmic tools are available for zebrafish visual assessment during development and adulthood. There are numerous zebrafish models of photoreceptor disease, spanning the various types of photoreceptor disease (developmental, rod, cone, and mixed photoreceptor diseases) and genetic/molecular cause. In this review, we explore the features of zebrafish that make them uniquely poised to model cone diseases, summarize the established zebrafish models of inherited photoreceptor disease, and discuss how disease in these models compares to the human presentation, where applicable. Further, we highlight the contributions of these zebrafish models to our understanding of photoreceptor biology and disease, and discuss future directions for utilising and investigating these diverse models.
Collapse
|
18
|
Sakai D, Yokota S, Maeda A, Hirami Y, Nakamura M, Kurimoto Y. Ocular biometry with swept-source optical coherence tomography-based optical biometer in Japanese patients with EYS-related retinitis pigmentosa: a retrospective study. BMC Ophthalmol 2022; 22:51. [PMID: 35109811 PMCID: PMC8811986 DOI: 10.1186/s12886-022-02284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background This study aimed to identify the features of ocular biometry in patients with EYS-related retinitis pigmentosa using IOLMaster 700. Methods We retrospectively reviewed the medical records of patients with retinitis pigmentosa. Patients with records of the following were included: (1) ocular biometry measurements using the IOLMaster 700 and (2) genetic diagnostic tests. Axial length, keratometry, anterior chamber depth, aqueous depth, lens thickness, central corneal thickness (CCT), and corneal diameter (white to white) measurements were extracted. Based on keratometry measurements, (1) standard keratometric astigmatism, (2) posterior corneal astigmatism, and (3) total corneal astigmatism were obtained. Demographics and biometric parameters were compared between patients with EYS-related retinitis pigmentosa and other patients with retinitis pigmentosa. Results A total of 86 eyes of 44 patients (23 females and 21 males; mean age: 47.7 years) with retinitis pigmentosa were included. Of these, 18 were identified as having EYS variants. CCT was significantly thinner (P < 0.001) and the posterior corneal curvature at the steepest meridian was significantly smaller (P = 0.024) in patients with EYS-related retinitis pigmentosa than in other patients with retinitis pigmentosa. The magnitudes of all corneal astigmatism measurements was higher in patients with EYS-related RP, although these differences were not statistically significant. Conclusion Patients with EYS-related retinitis pigmentosa had unique features in ocular biometry, such as thinner central corneal thickness and smaller posterior corneal curvature radius at the steepest meridian compared with other patients with retinitis pigmentosa. The findings suggest that patients with retinitis pigmentosa have different ocular dimension features among the different causative genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02284-3.
Collapse
Affiliation(s)
- Daiki Sakai
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan. .,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan. .,Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Satoshi Yokota
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Akiko Maeda
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan
| | - Yasuhiko Hirami
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Makoto Nakamura
- Department of Surgery, Division of Ophthalmology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuo Kurimoto
- Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Japan.,Department of Ophthalmology, Kobe City Medical Center General Hospital, Kobe, Japan
| |
Collapse
|
19
|
Huang T, Yan T, Chen G, Zhang C. Development and Validation of a Gene Mutation-Associated Nomogram for Hepatocellular Carcinoma Patients From Four Countries. Front Genet 2021; 12:714639. [PMID: 34621291 PMCID: PMC8490742 DOI: 10.3389/fgene.2021.714639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/03/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Genomic alteration is the basis of occurrence and development of carcinoma. Specific gene mutation may be associated with the prognosis of hepatocellular carcinoma (HCC) patients without distant or lymphatic metastases. Hence, we developed a nomogram based on prognostic gene mutations that could predict the overall survival of HCC patients at early stage and provide reference for immunotherapy. Methods: HCC cohorts were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. The total patient was randomly assigned to training and validation sets. Univariate and multivariate cox analysis were used to select significant variables for construction of nomogram. The support vector machine (SVM) and principal component analysis (PCA) were used to assess the distinguished effect of significant genes. Besides, the nomogram model was evaluated by concordance index, time-dependent receiver operating characteristics (ROC) curve, calibration curve and decision curve analysis (DCA). Gene Set Enrichment Analysis (GSEA), CIBERSORT, Tumor Immune Dysfunction and Exclusion (TIDE) and Immunophenoscore (IPS) were utilized to explore the potential mechanism of immune-related process and immunotherapy. Results: A total of 695 HCC patients were selected in the process including 495 training patients and 200 validation patients. Nomogram was constructed based on T stage, age, country, mutation status of DOCK2, EYS, MACF1 and TP53. The assessment showed the nomogram has good discrimination and high consistence between predicted and actual data. Furthermore, we found T cell exclusion was the potential mechanism of malignant progression in high-risk group. Meanwhile, low-risk group might be sensitive to immunotherapy and benefit from CTLA-4 blocker treatment. Conclusion: Our research established a nomogram based on mutant genes and clinical parameters, and revealed the underlying association between these risk factors and immune-related process.
Collapse
Affiliation(s)
- Tingping Huang
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Yan
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gonghai Chen
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunqing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
20
|
EYS-Associated Sector Retinitis Pigmentosa. Graefes Arch Clin Exp Ophthalmol 2021; 260:1405-1413. [PMID: 34568954 DOI: 10.1007/s00417-021-05411-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE Sector retinitis pigmentosa (RP) is a rare form of rod-cone degeneration typically associated with mutations in the RHO gene. We describe six unrelated patients presenting with this atypical phenotype in association with biallelic mutations in EYS gene. METHODS Multinational, multicentre cross-sectional case series. Patients with biallelic disease-causing variants in EYS and a clinical diagnosis of sector RP were recruited from specialized centres in Portugal and Brazil. All patients underwent a comprehensive ophthalmologic examination complemented by deep phenotyping. Peripheral blood samples were collected from all probands and available relatives for genetic analysis. Genetic counselling was provided to all subjects. RESULTS Seven disease-causing variants (4 pathogenic; 3 likely pathogenic) were identified in 6 unrelated female patients. Best-corrected visual acuity ranged from 75 to 85 ETDRS letters. All eyes showed bilateral and symmetrical areas of outer retinal atrophy distributed along the inferior vascular arcades and extending temporally and/or nasally in a crescent-shaped pattern. On fundus autofluorescence (AF), a foveal-sparing curvilinear band of hyperAF encroaching the optic nerve head and extending temporally was seen in 4 patients. The remaining 2 presented bilateral and symmetrical patches of hypoAF inside crescent-shaped areas of hyperAF along the inferior temporal vascular arcade. Visual field testing revealed superior visual field defects of varying extents, always in close association with the fundus AF findings. CONCLUSIONS Even though EYS has only recently been listed as a cause of the sector RP phenotype, we believe that this presentation is not infrequent and should be considered an important differential for sector RP.
Collapse
|
21
|
Schellens R, de Vrieze E, Graave P, Broekman S, Nagel-Wolfrum K, Peters T, Kremer H, Collin RWJ, van Wijk E. Zebrafish as a Model to Evaluate a CRISPR/Cas9-Based Exon Excision Approach as a Future Treatment Option for EYS-Associated Retinitis Pigmentosa. Int J Mol Sci 2021; 22:ijms22179154. [PMID: 34502064 PMCID: PMC8431288 DOI: 10.3390/ijms22179154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal disease (IRD) with an overall prevalence of 1 in 4000 individuals. Mutations in EYS (Eyes shut homolog) are among the most frequent causes of non-syndromic autosomal recessively inherited RP and act via a loss-of-function mechanism. In light of the recent successes for other IRDs, we investigated the therapeutic potential of exon skipping for EYS-associated RP. CRISPR/Cas9 was employed to generate zebrafish from which the region encompassing the orthologous exons 37-41 of human EYS (eys exons 40-44) was excised from the genome. The excision of these exons was predicted to maintain the open reading frame and to result in the removal of exactly one Laminin G and two EGF domains. Although the eysΔexon40-44 transcript was found at levels comparable to wild-type eys, and no unwanted off-target modifications were identified within the eys coding sequence after single-molecule sequencing, EysΔexon40-44 protein expression could not be detected. Visual motor response experiments revealed that eysΔexon40-44 larvae were visually impaired and histological analysis revealed a progressive degeneration of the retinal outer nuclear layer in these zebrafish. Altogether, the data obtained in our zebrafish model currently provide no indications for the skipping of EYS exons 37-41 as an effective future treatment strategy for EYS-associated RP.
Collapse
Affiliation(s)
- Renske Schellens
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.S.); (E.d.V.); (S.B.); (T.P.); (H.K.)
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands;
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.S.); (E.d.V.); (S.B.); (T.P.); (H.K.)
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands;
| | - Pam Graave
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Sanne Broekman
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.S.); (E.d.V.); (S.B.); (T.P.); (H.K.)
| | - Kerstin Nagel-Wolfrum
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany;
- Institute for Developmental Biology and Neurobiology, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
| | - Theo Peters
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.S.); (E.d.V.); (S.B.); (T.P.); (H.K.)
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.S.); (E.d.V.); (S.B.); (T.P.); (H.K.)
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands;
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Rob W. J. Collin
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands;
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.S.); (E.d.V.); (S.B.); (T.P.); (H.K.)
- Donders Institute for Brain Cognition and Behaviour, 6500 GL Nijmegen, The Netherlands;
- Correspondence:
| |
Collapse
|
22
|
Mizobuchi K, Hayashi T, Oishi N, Kubota D, Kameya S, Higasa K, Futami T, Kondo H, Hosono K, Kurata K, Hotta Y, Yoshitake K, Iwata T, Matsuura T, Nakano T. Genotype-Phenotype Correlations in RP1-Associated Retinal Dystrophies: A Multi-Center Cohort Study in JAPAN. J Clin Med 2021; 10:jcm10112265. [PMID: 34073704 PMCID: PMC8197273 DOI: 10.3390/jcm10112265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Little is known about genotype–phenotype correlations of RP1-associated retinal dystrophies in the Japanese population. We aimed to investigate the genetic spectrum of RP1 variants and provide a detailed description of the clinical findings in Japanese patients. Methods: In total, 607 patients with inherited retinal diseases were examined using whole-exome/whole-genome sequencing (WES/WGS). PCR-based screening for an Alu element insertion (c.4052_4053ins328/p.Tyr1352AlafsTer9) was performed in 18 patients with autosomal-recessive (AR)-retinitis pigmentosa (RP) or AR-cone dystrophy (COD)/cone-rod dystrophy (CORD), including seven patients with heterozygous RP1 variants identified by WES/WGS analysis, and 11 early onset AR-RP patients, in whom no pathogenic variant was identified. We clinically examined 25 patients (23 families) with pathogenic RP1 variants, including five patients (five families) with autosomal-dominant (AD)-RP, 13 patients (11 families) with AR-RP, and seven patients (seven families) with AR-COD/CORD. Results: We identified 18 pathogenic RP1 variants, including seven novel variants. Interestingly, the Alu element insertion was the most frequent variant (32.0%, 16/50 alleles). The clinical findings revealed that the age at onset and disease progression occurred significantly earlier and faster in AR-RP patients compared to AD-RP or AR-COD/CORD patients. Conclusions: Our results suggest a genotype–phenotype correlation between variant types/locations and phenotypes (AD-RP, AR-RP, and AR-COD/CORD), and the Alu element insertion was the most major variant in Japanese patients with RP1-associated retinal dystrophies.
Collapse
Affiliation(s)
- Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan; (T.H.); (T.N.)
- Correspondence: ; Tel.: +81-3-3433-1111
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan; (T.H.); (T.N.)
- Department of Ophthalmology, Katsushika Medical Center, The Jikei University School of Medicine, 6-41-2 Aoto, Katsushika-ku, Tokyo 125-8506, Japan
| | - Noriko Oishi
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba 270-1694, Japan; (N.O.); (D.K.); (S.K.)
| | - Daiki Kubota
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba 270-1694, Japan; (N.O.); (D.K.); (S.K.)
| | - Shuhei Kameya
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba 270-1694, Japan; (N.O.); (D.K.); (S.K.)
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan;
| | - Takuma Futami
- Department of Ophthalmology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fu-kuoka 807-8555, Japan; (T.F.); (H.K.)
| | - Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fu-kuoka 807-8555, Japan; (T.F.); (H.K.)
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Shizuoka, Hamamatsu 431-3192, Japan; (K.H.); (K.K.); (Y.H.)
| | - Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Shizuoka, Hamamatsu 431-3192, Japan; (K.H.); (K.K.); (Y.H.)
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Shizuoka, Hamamatsu 431-3192, Japan; (K.H.); (K.K.); (Y.H.)
| | - Kazutoshi Yoshitake
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan; (K.Y.); (T.I.)
| | - Takeshi Iwata
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan; (K.Y.); (T.I.)
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan;
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan; (T.H.); (T.N.)
| |
Collapse
|
23
|
Yair S, Lee KM, Coop G. The timing of human adaptation from Neanderthal introgression. Genetics 2021; 218:iyab052. [PMID: 33787889 PMCID: PMC8128397 DOI: 10.1093/genetics/iyab052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
Admixture has the potential to facilitate adaptation by providing alleles that are immediately adaptive in a new environment or by simply increasing the long-term reservoir of genetic diversity for future adaptation. A growing number of cases of adaptive introgression are being identified in species across the tree of life, however the timing of selection, and therefore the importance of the different evolutionary roles of admixture, is typically unknown. Here, we investigate the spatio-temporal history of selection favoring Neanderthal-introgressed alleles in modern human populations. Using both ancient and present-day samples of modern humans, we integrate the known demographic history of populations, namely population divergence and migration, with tests for selection. We model how a sweep placed along different branches of an admixture graph acts to modify the variance and covariance in neutral allele frequencies among populations at linked loci. Using a method based on this model of allele frequencies, we study previously identified cases of adaptive Neanderthal introgression. From these, we identify cases in which Neanderthal-introgressed alleles were quickly beneficial and other cases in which they persisted at low frequency for some time. For some of the alleles that persisted at low frequency, we show that selection likely independently favored them later on in geographically separated populations. Our work highlights how admixture with ancient hominins has contributed to modern human adaptation and contextualizes observed levels of Neanderthal ancestry in present-day and ancient samples.
Collapse
Affiliation(s)
- Sivan Yair
- Center for Population Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Kristin M Lee
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Graham Coop
- Center for Population Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
24
|
Garcia-Delgado AB, Valdes-Sanchez L, Morillo-Sanchez MJ, Ponte-Zuñiga B, Diaz-Corrales FJ, de la Cerda B. Dissecting the role of EYS in retinal degeneration: clinical and molecular aspects and its implications for future therapy. Orphanet J Rare Dis 2021; 16:222. [PMID: 34001227 PMCID: PMC8127272 DOI: 10.1186/s13023-021-01843-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/23/2021] [Indexed: 01/22/2023] Open
Abstract
Mutations in the EYS gene are one of the major causes of autosomal recessive retinitis pigmentosa. EYS-retinopathy presents a severe clinical phenotype, and patients currently have no therapeutic options. The progress in personalised medicine and gene and cell therapies hold promise for treating this degenerative disease. However, lack of understanding and incomplete comprehension of disease's mechanism and the role of EYS in the healthy retina are critical limitations for the translation of current technical advances into real therapeutic possibilities. This review recapitulates the present knowledge about EYS-retinopathies, their clinical presentations and proposed genotype–phenotype correlations. Molecular details of the gene and the protein, mainly based on animal model data, are analysed. The proposed cellular localisation and roles of this large multi-domain protein are detailed. Future therapeutic approaches for EYS-retinopathies are discussed.
Collapse
Affiliation(s)
- Ana B Garcia-Delgado
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda. Americo Vespucio 24, 41092, Seville, Spain
| | - Lourdes Valdes-Sanchez
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda. Americo Vespucio 24, 41092, Seville, Spain
| | | | - Beatriz Ponte-Zuñiga
- Department of Ophthalmology, University Hospital Virgen Macarena, Seville, Spain.,Retics Oftared, Institute of Health Carlos III, Madrid, Spain
| | - Francisco J Diaz-Corrales
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda. Americo Vespucio 24, 41092, Seville, Spain.
| | - Berta de la Cerda
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Avda. Americo Vespucio 24, 41092, Seville, Spain
| |
Collapse
|
25
|
Novel compound heterozygous EYS variants may be associated with arRP in a large Chinese pedigree. Biosci Rep 2021; 40:224912. [PMID: 32436957 PMCID: PMC7268256 DOI: 10.1042/bsr20193443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022] Open
Abstract
As a genetically heterogeneous ocular dystrophy, gene mutations with autosomal recessive retinitis pigmentosa (arRP) in patients have not been well described. We aimed to detect the disease-causing genes and variants in a Chinese arRP family. In the present study, a large Chinese pedigree consisting of 31 members including a proband and another two patients was recruited; clinical examinations were conducted; next-generation sequencing using a gene panel was used for identifying pathogenic genes, and Sanger sequencing was performed for verification of mutations. Novel compound heterozygous variants c.G2504A (p.C835Y) and c.G6557A (p.G2186E) for the EYS gene were identified, which co-segregated with the clinical RP phenotypes. Sequencing of 100 ethnically matched normal controls didn't found these mutations in EYS. Therefore, our study identified pathogenic variants in EYS that may cause arRP in this Chinese family. This is the first study to reveal the novel mutation in the EYS gene (c.G2504A, p.C835Y), extending its mutation spectrum. Thus, the EYS c.G2504A (p.C835Y) and c.G6557A (p.G2186E) variants may be the disease-causing missense mutations for RP in this large arRP family. These findings should be helpful for molecular diagnosis, genetic counseling and clinical management of arRP disease.
Collapse
|
26
|
A hypomorphic variant in EYS detected by genome-wide association study contributes toward retinitis pigmentosa. Commun Biol 2021; 4:140. [PMID: 33514863 PMCID: PMC7846782 DOI: 10.1038/s42003-021-01662-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/06/2021] [Indexed: 12/26/2022] Open
Abstract
The genetic basis of Japanese autosomal recessive retinitis pigmentosa (ARRP) remains largely unknown. Herein, we applied a 2-step genome-wide association study (GWAS) in 640 Japanese patients. Meta-GWAS identified three independent peaks at P < 5.0 × 10−8, all within the major ARRP gene EYS. Two of the three were each in linkage disequilibrium with a different low frequency variant (allele frequency < 0.05); a known founder Mendelian mutation (c.4957dupA, p.S1653Kfs*2) and a non-synonymous variant (c.2528 G > A, p.G843E) of unknown significance. mRNA harboring c.2528 G > A failed to restore rhodopsin mislocalization induced by morpholino-mediated knockdown of eys in zebrafish, consistent with the variant being pathogenic. c.2528 G > A solved an additional 7.0% of Japanese ARRP cases. The third peak was in linkage disequilibrium with a common non-synonymous variant (c.7666 A > T, p.S2556C), possibly representing an unreported disease-susceptibility signal. GWAS successfully unraveled genetic causes of a rare monogenic disorder and identified a high frequency variant potentially linked to development of local genome therapeutics. Koji Nishiguchi et al. identify three genetic variants within the EYS gene that are associated with retinitis pigmentosa using a genome-wide association study. They demonstrate that one of these variants (G843E) causes retinal dysfunction in zebrafish, suggesting a causal role for EYS in retinitis pigmentosa.
Collapse
|
27
|
Noel NCL, MacDonald IM, Allison WT. Zebrafish Models of Photoreceptor Dysfunction and Degeneration. Biomolecules 2021; 11:78. [PMID: 33435268 PMCID: PMC7828047 DOI: 10.3390/biom11010078] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Zebrafish are an instrumental system for the generation of photoreceptor degeneration models, which can be utilized to determine underlying causes of photoreceptor dysfunction and death, and for the analysis of potential therapeutic compounds, as well as the characterization of regenerative responses. We review the wealth of information from existing zebrafish models of photoreceptor disease, specifically as they relate to currently accepted taxonomic classes of human rod and cone disease. We also highlight that rich, detailed information can be derived from studying photoreceptor development, structure, and function, including behavioural assessments and in vivo imaging of zebrafish. Zebrafish models are available for a diversity of photoreceptor diseases, including cone dystrophies, which are challenging to recapitulate in nocturnal mammalian systems. Newly discovered models of photoreceptor disease and drusenoid deposit formation may not only provide important insights into pathogenesis of disease, but also potential therapeutic approaches. Zebrafish have already shown their use in providing pre-clinical data prior to testing genetic therapies in clinical trials, such as antisense oligonucleotide therapy for Usher syndrome.
Collapse
Affiliation(s)
- Nicole C. L. Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
| | - Ian M. MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - W. Ted Allison
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada; (I.M.M.); (W.T.A.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada
| |
Collapse
|
28
|
Koyanagi Y, Ueno S, Ito Y, Kominami T, Komori S, Akiyama M, Murakami Y, Ikeda Y, Sonoda KH, Terasaki H. Relationship Between Macular Curvature and Common Causative Genes of Retinitis Pigmentosa in Japanese Patients. Invest Ophthalmol Vis Sci 2021; 61:6. [PMID: 32749464 PMCID: PMC7441377 DOI: 10.1167/iovs.61.10.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine the relationship between the macular curvature and the causative genes of retinitis pigmentosa (RP). Methods We examined the medical records of the right eyes of 65 cases with RP (31 men and 34 women; average age, 47.6 years). There were 31 cases with the EYS variants, 11 cases with the USH2A variants, six cases with the RPGR variants, 13 cases with the RP1 variants, and four cases with the RP1L1 variants. The mean curvature of Bruch's membrane was calculated within 6 mm of the fovea as the mean macular curvature index (MMCI, 1/µm). We used multiple linear regression analysis to determine the independence of the causative genes contributing to the MMCIs after adjustments for age, sex, axial length, and width of the ellipsoid zone. Results The median MMCI was −31.2 × 10−5/µm for the RPGR eyes, −16.5 × 10−5/µm for the RP1L1 eyes, −13.0 × 10−5/µm for the RP1 eyes, −9.8 × 10−5/µm for the EYS eyes, and −9.0 × 10−5/µm for the USH2A eyes. Compared with the EYS gene as the reference gene, the RPGR gene was significantly related to the MMCI values after adjusting for the other parameters (P = 5.30 × 10−6). In contrast, the effects of the other genes, USH2A, RP1, and RP1L1, were not significantly different from that of the EYS gene (P = 0.26, P = 0.49, and P = 0.92, respectively). Conclusions The RPGR gene had a stronger effect on the steep macular curvature than the other ciliopathy-related genes.
Collapse
|
29
|
Cundy O, Broadgate S, Halford S, MacLaren RE, Shanks ME, Clouston P, Gilhooley MJ, Downes SM. "Genetic and clinical findings in an ethnically diverse retinitis pigmentosa cohort associated with pathogenic variants in EYS". Eye (Lond) 2020; 35:1440-1449. [PMID: 32728228 DOI: 10.1038/s41433-020-1105-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The EYS gene is an important cause of autosomal recessive retinitis pigmentosa (arRP). The objective of this study is to report on novel pathogenic variants in EYS and the range of associated phenotypes. SUBJECTS AND METHODS This retrospective case series at a tertiary referral centre for inherited retinal diseases describes patients with an IRD and at least two variants in the EYS gene. Phenotyping included multimodal retinal imaging; genotyping molecular genetic analysis using targeted next generation sequencing. Sanger sequencing verification and analysis of novel variants using in silico approaches to determine their predicted pathogenicity. RESULTS Eight male and four female patients were included. Age at onset ranged from 11 to 62 years with variable symptom presentation; ten patients showed classical features of retinitis pigmentosa, albeit with great variation in disease severity and extent. Two patients had atypical phenotypes: one with localised inferior sector pigmentation and a mild RP phenotype with changes predominantly at the posterior pole. Eighteen variants in EYS were identified, located across the gene: six were novel. Eight variants were missense, two altered splicing, one was a whole exon duplication and the remainder were predicted to result in premature truncation of the protein. CONCLUSION The marked variability in severity and age of onset in most patients in this ethnically diverse cohort adds to growing evidence that that mild phenotypes are associated with EYS variants. Similarly, the two atypical cases add to the growing diversity of EYS disease as do the six novel pathogenic variants described.
Collapse
Affiliation(s)
- Olivia Cundy
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headley Way, Oxford, OX3 9DU, UK
| | - Suzanne Broadgate
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headley Way, Oxford, OX3 9DU, UK.,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Morag E Shanks
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, OX3 7LE, UK
| | - Penny Clouston
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford, OX3 7LE, UK
| | - Michael J Gilhooley
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headley Way, Oxford, OX3 9DU, UK. .,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| | - Susan M Downes
- Oxford Eye Hospital, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Headley Way, Oxford, OX3 9DU, UK. .,Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, Oxford University, West Wing, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK.
| |
Collapse
|
30
|
Pierrache LHM, Messchaert M, Thiadens AAHJ, Haer-Wigman L, de Jong-Hesse Y, van Zelst-Stams WAG, Collin RWJ, Klaver CCW, van den Born LI. Extending the Spectrum of EYS-Associated Retinal Disease to Macular Dystrophy. Invest Ophthalmol Vis Sci 2019; 60:2049-2063. [PMID: 31074760 DOI: 10.1167/iovs.18-25531] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To assess the phenotypic variability and natural course of inherited retinal diseases (IRDs) caused by EYS mutations. Methods Multiethnic cohort study (N = 30) with biallelic EYS variants from a clinical IRD database (retinitis pigmentosa [RP], N = 27; cone-rod dystrophy [CRD], N = 1; and macular dystrophy, N = 2). In vitro minigene splice assay was performed to determine the effect on EYS pre-mRNA splicing of the c.1299+5_1299+8del variant in macular dystrophy patients. Results We found 27 different EYS variants in RP patients and 7 were novel. The rate of visual field loss of the V4e isopter area was -0.84 ± 0.44 ln(deg2) per year, and the rate of visual acuity loss was 0.75 Early Treatment Diabetic Retinopathy Study letters per year. Ellipsoid zone width was correlated with area of the hyperautofluorescent ring, with rs = 0.78 and P < 0.001. Rate of decline in ellipsoid zone width was -57 ± 17 μm per year (P < 0.01) (n = 14) or -3.69% ± 0.51% from baseline per year (P < 0.001). An isolated CRD patient carried a homozygous EYS variant (c.9405T>A), previously identified in RP patients. Two siblings with macular dystrophy carried compound heterozygous EYS variants: c.1299+5_1299+8del and c.6050G>T. The former was novel and shown to result in skipping of exon 8, and the latter was a known RP variant. Conclusions We report on EYS-associated macular dystrophy, extending the spectrum of EYS-associated IRDs. We observed heterogeneity between RP patients in age of onset and disease progression. Identical EYS variants were found in cases with RP, CRD, and macular dystrophy. Screening for EYS variants in CRD and macular dystrophy patients might increase the diagnostic yield in previously unsolved cases.
Collapse
Affiliation(s)
- Laurence H M Pierrache
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands.,Rotterdam Ophthalmic Institute, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Muriël Messchaert
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yvonne de Jong-Hesse
- Department of Ophthalmology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L Ingeborgh van den Born
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands.,Rotterdam Ophthalmic Institute, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Nikopoulos K, Cisarova K, Quinodoz M, Koskiniemi-Kuendig H, Miyake N, Farinelli P, Rehman AU, Khan MI, Prunotto A, Akiyama M, Kamatani Y, Terao C, Miya F, Ikeda Y, Ueno S, Fuse N, Murakami A, Wada Y, Terasaki H, Sonoda KH, Ishibashi T, Kubo M, Cremers FPM, Kutalik Z, Matsumoto N, Nishiguchi KM, Nakazawa T, Rivolta C. A frequent variant in the Japanese population determines quasi-Mendelian inheritance of rare retinal ciliopathy. Nat Commun 2019; 10:2884. [PMID: 31253780 PMCID: PMC6599023 DOI: 10.1038/s41467-019-10746-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Hereditary retinal degenerations (HRDs) are Mendelian diseases characterized by progressive blindness and caused by ultra-rare mutations. In a genomic screen of 331 unrelated Japanese patients, we identify a disruptive Alu insertion and a nonsense variant (p.Arg1933*) in the ciliary gene RP1, neither of which are rare alleles in Japan. p.Arg1933* is almost polymorphic (frequency = 0.6%, amongst 12,000 individuals), does not cause disease in homozygosis or heterozygosis, and yet is significantly enriched in HRD patients (frequency = 2.1%, i.e., a 3.5-fold enrichment; p-value = 9.2 × 10-5). Familial co-segregation and association analyses show that p.Arg1933* can act as a Mendelian mutation in trans with the Alu insertion, but might also associate with disease in combination with two alleles in the EYS gene in a non-Mendelian pattern of heredity. Our results suggest that rare conditions such as HRDs can be paradoxically determined by relatively common variants, following a quasi-Mendelian model linking monogenic and complex inheritance.
Collapse
Affiliation(s)
- Konstantinos Nikopoulos
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
- Service of Medical Genetics, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Katarina Cisarova
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Mathieu Quinodoz
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Hanna Koskiniemi-Kuendig
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Pietro Farinelli
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Atta Ur Rehman
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | - Andrea Prunotto
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Chikashi Terao
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Nobuo Fuse
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Sendai, 980-8573, Japan
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Yuko Wada
- Yuko Wada Eye Clinic, Sendai, 980-0011, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | - Zoltán Kutalik
- Institute of Social and Preventive Medicine, Lausanne University Hospital, 1011, Lausanne, Switzerland
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Carlo Rivolta
- Unit of Medical Genetics, Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK.
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), 4031, Basel, Switzerland.
- University of Basel, 4001, Basel, Switzerland.
| |
Collapse
|
32
|
Takita S, Miyamoto-Matsui K, Seko Y. Intra- and interspecies comparison of EYS transcripts highlights its characteristics in the eye. FASEB J 2019; 33:9422-9433. [PMID: 31120796 DOI: 10.1096/fj.201900056rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inherited mutations in the eyes shut homolog (EYS) gene cause retinitis pigmentosa. Although knock out of eys in zebrafish is pathogenic, the molecular function of EYS in vertebrate photoreceptors is poorly understood. Here, we show that the 5' portion of EYS is eye-specific across vertebrates. We previously determined that a 3' fragment of EYS with an unknown transcription start site is expressed in human dermal fibroblasts (HDF). To obtain insights into the molecular function of EYS in vertebrate photoreceptors, we extensively analyzed EYS (eys) expression in the human fibroblast cell line HDF-adult (HDF-a), the Y79 retinoblastoma cell line, and in zebrafish eyes using rapid amplification of cDNA end, cap analysis of gene expression, RNA sequencing, and RT-PCR. In HDF-a cells, we identified a novel transcript variant (tv), tv5, transcribed from exon 37. In Y79 cells and zebrafish eyes, EYS (eys) was predominantly transcribed from exon 1 or 2, whereas it was transcribed exclusively from exon 37 in HDF-a cells. In the zebrafish eye, there were splice variants that introduced stop codons, resulting in complete loss of the 3' portion of the RNA. These comparative approaches indicate that the 5' portion of the EYS (eys) mRNA appears to be photoreceptor-specific and that the compositions of the deduced EYS proteins in the eye are well-conserved across vertebrates.-Takita, S., Miyamoto-Matsui, K., Seko, Y. Intra- and interspecies comparison of EYS transcripts highlights its characteristics in the eye.
Collapse
Affiliation(s)
- Shimpei Takita
- Visual Functions Section, Department of Rehabilitation for Sensory Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Kiyoko Miyamoto-Matsui
- Visual Functions Section, Department of Rehabilitation for Sensory Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Yuko Seko
- Visual Functions Section, Department of Rehabilitation for Sensory Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
33
|
Rajaei S, Fatahi Y, Dabbagh A. Meeting Between Rumi and Shams in Notch Signaling; Implications for Pain Management: A Narrative Review. Anesth Pain Med 2019; 9:e85279. [PMID: 30881911 PMCID: PMC6412915 DOI: 10.5812/aapm.85279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/28/2018] [Indexed: 01/03/2023] Open
Abstract
The meeting between Rumi and Shams, in the 13th century, was a turning point in the life of Rumi leading to a revolutionary effect in his thoughts, ideas, and poems. This was an ever-inspiring meeting with many results throughout the centuries. This meeting has created some footprints in cellular and molecular medicine: The discovery of two distinct genes in Drosophila, i.e. Rumi and Shams and their role in controlling Notch signaling, which has a critical role in cell biology. This nomination and the interactions between the two genes has led us to a number of novel studies during the last years. This article reviews the interactions between Rumi and Shams and their effects on Notch signaling in order to find potential novel drugs for pain control through drug development studies in the future.
Collapse
Affiliation(s)
- Samira Rajaei
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Dabbagh
- Cardiac Anesthesiology Department, Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Cardiac Anesthesiology Department, Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Gaspar P, Almudi I, Nunes MDS, McGregor AP. Human eye conditions: insights from the fly eye. Hum Genet 2018; 138:973-991. [PMID: 30386938 DOI: 10.1007/s00439-018-1948-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022]
Abstract
The fruit fly Drosophila melanogaster has served as an excellent model to study and understand the genetics of many human diseases from cancer to neurodegeneration. Studying the regulation of growth, determination and differentiation of the compound eyes of this fly, in particular, have provided key insights into a wide range of diseases. Here we review the regulation of the development of fly eyes in light of shared aspects with human eye development. We also show how understanding conserved regulatory pathways in eye development together with the application of tools for genetic screening and functional analyses makes Drosophila a powerful model to diagnose and characterize the genetics underlying many human eye conditions, such as aniridia and retinitis pigmentosa. This further emphasizes the importance and vast potential of basic research to underpin applied research including identifying and treating the genetic basis of human diseases.
Collapse
Affiliation(s)
- Pedro Gaspar
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Isabel Almudi
- Centro Andaluz de Biología del Desarrollo, CSIC/ Universidad Pablo de Olavide, Carretera de Utrera Km1, 41013, Sevilla, Spain
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
35
|
Sengillo JD, Lee W, Nagasaki T, Schuerch K, Yannuzzi LA, Freund KB, Sparrow JR, Allikmets R, Tsang SH. A Distinct Phenotype of Eyes Shut Homolog (EYS)-Retinitis Pigmentosa Is Associated With Variants Near the C-Terminus. Am J Ophthalmol 2018; 190:99-112. [PMID: 29550188 DOI: 10.1016/j.ajo.2018.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 03/04/2018] [Accepted: 03/07/2018] [Indexed: 11/17/2022]
Abstract
PURPOSE Mutations in the eyes shut homolog (EYS) gene are a frequent cause of autosomal recessive retinitis pigmentosa (arRP). This study used multimodal retinal imaging to elucidate genotype-phenotype correlations in EYS-related RP (EYS-RP). DESIGN Cross-sectional study. METHODS Multimodal retinal imaging and electrophysiologic testing were assessed for 16 patients with genetic confirmation of EYS-RP. RESULTS A total of 27 unique EYS variants were identified in 16 patients. Seven patients presented with an unusual crescent-shaped hyperautofluorescent (hyperAF) ring on fundus autofluorescence (FAF) imaging encompassing a large nasal-superior area of the posterior pole. Three patients had a typical circular or oval perifoveal hyperAF ring and 6 patients had no hyperAF ring. Spectral-domain (SD) and en face optical coherence tomography (OCT) showed preserved ellipsoid zone and retinal thickness spatially corresponding to areas within the hyperAF rings. Eleven patients presented with a rod-cone dystrophy on full-field electroretinogram (ffERG), 1 patient presented with cone-rod dystrophy, and 4 patients did not undergo ffERG testing. A significant spatial association was found between EYS variant position and FAF phenotype, with variants occurring at a nucleotide position greater than GRCh37 6:65300137 (c.5617C) being more associated with patients exhibiting hyperAF rings at presentation. CONCLUSIONS EYS-RP is a heterogeneous manifestation. Variants occurring in positions closer to the C-terminus of EYS are more common in patients presenting with hyperAF rings on FAF imaging.
Collapse
Affiliation(s)
- Jesse D Sengillo
- Department of Ophthalmology, Columbia University, New York, New York, USA; State University of New York at Downstate Medical Center, Brooklyn, New York, USA
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | - Kaspar Schuerch
- Department of Ophthalmology, Columbia University, New York, New York, USA
| | | | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University, New York, New York, USA; Department of Pathology & Cell Biology, Stem Cell Initiative, Columbia University, New York, New York, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, New York, USA; Department of Pathology & Cell Biology, Stem Cell Initiative, Columbia University, New York, New York, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, New York, New York, USA; Department of Ophthalmology, Columbia University, New York, New York, USA; Department of Pathology & Cell Biology, Stem Cell Initiative, Columbia University, New York, New York, USA; Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.
| |
Collapse
|
36
|
Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, Hoyng CB, Roepman R, Klevering BJ. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res 2018; 66:157-186. [PMID: 29597005 DOI: 10.1016/j.preteyeres.2018.03.005] [Citation(s) in RCA: 604] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. RP is a leading cause of visual disability, with a worldwide prevalence of 1:4000. Although the majority of RP cases are non-syndromic, 20-30% of patients with RP also have an associated non-ocular condition. RP typically manifests with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors; central vision loss occurs later in life due to cone dysfunction. Photoreceptor function measured with an electroretinogram is markedly reduced or even absent. Optical coherence tomography (OCT) and fundus autofluorescence (FAF) imaging show a progressive loss of outer retinal layers and altered lipofuscin distribution in a characteristic pattern. Over the past three decades, a vast number of disease-causing variants in more than 80 genes have been associated with non-syndromic RP. The wide heterogeneity of RP makes it challenging to describe the clinical findings and pathogenesis. In this review, we provide a comprehensive overview of the clinical characteristics of RP specific to genetically defined patient subsets. We supply a unique atlas with color fundus photographs of most RP subtypes, and we discuss the relevant considerations with respect to differential diagnoses. In addition, we discuss the genes involved in the pathogenesis of RP, as well as the retinal processes that are affected by pathogenic mutations in these genes. Finally, we review management strategies for patients with RP, including counseling, visual rehabilitation, and current and emerging therapeutic options.
Collapse
Affiliation(s)
- Sanne K Verbakel
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ramon A C van Huet
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands; Department of Ophthalmology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
37
|
EYS Mutations Causing Autosomal Recessive Retinitis Pigmentosa: Changes of Retinal Structure and Function with Disease Progression. Genes (Basel) 2017; 8:genes8070178. [PMID: 28704921 PMCID: PMC5541311 DOI: 10.3390/genes8070178] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 11/24/2022] Open
Abstract
Mutations in the EYS (eyes shut homolog) gene are a common cause of autosomal recessive (ar) retinitis pigmentosa (RP). Without a mammalian model of human EYS disease, there is limited understanding of details of disease expression and rates of progression of the retinal degeneration. We studied clinically and with chromatic static perimetry, spectral-domain optical coherence tomography (OCT), and en face autofluoresence imaging, a cohort of 15 patients (ages 12–51 at first visit), some of whom had longitudinal data of function and structure. Rod sensitivity was able to be measured by chromatic perimetry in most patients at their earliest visits and some patients retained patchy rod function into the fifth decade of life. As expected from RP, cone sensitivity persisted after rod function was no longer measurable. The photoreceptor nuclear layer of the central retina was abnormal except at the fovea in most patients at first visit. Perifoveal disease measured over a period of years indicated that photoreceptor structural loss was followed by dysmorphology of the inner retina and loss of retinal pigment epithelial integrity. Although there could be variability in severity, preliminary analyses of the rates of vision loss suggested that EYS is a more rapidly progressive disease than other ciliopathies causing arRP, such as USH2A and MAK.
Collapse
|