1
|
McCabe C, Abadi E, Zarei M, Segars WP, Samei E. The potential of photon-counting CT for the improved precision of lung nodule radiomics. Phys Med Biol 2025; 70:10.1088/1361-6560/adaad2. [PMID: 39813810 PMCID: PMC11866323 DOI: 10.1088/1361-6560/adaad2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
Objective.Lung nodule appearance may provide prognostic information, as the presence of spiculation increases the suspicion of a nodule being cancerous. Spiculations can be quantified using morphological radiomics features extracted from CT images. Radiomics features can be affected by the acquisition parameters and scanner technologies; thus, it is essential to identify imaging conditions that provide reliable measurements, particularly for emerging technologies like photon-counting CT (PCCT). This study aimed to systematically quantify the effect of imaging parameters on the radiomics measurements using a virtual imaging trial (VIT) platform, and further verify the findings with human clinical data.Approach.The VIT utilized nine virtual patients, each with three 6 mm nodules of varying spiculations. The virtual patients were run through a validated CT simulator (DukeSim) to acquire images at three dose levels (CTDIvol = 2.85, 5.69, and 11.38 mGy) with a clinical energy-integrating CT and a PCCT. The acquired projection images were reconstructed using multiple slice thicknesses, kernels, and matrix sizes. The reconstructed images were processed to extract morphological features using three segmentation methods. The features were clustered into three broad type categories. Features extracted from the acquired CT images were compared to their corresponding ground truth values, across all imaging conditions.Main results.Among all imaging conditions, slice thickness had the greatest effect on the radiomics measurements. When the thickest slices were used, the coefficient of variation increased by [1.19%-9.66%] in the energy integrating CT images, and [3.94%-24.43%] in the PCCT images. For both scanners, varying the kernel sharpness and dose affected the radiomics measurements insignificantly, while pixel size and segmentation method were observed to have stronger effects. Under varying imaging conditions, the trends and magnitude of radiomics features measurements were coherent with virtual trial results.Significance.The findings stress the importance of choosing optimal reconstruction settings for radiomics extraction to achieve precise feature quantifications.
Collapse
Affiliation(s)
- Cindy McCabe
- Center for Virtual Imaging Trials, Duke University, Durham, NC, United States of America
| | - Ehsan Abadi
- Center for Virtual Imaging Trials, Duke University, Durham, NC, United States of America
| | - Mojtaba Zarei
- Center for Virtual Imaging Trials, Duke University, Durham, NC, United States of America
| | - W Paul Segars
- Center for Virtual Imaging Trials, Duke University, Durham, NC, United States of America
| | - Ehsan Samei
- Center for Virtual Imaging Trials, Duke University, Durham, NC, United States of America
| |
Collapse
|
2
|
Zhao B, Dercle L, Yang H, Riely GJ, Kris MG, Schwartz LH. Annotated test-retest dataset of lung cancer CT scan images reconstructed at multiple imaging parameters. Sci Data 2024; 11:1259. [PMID: 39567508 PMCID: PMC11579286 DOI: 10.1038/s41597-024-04085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Quantitative imaging biomarkers (QIB) are increasingly used in clinical research to advance precision medicine approaches in oncology. Computed tomography (CT) is a modality of choice for cancer diagnosis, prognosis, and response assessment due to its reliability and global accessibility. Here, we contribute to the cancer imaging community through The Cancer Imaging Archive (TCIA) by providing investigator-initiated, same-day repeat CT scan images of 32 non-small cell lung cancer (NSCLC) patients, along with radiologist-annotated lesion contours as a reference standard. Each scan was reconstructed into 6 image settings using various combinations of three slice thicknesses (1.25 mm, 2.5 mm, 5 mm) and two reconstruction kernels (lung, standard; GE CT equipment), which spans a wide range of CT imaging reconstruction parameters commonly used in lung cancer clinical practice and clinical trials. This holds considerable value for advancing the development of robust Radiomics, Artificial Intelligence (AI) and machine learning (ML) methods.
Collapse
Affiliation(s)
- Binsheng Zhao
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA.
| | - Laurent Dercle
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
- Department of Radiology, Columbia University New York, New York, NY, 10032, USA
| | - Hao Yang
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | - Gregory J Riely
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | - Mark G Kris
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | | |
Collapse
|
3
|
Sherminie LPG, Jayatilake ML, Hewavithana PB, Weerakoon BS, Vijithananda SM. Morphometry-based radiomics for predicting prognosis in soft tissue sarcomas of extremities following radiotherapy. Radiography (Lond) 2024; 30:1501-1507. [PMID: 39293374 DOI: 10.1016/j.radi.2024.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/14/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Cancer is a leading cause of premature death worldwide. Especially cancers like soft tissue sarcomas of extremities (STSE) pose a challenge in oncologic management. Thus, the assessment of prognosis in patients with such cancers is important to select proper management strategies. Radiomics is a promising approach that has shown a wide range of potential applications including predicting prognosis. This study focused on finding out whether the morphometry-based radiomics features could be used to predict the prognosis of patients with STSE following radiotherapy. METHODS The deidentified images, contours and clinical data from The Cancer Imaging Archive (TCIA) were used to evaluate thirty patients with histologically proven STSE following radiotherapy. Twenty-nine three dimensional (3D) morphometric features were extracted for each patient and the two-sample t-test (one-tailed) with the 95% confidence level was used to determine whether there was a significant difference between the patients who developed recurrence or metastasis (RM) and patients who were recurrence or metastasis-free (RMF) following radiotherapy for each morphometric feature. RESULTS According to the findings, only surface-to-volume ratio demonstrated a significant difference (p-value of 0.029) between the RM and RMF after receiving radiotherapy for STSE. CONCLUSION Only surface-to-volume ratio could be utilized as a predictor for assessing the prognosis of patients with STSE following radiotherapy. IMPLICATIONS FOR PRACTICE The ability to predict the response after radiotherapy can facilitate the decision-making process, which will ultimately improve patient outcomes, especially considering the challenges in the management of STSE. This study provides insight that the integration of morphometry-based radiomics features into radiotherapy practice could be useful to evaluate the prognosis of patients who received radiotherapy for STSE.
Collapse
Affiliation(s)
- L P G Sherminie
- Department of Radiography/Radiotherapy, Faculty of Allied Health Sciences, University of Peradeniya, Sri Lanka.
| | - M L Jayatilake
- Department of Radiography/Radiotherapy, Faculty of Allied Health Sciences, University of Peradeniya, Sri Lanka.
| | - P B Hewavithana
- Department of Radiology, Faculty of Medicine, University of Peradeniya, Sri Lanka.
| | - B S Weerakoon
- Department of Radiography/Radiotherapy, Faculty of Allied Health Sciences, University of Peradeniya, Sri Lanka.
| | - S M Vijithananda
- Department of Radiology, Faculty of Medicine, University of Peradeniya, Sri Lanka.
| |
Collapse
|
4
|
Jeong J, Choi H, Kim M, Kim SS, Goh J, Hwang J, Kim J, Cho HH, Eom K. Computed tomography radiomics models of tumor differentiation in canine small intestinal tumors. Front Vet Sci 2024; 11:1450304. [PMID: 39376912 PMCID: PMC11457012 DOI: 10.3389/fvets.2024.1450304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Radiomics models have been widely exploited in oncology for the investigation of tumor classification, as well as for predicting tumor response to treatment and genomic sequence; however, their performance in veterinary gastrointestinal tumors remains unexplored. Here, we sought to investigate and compare the performance of radiomics models in various settings for differentiating among canine small intestinal adenocarcinoma, lymphoma, and spindle cell sarcoma. Forty-two small intestinal tumors were contoured using four different segmentation methods: pre- or post-contrast, each with or without the inclusion of intraluminal gas. The mesenteric lymph nodes of pre- and post-contrast images were also contoured. The bin settings included bin count and bin width of 16, 32, 64, 128, and 256. Multinomial logistic regression, random forest, and support vector machine models were used to construct radiomics models. Using features from both primary tumors and lymph nodes showed significantly better performance than modeling using only the radiomics features of primary tumors, which indicated that the inclusion of mesenteric lymph nodes aids model performance. The support vector machine model exhibited significantly superior performance compared with the multinomial logistic regression and random forest models. Combining radiologic findings with radiomics features improved performance compared to using only radiomics features, highlighting the importance of radiologic findings in model building. A support vector machine model consisting of radiologic findings, primary tumors, and lymph node radiomics features with bin count 16 in post-contrast images with the exclusion of intraluminal gas showed the best performance among the various models tested. In conclusion, this study suggests that mesenteric lymph node segmentation and radiological findings should be integrated to build a potent radiomics model capable of differentiating among small intestinal tumors.
Collapse
Affiliation(s)
- Jeongyun Jeong
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyunji Choi
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Minjoo Kim
- Shine Animal Medical Center, Seoul, Republic of Korea
| | - Sung-Soo Kim
- VIP Animal Medical Center, Seoul, Republic of Korea
| | - Jinhyong Goh
- Daegu Animal Medical Center, Daegu, Republic of Korea
- Busan Jeil Animal Medical Center, Busan, Republic of Korea
| | | | - Jaehwan Kim
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hwan-Ho Cho
- Department of Electronics Engineering, Incheon National University, Incheon, Republic of Korea
| | - Kidong Eom
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Ahmed TM, Lopez-Ramirez F, Fishman EK, Chu L. Artificial Intelligence Applications in Pancreatic Cancer Imaging. ADVANCES IN CLINICAL RADIOLOGY 2024; 6:41-54. [DOI: 10.1016/j.yacr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Mostafavi L, Homayounieh F, Lades F, Primak A, Muse V, Harris GJ, Kalra MK, Digumarthy SR. Correlation of Radiomics with Treatment Response in Liver Metastases. Acad Radiol 2024; 31:3133-3141. [PMID: 38087718 DOI: 10.1016/j.acra.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 08/31/2024]
Abstract
RATIONALE AND OBJECTIVES To assess differences in radiomics derived from semi-automatic segmentation of liver metastases for stable disease (SD), partial response (PR), and progressive disease (PD) based on RECIST1.1 and to assess if radiomics alone at baseline can predict response. MATERIALS AND METHODS Our IRB-approved study included 203 women (mean age 54 ± 11 years) with metastatic liver disease from breast cancer. All patients underwent contrast abdomen-pelvis CT in the portal venous phase at two points: baseline (pre-treatment) and follow-up (between 3 and 12 months following treatment). Patients were subcategorized into three subgroups based on RECIST 1.1 criteria (Response Evaluation Criteria in Solid Tumors version 1.1): 66 with SD, 69 with PR, and 68 with PD on follow-up CT. The deidentified baseline and follow-up CT images were exported to the radiomics prototype. The prototype enabled semi-automatic segmentation of the target liver lesions for the extraction of first and high order radiomics. Statistical analyses with logistic regression and random forest classifiers were performed to differentiate SD from PD and PR. RESULTS There was no significant difference between the radiomics on the baseline and follow-up CT images of patients with SD (area under the curve (AUC): 0.3). Random forest classifier differentiated patients with PR with an AUC of 0.845. The most relevant feature was the large dependence emphasis's high and low pass wavelet filter (derived gray level dependence matrix features). Random forest classifier differentiated PD with an AUC of 0.731, with the most relevant feature being the surface-to-volume ratio. There was no difference in radiomics among the three groups at baseline; therefore, a response could not be predicted. CONCLUSION Radiomics of liver metastases with semi-automatic segmentation demonstrate differences between SD from PR and PD. SUMMARY STATEMENT Semiautomatic segmentation and radiomics of metastatic liver disease demonstrate differences in SD from the PR and progressive metastatic on the baseline and follow-up CT. Despite substantial variations in the scanners, acquisition, and reconstruction parameters, radiomics had an AUC of 0.84-0.89 for differentiating stable hepatic metastases from decreasing and increasing metastatic disease.
Collapse
Affiliation(s)
- Leila Mostafavi
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.); Tumor Imaging Metrics Core (TIMC), Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA (L.M., G.J.H.).
| | - Fatemeh Homayounieh
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| | - Felix Lades
- Siemens Healthcare GmbH, Forchheim, Germany (F.L.)
| | - Andrew Primak
- Siemens Healthineers, Malvern, Pennsylvania, USA (A.P.)
| | - Victorine Muse
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| | - Gordon J Harris
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.); Tumor Imaging Metrics Core (TIMC), Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA (L.M., G.J.H.)
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| | - Subba R Digumarthy
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| |
Collapse
|
7
|
Trojani V, Bassi MC, Verzellesi L, Bertolini M. Impact of Preprocessing Parameters in Medical Imaging-Based Radiomic Studies: A Systematic Review. Cancers (Basel) 2024; 16:2668. [PMID: 39123396 PMCID: PMC11311340 DOI: 10.3390/cancers16152668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Lately, radiomic studies featuring the development of a signature to use in prediction models in diagnosis or prognosis outcomes have been increasingly published. While the results are shown to be promising, these studies still have many pitfalls and limitations. One of the main issues of these studies is that radiomic features depend on how the images are preprocessed before their computation. Since, in widely known and used software for radiomic features calculation, it is possible to set these preprocessing parameters before the calculation of the radiomic feature, there are ongoing studies assessing the stability and repeatability of radiomic features to find the most suitable preprocessing parameters for every used imaging modality. MATERIALS AND METHODS We performed a comprehensive literature search using four electronic databases: PubMed, Cochrane Library, Embase, and Scopus. Mesh terms and free text were modeled in search strategies for databases. The inclusion criteria were studies where preprocessing parameters' influence on feature values and model predictions was addressed. Records lacking information on image acquisition parameters were excluded, and any eligible studies with full-text versions were included in the review process, while conference proceedings and monographs were disregarded. We used the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies 2) tool to investigate the risk of bias. We synthesized our data in a table divided by the imaging modalities subgroups. RESULTS After applying the inclusion and exclusion criteria, we selected 43 works. This review examines the impact of preprocessing parameters on the reproducibility and reliability of radiomic features extracted from multimodality imaging (CT, MRI, CBCT, and PET/CT). Standardized preprocessing is crucial for consistent radiomic feature extraction. Key preprocessing steps include voxel resampling, normalization, and discretization, which influence feature robustness and reproducibility. In total, 44% of the included works studied the effects of an isotropic voxel resampling, and most studies opted to employ a discretization strategy. From 2021, several studies started selecting the best set of preprocessing parameters based on models' best performance. As for comparison metrics, ICC was the most used in MRI studies in 58% of the screened works. CONCLUSIONS From our work, we highlighted the need to harmonize the use of preprocessing parameters and their values, especially in light of future studies of prospective studies, which are still lacking in the current literature.
Collapse
Affiliation(s)
- Valeria Trojani
- Medical Physics, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy; (L.V.); (M.B.)
| | | | - Laura Verzellesi
- Medical Physics, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy; (L.V.); (M.B.)
| | - Marco Bertolini
- Medical Physics, Azienda USL-IRCCS, 42123 Reggio Emilia, Italy; (L.V.); (M.B.)
| |
Collapse
|
8
|
Brown KH, Kerr BN, Pettigrew M, Connor K, Miller IS, Shiels L, Connolly C, McGarry C, Byrne AT, Butterworth KT. A comparative analysis of preclinical computed tomography radiomics using cone-beam and micro-computed tomography scanners. Phys Imaging Radiat Oncol 2024; 31:100615. [PMID: 39157293 PMCID: PMC11328005 DOI: 10.1016/j.phro.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Background and purpose Radiomics analysis extracts quantitative data (features) from medical images. These features could potentially reflect biological characteristics and act as imaging biomarkers within precision medicine. However, there is a lack of cross-comparison and validation of radiomics outputs which is paramount for clinical implementation. In this study, we compared radiomics outputs across two computed tomography (CT)-based preclinical scanners. Materials and methods Cone beam CT (CBCT) and µCT scans were acquired using different preclinical CT imaging platforms. The reproducibility of radiomics features on each scanner was assessed using a phantom across imaging energies (40 & 60 kVp) and segmentation volumes (44-238 mm3). Retrospective mouse scans were used to compare feature reliability across varying tissue densities (lung, heart, bone), scanners and after voxel size harmonisation. Reliable features had an intraclass correlation coefficient (ICC) > 0.8. Results First order and GLCM features were the most reliable on both scanners across different volumes. There was an inverse relationship between tissue density and feature reliability, with the highest number of features in lung (CBCT=580, µCT=734) and lowest in bone (CBCT=110, µCT=560). Comparable features for lung and heart tissues increased when voxel sizes were harmonised. We have identified tissue-specific preclinical radiomics signatures in mice for the lung (133), heart (35), and bone (15). Conclusions Preclinical CBCT and µCT scans can be used for radiomics analysis to support the development of meaningful radiomics signatures. This study demonstrates the importance of standardisation and emphasises the need for multi-centre studies.
Collapse
Affiliation(s)
- Kathryn H Brown
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Brianna N Kerr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Mihaela Pettigrew
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Kate Connor
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ian S Miller
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- National Preclinical Imaging Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Liam Shiels
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Colum Connolly
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Conor McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
- Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Belfast, United Kingdom
| | - Annette T Byrne
- Department of Physiology and Medical Physics and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- National Preclinical Imaging Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
9
|
Gawlitza J, Endres S, Fries P, Graf M, Wilkens H, Stroeder J, Buecker A, Massmann A, Ziegelmayer S. Machine learning assisted feature identification and prediction of hemodynamic endpoints using computed tomography in patients with CTEPH. Int J Cardiovasc Imaging 2024; 40:569-577. [PMID: 38143250 PMCID: PMC10950991 DOI: 10.1007/s10554-023-03026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare but potentially curable cause of pulmonary hypertension (PH). Currently PH is diagnosed by right heart catheterisation. Computed tomography (CT) is used for ruling out other causes and operative planning. This study aims to evaluate importance of different quantitative/qualitative imaging features and develop a supervised machine learning (ML) model to predict hemodynamic risk groups. 127 Patients with diagnosed CTEPH who received preoperative right heart catheterization and thoracic CTA examinations (39 ECG-gated; 88 non-ECG gated) were included. 19 qualitative/quantitative imaging features and 3 hemodynamic parameters [mean pulmonary artery pressure, right atrial pressure (RAP), pulmonary artery oxygen saturation (PA SaO2)] were gathered. Diameter-based CT features were measured in axial and adjusted multiplane reconstructions (MPR). Univariate analysis was performed for qualitative and quantitative features. A random forest algorithm was trained on imaging features to predict hemodynamic risk groups. Feature importance was calculated for all models. Qualitative and quantitative parameters showed no significant differences between ECG and non-ECG gated CTs. Depending on reconstruction plane, five quantitative features were significantly different, but mean absolute difference between parameters (MPR vs. axial) was 0.3 mm with no difference in correlation with hemodynamic parameters. Univariate analysis showed moderate to strong correlation for multiple imaging features with hemodynamic parameters. The model achieved an AUC score of 0.82 for the mPAP based risk stratification and 0.74 for the PA SaO2 risk stratification. Contrast agent retention in hepatic vein, mosaic attenuation pattern and the ratio right atrium/left ventricle were the most important features among other parameters. Quantitative and qualitative imaging features of reconstructions correlate with hemodynamic parameters in preoperative CTEPH patients-regardless of MPR adaption. Machine learning based analysis of preoperative imaging features can be used for non-invasive risk stratification. Qualitative features seem to be more important than previously anticipated.
Collapse
Affiliation(s)
- Joshua Gawlitza
- Clinic/Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany.
| | - Sophie Endres
- Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, Kirrberger Strasse 100 (Building 41), 66424, Homburg, Germany
| | - Peter Fries
- Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, Kirrberger Strasse 100 (Building 41), 66424, Homburg, Germany
| | - Markus Graf
- Clinic/Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Heinrike Wilkens
- Cardiology, Angiology, Pulmonary and Intensive Care, Saarland University Medical Center, Kirrberger Strasse 100, 66424, Homburg, Germany
| | - Jonas Stroeder
- Department of Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Arno Buecker
- Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, Kirrberger Strasse 100 (Building 41), 66424, Homburg, Germany
| | - Alexander Massmann
- Department of Radiology and Nuclear Medicine, Robert-Bosch-Krankenhaus, Auerbachstr. 110, 70376, Stuttgart, Germany
| | - Sebastian Ziegelmayer
- Clinic/Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| |
Collapse
|
10
|
Schön F, Kieslich A, Nebelung H, Riediger C, Hoffmann RT, Zwanenburg A, Löck S, Kühn JP. Comparative analysis of radiomics and deep-learning algorithms for survival prediction in hepatocellular carcinoma. Sci Rep 2024; 14:590. [PMID: 38182664 PMCID: PMC10770355 DOI: 10.1038/s41598-023-50451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
To examine the comparative robustness of computed tomography (CT)-based conventional radiomics and deep-learning convolutional neural networks (CNN) to predict overall survival (OS) in HCC patients. Retrospectively, 114 HCC patients with pretherapeutic CT of the liver were randomized into a development (n = 85) and a validation (n = 29) cohort, including patients of all tumor stages and several applied therapies. In addition to clinical parameters, image annotations of the liver parenchyma and of tumor findings on CT were available. Cox-regression based on radiomics features and CNN models were established and combined with clinical parameters to predict OS. Model performance was assessed using the concordance index (C-index). Log-rank tests were used to test model-based patient stratification into high/low-risk groups. The clinical Cox-regression model achieved the best validation performance for OS (C-index [95% confidence interval (CI)] 0.74 [0.57-0.86]) with a significant difference between the risk groups (p = 0.03). In image analysis, the CNN models (lowest C-index [CI] 0.63 [0.39-0.83]; highest C-index [CI] 0.71 [0.49-0.88]) were superior to the corresponding radiomics models (lowest C-index [CI] 0.51 [0.30-0.73]; highest C-index [CI] 0.66 [0.48-0.79]). A significant risk stratification was not possible (p > 0.05). Under clinical conditions, CNN-algorithms demonstrate superior prognostic potential to predict OS in HCC patients compared to conventional radiomics approaches and could therefore provide important information in the clinical setting, especially when clinical data is limited.
Collapse
Affiliation(s)
- Felix Schön
- Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| | - Aaron Kieslich
- OncoRay‑National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| | - Heiner Nebelung
- Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Carina Riediger
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ralf-Thorsten Hoffmann
- Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Alex Zwanenburg
- OncoRay‑National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC) Dresden, Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Löck
- OncoRay‑National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jens-Peter Kühn
- Institute and Polyclinic for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
11
|
Gupta S, Nayak K, Pendem S. Impact of slice thickness on reproducibility of CT radiomic features of lung tumors. F1000Res 2023; 12:1319. [PMID: 38454921 PMCID: PMC10918310 DOI: 10.12688/f1000research.141148.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 03/09/2024] Open
Abstract
Background Radiomics posits that quantified characteristics from radiographic images reflect underlying pathophysiology. Lung cancer (LC) is one of the prevalent forms of cancer, causing mortality. Slice thickness (ST) of computed tomography (CT) images is a crucial factor influencing the generalizability of radiomic features (RF) in oncology. There is scarcity of research that how ST affects variability of RF in LC. The present study helps in identifying the specific RF categories affected by variations in ST and provides valuable insights for researchers and clinicians working with RF in the field of LC.Hence, aim of the study is to evaluate influence of ST on reproducibility of CT-RF for lung tumors. Methods This is a prospective study, 32 patients with confirmed histopathological diagnosis of lung tumors were included. Contrast Enhanced CT (CECT) thorax was performed using a 128- Incisive CT (Philips Health Care). The image acquisition was performed with 5-mm and 2 mm STwas reconstructed retrospectively. RF were extracted from the CECT thorax images of both ST. We conducted a paired t-test to evaluate the disparity in RF between the two thicknesses. Lin's Concordance Correlation Coefficient (CCC) was performed to identify the reproducibility of RF between the two thicknesses. Results Out of 107 RF, 66 (61.6%) exhibited a statistically significant distinction (p<0.05) when comparing two ST and while 41 (38.3%) RF did not show significant distinction (p>0.05) between the two ST measurements. 29 features (CCC ≥ 0.90) showed excellent to moderate reproducibility, and 78 features (CCC ≤ 0.90) showed poor reproducibility. Among the 7 RF categories, the shape-based features (57.1%) showed the maximum reproducibility whereas NGTDM-based features showed negligible reproducibility. Conclusions The ST had a notable impact on the majority of CT-RF of lung tumors. Shape based features (57.1%). First order (44.4%) features showed highest reproducibility compared to other RF categories.
Collapse
Affiliation(s)
- Sanat Gupta
- Manipal College of Health Professions, Department of Medical Imaging Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kaushik Nayak
- Manipal College of Health Professions, Department of Medical Imaging Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Saikiran Pendem
- Manipal College of Health Professions, Department of Medical Imaging Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
12
|
Serrano E, Moreno J, Llull L, Rodríguez A, Zwanzger C, Amaro S, Oleaga L, López-Rueda A. Radiomic-based nonlinear supervised learning classifiers on non-contrast CT to predict functional prognosis in patients with spontaneous intracerebral hematoma. RADIOLOGIA 2023; 65:519-530. [PMID: 38049251 DOI: 10.1016/j.rxeng.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/03/2023] [Indexed: 12/06/2023]
Abstract
PURPOSE To evaluate if nonlinear supervised learning classifiers based on non-contrast CT can predict functional prognosis at discharge in patients with spontaneous intracerebral hematoma. METHODS Retrospective, single-center, observational analysis of patients with a diagnosis of spontaneous intracerebral hematoma confirmed by non-contrast CT between January 2016 and April 2018. Patients with HIE > 18 years and with TCCSC performed within the first 24 h of symptom onset were included. Patients with secondary spontaneous intracerebral hematoma and in whom radiomic variables were not available were excluded. Clinical, demographic and admission variables were collected. Patients were classified according to the Modified Rankin Scale (mRS) at discharge into good (mRS 0-2) and poor prognosis (mRS 3-6). After manual segmentation of each spontaneous intracerebral hematoma, the radiomics variables were obtained. The sample was divided into a training and testing cohort and a validation cohort (70-30% respectively). Different methods of variable selection and dimensionality reduction were used, and different algorithms were used for model construction. Stratified 10-fold cross-validation were performed on the training and testing cohort and the mean area under the curve (AUC) were calculated. Once the models were trained, the sensitivity of each was calculated to predict functional prognosis at discharge in the validation cohort. RESULTS 105 patients with spontaneous intracerebral hematoma were analyzed. 105 radiomic variables were evaluated for each patient. P-SVM, KNN-E and RF-10 algorithms, in combination with the ANOVA variable selection method, were the best performing classifiers in the training and testing cohort (AUC 0.798, 0.752 and 0.742 respectively). The predictions of these models, in the validation cohort, had a sensitivity of 0.897 (0.778-1;95%CI), with a false-negative rate of 0% for predicting poor functional prognosis at discharge. CONCLUSION The use of radiomics-based nonlinear supervised learning classifiers are a promising diagnostic tool for predicting functional outcome at discharge in HIE patients, with a low false negative rate, although larger and balanced samples are still needed to develop and improve their performance.
Collapse
Affiliation(s)
- E Serrano
- Departamento Radiología, Hospital Universitario Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - J Moreno
- Clínica Iribas-IRM, Asunción, Paraguay
| | - L Llull
- Departamento de Neurología, Hospital Clínic, Barcelona, Spain
| | - A Rodríguez
- Departamento de Neurología, Hospital Clínic, Barcelona, Spain
| | - C Zwanzger
- Departamento Radiología, Hospital del Mar, Barcelona, Spain
| | - S Amaro
- Departamento de Neurología, Hospital Clínic, Barcelona, Spain
| | - L Oleaga
- Departamento Radiología, Hospital Clínic, Barcelona, Spain
| | - A López-Rueda
- Departamento Radiología, Hospital Clínic, Barcelona, Spain; Servicio de Informática Clínica, Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
13
|
Wei L, Yadav A, Hsu W. CTFlow: Mitigating Effects of Computed Tomography Acquisition and Reconstruction with Normalizing Flows. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2023; 14226:413-422. [PMID: 38737498 PMCID: PMC11086056 DOI: 10.1007/978-3-031-43990-2_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Mitigating the effects of image appearance due to variations in computed tomography (CT) acquisition and reconstruction parameters is a challenging inverse problem. We present CTFlow, a normalizing flows-based method for harmonizing CT scans acquired and reconstructed using different doses and kernels to a target scan. Unlike existing state-of-the-art image harmonization approaches that only generate a single output, flow-based methods learn the explicit conditional density and output the entire spectrum of plausible reconstruction, reflecting the underlying uncertainty of the problem. We demonstrate how normalizing flows reduces variability in image quality and the performance of a machine learning algorithm for lung nodule detection. We evaluate the performance of CTFlow by 1) comparing it with other techniques on a denoising task using the AAPM-Mayo Clinical Low-Dose CT Grand Challenge dataset, and 2) demonstrating consistency in nodule detection performance across 186 real-world low-dose CT chest scans acquired at our institution. CTFlow performs better in the denoising task for both peak signal-to-noise ratio and perceptual quality metrics. Moreover, CTFlow produces more consistent predictions across all dose and kernel conditions than generative adversarial network (GAN)-based image harmonization on a lung nodule detection task. The code is available at https://github.com/hsu-lab/ctflow.
Collapse
Affiliation(s)
- Leihao Wei
- Department of Electrical & Computer Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
- Medical & Imaging Informatics, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Anil Yadav
- Medical & Imaging Informatics, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - William Hsu
- Medical & Imaging Informatics, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| |
Collapse
|
14
|
Sherminie LPG, Jayatilake ML, Hewavithana B, Weerakoon BS, Vijithananda SM. Morphometry-based radiomics for predicting therapeutic response in patients with gliomas following radiotherapy. Front Oncol 2023; 13:1139902. [PMID: 37664038 PMCID: PMC10470056 DOI: 10.3389/fonc.2023.1139902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Gliomas are still considered as challenging in oncologic management despite the developments in treatment approaches. The complete elimination of a glioma might not be possible even after a treatment and assessment of therapeutic response is important to determine the future course of actions for patients with such cancers. In the recent years radiomics has emerged as a promising solution with potential applications including prediction of therapeutic response. Hence, this study was focused on investigating whether morphometry-based radiomics signature could be used to predict therapeutic response in patients with gliomas following radiotherapy. Methods 105 magnetic resonance (MR) images including segmented and non-segmented images were used to extract morphometric features and develop a morphometry-based radiomics signature. After determining the appropriate machine learning algorithm, a prediction model was developed to predict the therapeutic response eliminating the highly correlated features as well as without eliminating the highly correlated features. Then the model performance was evaluated. Results Tumor grade had the highest contribution to develop the morphometry-based signature. Random forest provided the highest accuracy to train the prediction model derived from the morphometry-based radiomics signature. An accuracy of 86% and area under the curve (AUC) value of 0.91 were achieved for the prediction model evaluated without eliminating the highly correlated features whereas accuracy and AUC value were 84% and 0.92 respectively for the prediction model evaluated after eliminating the highly correlated features. Discussion Nonetheless, the developed morphometry-based radiomics signature could be utilized as a noninvasive biomarker for therapeutic response in patients with gliomas following radiotherapy.
Collapse
Affiliation(s)
- Lahanda Purage G. Sherminie
- Department of Radiography/Radiotherapy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mohan L. Jayatilake
- Department of Radiography/Radiotherapy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Badra Hewavithana
- Department of Radiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Bimali S. Weerakoon
- Department of Radiography/Radiotherapy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Sahan M. Vijithananda
- Department of Radiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
15
|
Ger RB, Wei L, Naqa IE, Wang J. The Promise and Future of Radiomics for Personalized Radiotherapy Dosing and Adaptation. Semin Radiat Oncol 2023; 33:252-261. [PMID: 37331780 PMCID: PMC11214660 DOI: 10.1016/j.semradonc.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Quantitative image analysis, also known as radiomics, aims to analyze large-scale quantitative features extracted from acquired medical images using hand-crafted or machine-engineered feature extraction approaches. Radiomics has great potential for a variety of clinical applications in radiation oncology, an image-rich treatment modality that utilizes computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) for treatment planning, dose calculation, and image guidance. A promising application of radiomics is in predicting treatment outcomes after radiotherapy such as local control and treatment-related toxicity using features extracted from pretreatment and on-treatment images. Based on these individualized predictions of treatment outcomes, radiotherapy dose can be sculpted to meet the specific needs and preferences of each patient. Radiomics can aid in tumor characterization for personalized targeting, especially for identifying high-risk regions within a tumor that cannot be easily discerned based on size or intensity alone. Radiomics-based treatment response prediction can aid in developing personalized fractionation and dose adjustments. In order to make radiomics models more applicable across different institutions with varying scanners and patient populations, further efforts are needed to harmonize and standardize the acquisition protocols by minimizing uncertainties within the imaging data.
Collapse
Affiliation(s)
- Rachel B Ger
- Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medicine, Baltimore, MD
| | - Lise Wei
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX..
| |
Collapse
|
16
|
Illimoottil M, Ginat D. Recent Advances in Deep Learning and Medical Imaging for Head and Neck Cancer Treatment: MRI, CT, and PET Scans. Cancers (Basel) 2023; 15:3267. [PMID: 37444376 PMCID: PMC10339989 DOI: 10.3390/cancers15133267] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 07/15/2023] Open
Abstract
Deep learning techniques have been developed for analyzing head and neck cancer imaging. This review covers deep learning applications in cancer imaging, emphasizing tumor detection, segmentation, classification, and response prediction. In particular, advanced deep learning techniques, such as convolutional autoencoders, generative adversarial networks (GANs), and transformer models, as well as the limitations of traditional imaging and the complementary roles of deep learning and traditional techniques in cancer management are discussed. Integration of radiomics, radiogenomics, and deep learning enables predictive models that aid in clinical decision-making. Challenges include standardization, algorithm interpretability, and clinical validation. Key gaps and controversies involve model generalizability across different imaging modalities and tumor types and the role of human expertise in the AI era. This review seeks to encourage advancements in deep learning applications for head and neck cancer management, ultimately enhancing patient care and outcomes.
Collapse
Affiliation(s)
- Mathew Illimoottil
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64018, USA
| | - Daniel Ginat
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Loi S, Mori M, Palumbo D, Crippa S, Palazzo G, Spezi E, Del Vecchio A, Falconi M, De Cobelli F, Fiorino C. Limited impact of discretization/interpolation parameters on the predictive power of CT radiomic features in a surgical cohort of pancreatic cancer patients. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01649-y. [PMID: 37289267 DOI: 10.1007/s11547-023-01649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE To explore the variation of the discriminative power of CT (Computed Tomography) radiomic features (RF) against image discretization/interpolation in predicting early distant relapses (EDR) after upfront surgery. MATERIALS AND METHODS Data of 144 patients with pre-surgical high contrast CT were processed consistently with IBSI (Image Biomarker Standardization Initiative) guidelines. Image interpolation/discretization parameters were intentionally changed, including cubic voxel size (0.21-27 mm3) and binning (32-128 grey levels) in a 15 parameter's sets. After excluding RF with poor inter-observer delineation agreement (ICC < 0.80) and not negligible inter-scanner variability, the variation of 80 RF against discretization/interpolation was first quantified. Then, their ability in classifying patients with early distant relapses (EDR, < 10 months, previously assessed at the first quartile value of time-to-relapse) was investigated in terms of AUC (Area Under Curve) variation for those RF significantly associated to EDR. RESULTS Despite RF variability against discretization/interpolation parameters was large and only 30/80 RF showed %COV < 20 (%COV = 100*STDEV/MEAN), AUC changes were relatively limited: for 30 RF significantly associated with EDR (AUC values around 0.60-0.70), the mean values of SD of AUC variability and AUC range were 0.02 and 0.05 respectively. AUC ranges were between 0.00 and 0.11, with values ≤ 0.05 in 16/30 RF. These variations were further reduced when excluding the extreme values of 32 and 128 for grey levels (Average AUC range 0.04, with values between 0.00 and 0.08). CONCLUSIONS The discriminative power of CT RF in the prediction of EDR after upfront surgery for pancreatic cancer is relatively invariant against image interpolation/discretization within a large range of voxel sizes and binning.
Collapse
Affiliation(s)
- Sara Loi
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 690, 20132, Milan, Italy
| | - Martina Mori
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 690, 20132, Milan, Italy
| | | | - Stefano Crippa
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute, Milan, Italy
| | - Gabriele Palazzo
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 690, 20132, Milan, Italy
| | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff, Wales, UK
| | - Antonella Del Vecchio
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 690, 20132, Milan, Italy
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute, Milan, Italy
| | - Francesco De Cobelli
- San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute, Milan, Italy
| | - Claudio Fiorino
- Medical Physics, San Raffaele Scientific Institute, Via Olgettina 690, 20132, Milan, Italy.
| |
Collapse
|
18
|
Erasmus JJ, Vlahos I. Editorial Commentary: Baseline Radiomic Signature to Estimate Overall Survival in Patients With NSCLC. J Thorac Oncol 2023; 18:556-558. [PMID: 37087116 DOI: 10.1016/j.jtho.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 04/24/2023]
Affiliation(s)
- Jeremy J Erasmus
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ioannis Vlahos
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
19
|
Liu Y, Wei X, Feng X, Liu Y, Feng G, Du Y. Repeatability of radiomics studies in colorectal cancer: a systematic review. BMC Gastroenterol 2023; 23:125. [PMID: 37059990 PMCID: PMC10105401 DOI: 10.1186/s12876-023-02743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Recently, radiomics has been widely used in colorectal cancer, but many variable factors affect the repeatability of radiomics research. This review aims to analyze the repeatability of radiomics studies in colorectal cancer and to evaluate the current status of radiomics in the field of colorectal cancer. METHODS The included studies in this review by searching from the PubMed and Embase databases. Then each study in our review was evaluated using the Radiomics Quality Score (RQS). We analyzed the factors that may affect the repeatability in the radiomics workflow and discussed the repeatability of the included studies. RESULTS A total of 188 studies was included in this review, of which only two (2/188, 1.06%) studies controlled the influence of individual factors. In addition, the median score of RQS was 11 (out of 36), range-1 to 27. CONCLUSIONS The RQS score was moderately low, and most studies did not consider the repeatability of radiomics features, especially in terms of Intra-individual, scanners, and scanning parameters. To improve the generalization of the radiomics model, it is necessary to further control the variable factors of repeatability.
Collapse
Affiliation(s)
- Ying Liu
- School of Medical Imaging, North Sichuan Medical College, Sichuan Province, Nanchong City, 637000, China
| | - Xiaoqin Wei
- School of Medical Imaging, North Sichuan Medical College, Sichuan Province, Nanchong City, 637000, China
| | | | - Yan Liu
- Department of Radiology, the Affiliated Hospital of North Sichuan Medical College, 1 Maoyuannan Road, Sichuan Province, 637000, Nanchong City, China
| | - Guiling Feng
- Department of Radiology, the Affiliated Hospital of North Sichuan Medical College, 1 Maoyuannan Road, Sichuan Province, 637000, Nanchong City, China
| | - Yong Du
- Department of Radiology, the Affiliated Hospital of North Sichuan Medical College, 1 Maoyuannan Road, Sichuan Province, 637000, Nanchong City, China.
| |
Collapse
|
20
|
Aymerich M, Riveira-Martín M, García-Baizán A, González-Pena M, Sebastià C, López-Medina A, Mesa-Álvarez A, Tardágila de la Fuente G, Méndez-Castrillón M, Berbel-Rodríguez A, Matos-Ugas AC, Berenguer R, Sabater S, Otero-García M. Pilot Study for the Assessment of the Best Radiomic Features for Bosniak Cyst Classification Using Phantom and Radiologist Inter-Observer Selection. Diagnostics (Basel) 2023; 13:diagnostics13081384. [PMID: 37189486 DOI: 10.3390/diagnostics13081384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023] Open
Abstract
Since the Bosniak cysts classification is highly reader-dependent, automated tools based on radiomics could help in the diagnosis of the lesion. This study is an initial step in the search for radiomic features that may be good classifiers of benign-malignant Bosniak cysts in machine learning models. A CCR phantom was used through five CT scanners. Registration was performed with ARIA software, while Quibim Precision was used for feature extraction. R software was used for the statistical analysis. Robust radiomic features based on repeatability and reproducibility criteria were chosen. Excellent correlation criteria between different radiologists during lesion segmentation were imposed. With the selected features, their classification ability in benignity-malignity terms was assessed. From the phantom study, 25.3% of the features were robust. For the study of inter-observer correlation (ICC) in the segmentation of cystic masses, 82 subjects were prospectively selected, finding 48.4% of the features as excellent regarding concordance. Comparing both datasets, 12 features were established as repeatable, reproducible, and useful for the classification of Bosniak cysts and could serve as initial candidates for the elaboration of a classification model. With those features, the Linear Discriminant Analysis model classified the Bosniak cysts in terms of benignity or malignancy with 88.2% accuracy.
Collapse
Affiliation(s)
- María Aymerich
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Mercedes Riveira-Martín
- Medical Physics Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Alejandra García-Baizán
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
- Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Mariña González-Pena
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Carmen Sebastià
- Centre de Diagnòstic per la Imatge Clínic, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Antonio López-Medina
- Medical Physics Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
- Radiophysics Department, Hospital do Meixoeiro, 36214 Vigo, Spain
| | - Alicia Mesa-Álvarez
- Radiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - Marta Méndez-Castrillón
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
- Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Andrea Berbel-Rodríguez
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
- Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Alejandra C Matos-Ugas
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
- Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Roberto Berenguer
- Radiation Oncology, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Sebastià Sabater
- Radiation Oncology, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Milagros Otero-García
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
- Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| |
Collapse
|
21
|
Bidzińska J, Szurowska E. See Lung Cancer with an AI. Cancers (Basel) 2023; 15:1321. [PMID: 36831662 PMCID: PMC9954317 DOI: 10.3390/cancers15041321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
A lot has happened in the field of lung cancer screening in recent months. The ongoing discussion and documentation published by the scientific community and policymakers are of great importance to the entire European community and perhaps beyond. Lung cancer is the main worldwide killer. Low-dose computed tomography-based screening, together with smoking cessation, is the only tool to fight lung cancer, as it has already been proven in the United States of America but also European randomized controlled trials. Screening requires a lot of well-organized specialized work, but it can be supported by artificial intelligence (AI). Here we discuss whether and how to use AI for patients, radiologists, pulmonologists, thoracic surgeons, and all hospital staff supporting screening process benefits.
Collapse
Affiliation(s)
- Joanna Bidzińska
- Second Department of Radiology, Medical University of Gdansk, 80-210 Gdańsk, Poland
| | | |
Collapse
|
22
|
Ge G, Zhang J. Feature selection methods and predictive models in CT lung cancer radiomics. J Appl Clin Med Phys 2023; 24:e13869. [PMID: 36527376 PMCID: PMC9860004 DOI: 10.1002/acm2.13869] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Radiomics is a technique that extracts quantitative features from medical images using data-characterization algorithms. Radiomic features can be used to identify tissue characteristics and radiologic phenotyping that is not observable by clinicians. A typical workflow for a radiomics study includes cohort selection, radiomic feature extraction, feature and predictive model selection, and model training and validation. While there has been increasing attention given to radiomic feature extraction, standardization, and reproducibility, currently, there is a lack of rigorous evaluation of feature selection methods and predictive models. Herein, we review the published radiomics investigations in CT lung cancer and provide an overview of the commonly used radiomic feature selection methods and predictive models. We also compare limitations of various methods in clinical applications and present sources of uncertainty associated with those methods. This review is expected to help raise awareness of the impact of radiomic feature and model selection methods on the integrity of radiomics studies.
Collapse
Affiliation(s)
- Gary Ge
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Jie Zhang
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
23
|
Horng H, Singh A, Yousefi B, Cohen EA, Haghighi B, Katz S, Noël PB, Kontos D, Shinohara RT. Improved generalized ComBat methods for harmonization of radiomic features. Sci Rep 2022; 12:19009. [PMID: 36348002 PMCID: PMC9643436 DOI: 10.1038/s41598-022-23328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/29/2022] [Indexed: 11/10/2022] Open
Abstract
Radiomic approaches in precision medicine are promising, but variation associated with image acquisition factors can result in severe biases and low generalizability. Multicenter datasets used in these studies are often heterogeneous in multiple imaging parameters and/or have missing information, resulting in multimodal radiomic feature distributions. ComBat is a promising harmonization tool, but it only harmonizes by single/known variables and assumes standardized input data are normally distributed. We propose a procedure that sequentially harmonizes for multiple batch effects in an optimized order, called OPNested ComBat. Furthermore, we propose to address bimodality by employing a Gaussian Mixture Model (GMM) grouping considered as either a batch variable (OPNested + GMM) or as a protected clinical covariate (OPNested - GMM). Methods were evaluated on features extracted with CapTK and PyRadiomics from two public lung computed tomography (CT) datasets. We found that OPNested ComBat improved harmonization performance over standard ComBat. OPNested + GMM ComBat exhibited the best harmonization performance but the lowest predictive performance, while OPNested - GMM ComBat showed poorer harmonization performance, but the highest predictive performance. Our findings emphasize that improved harmonization performance is no guarantee of improved predictive performance, and that these methods show promise for superior standardization of datasets heterogeneous in multiple or unknown imaging parameters and greater generalizability.
Collapse
Affiliation(s)
- Hannah Horng
- Center for Biomedical Image Computing and Analysis (CBICA), Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Apurva Singh
- Center for Biomedical Image Computing and Analysis (CBICA), Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bardia Yousefi
- Center for Biomedical Image Computing and Analysis (CBICA), Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric A Cohen
- Center for Biomedical Image Computing and Analysis (CBICA), Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Babak Haghighi
- Center for Biomedical Image Computing and Analysis (CBICA), Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sharyn Katz
- Center for Biomedical Image Computing and Analysis (CBICA), Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter B Noël
- Laboratory for Advanced Computed Tomography Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Despina Kontos
- Center for Biomedical Image Computing and Analysis (CBICA), Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Yang Z, Lafata KJ, Chen X, Bowsher J, Chang Y, Wang C, Yin FF. Quantification of lung function on CT images based on pulmonary radiomic filtering. Med Phys 2022; 49:7278-7286. [PMID: 35770964 DOI: 10.1002/mp.15837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To develop a radiomics filtering technique for characterizing spatial-encoded regional pulmonary ventilation information on lung computed tomography (CT). METHODS The lung volume was segmented on 46 CT images, and a 3D sliding window kernel was implemented across the lung volume to capture the spatial-encoded image information. Fifty-three radiomic features were extracted within the kernel, resulting in a fourth-order tensor object. As such, each voxel coordinate of the original lung was represented as a 53-dimensional feature vector, such that radiomic features could be viewed as feature maps within the lungs. To test the technique as a potential pulmonary ventilation biomarker, the radiomic feature maps were compared to paired functional images (Galligas PET or DTPA-SPECT) based on the Spearman correlation (ρ) analysis. RESULTS The radiomic feature maps GLRLM-based Run-Length Non-Uniformity and GLCOM-based Sum Average are found to be highly correlated with the functional imaging. The achieved ρ (median [range]) for the two features are 0.46 [0.05, 0.67] and 0.45 [0.21, 0.65] across 46 patients and 2 functional imaging modalities, respectively. CONCLUSIONS The results provide evidence that local regions of sparsely encoded heterogeneous lung parenchyma on CT are associated with diminished radiotracer uptake and measured lung ventilation defects on PET/SPECT imaging. These findings demonstrate the potential of radiomics to serve as a complementary tool to the current lung quantification techniques and provide hypothesis-generating data for future studies.
Collapse
Affiliation(s)
- Zhenyu Yang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Kyle J Lafata
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, USA
| | - Xinru Chen
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - James Bowsher
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Yushi Chang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Chunhao Wang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
| |
Collapse
|
25
|
Soliman MA, Kelahan LC, Magnetta M, Savas H, Agrawal R, Avery RJ, Aouad P, Liu B, Xue Y, Chae YK, Salem R, Benson AB, Yaghmai V, Velichko YS. A Framework for Harmonization of Radiomics Data for Multicenter Studies and Clinical Trials. JCO Clin Cancer Inform 2022; 6:e2200023. [PMID: 36332157 PMCID: PMC9668564 DOI: 10.1200/cci.22.00023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/01/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Variability in computed tomography images intrinsic to individual scanners limits the application of radiomics in clinical and research settings. The development of reproducible and generalizable radiomics-based models to assess lesions requires harmonization of data. The purpose of this study was to develop, test, and analyze the efficacy of a radiomics data harmonization model. MATERIALS AND METHODS Radiomic features from biopsy-proven untreated hepatic metastasis (N = 380) acquired from 167 unique patients with pancreatic, colon, and breast cancers were analyzed. Radiomic features from volume-match 551 samples of normal liver tissue and 188 hepatic cysts were included as references. A novel linear mixed effect model was used to identify effects associated with lesion size, tissue type, and scanner model. Six separate machine learning models were then used to test the effectiveness of radiomic feature harmonization using multivariate analysis. RESULTS Proposed model identifies and removes scanner-associated effects while preserving cancer-specific functional dependence of radiomic features on the tumor size. Data harmonization improves the performance of classification models by reducing the scanner-associated variability. For example, the multiclass logistic regression model, LogitBoost, demonstrated the improvement in sensitivity in the range from 15% to 40% for each type of liver metastasis, whereas the overall model accuracy and the kappa coefficient increased by 5% and 8% accordingly. CONCLUSION The model removed scanner-associated effects while preserving cancer-specific functional dependence of radiomic features.
Collapse
Affiliation(s)
- Moataz A.S. Soliman
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Linda C. Kelahan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Michael Magnetta
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Hatice Savas
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Rishi Agrawal
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Ryan J. Avery
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Pascale Aouad
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Benjamin Liu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Yue Xue
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Young K. Chae
- Department of Medicine, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Riad Salem
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Al B. Benson
- Department of Medicine, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Vahid Yaghmai
- Department of Radiological Sciences, University of California, Irvine UCI Health, University of California Irvine, Orange, CA
| | - Yuri S. Velichko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| |
Collapse
|
26
|
Azadikhah A, Varghese BA, Lei X, Martin-King C, Cen SY, Duddalwar VA. Radiomics quality score in renal masses: a systematic assessment on current literature. Br J Radiol 2022; 95:20211211. [PMID: 35671097 PMCID: PMC10996962 DOI: 10.1259/bjr.20211211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To perform a systematic assessment and analyze the quality of radiomics methodology in current literature in the evaluation of renal masses using the Radiomics Quality Score (RQS) approach. METHODS We systematically reviewed recent radiomics literature in renal masses published in PubMed, EMBASE, Elsevier, and Web of Science. Two reviewers blinded by each other's scores evaluated the quality of radiomics methodology in studies published from 2015 to August 2021 using the RQS approach. Owing to the diversity in the imaging modalities and radiomics applications, a meta-analysis could not be performed. RESULTS Based on our inclusion/exclusion criteria, a total of 87 published studies were included in our study. The highest RQS was noted in three categories: reporting of clinical utility, gold standard, and feature reduction. The average RQS of the two reviewers ranged from 5 ≤ RQS≤19, with the maximum attainable RQS being 36. Very few (7/87 i.e., 8%) studies received an average RQS that ranged from 17 < RQS≤19, which represents studies with the highest RQS in our study. Many (39/87 i.e., 45%) studies received an average RQS that ranged from 13 < RQS≤15. No significant interreviewer scoring differences were observed. CONCLUSIONS We report that the overall scientific quality and reporting of radiomics studies in renal masses is suboptimal, and subsequent studies should bolster current deficiencies to improve reporting of radiomics methodologies. ADVANCES IN KNOWLEDGE The RQS approach is a meaningful quantitative scoring system to assess radiomics methodology quality and supports a comprehensive evaluation of the radiomics approach before its incorporation into clinical practice.
Collapse
Affiliation(s)
- Afshin Azadikhah
- USC Radiomics Laboratory, Department of Radiology, Keck School
of Medicine, University of Southern California,
Los Angeles, United States
| | - Bino Abel Varghese
- USC Radiomics Laboratory, Department of Radiology, Keck School
of Medicine, University of Southern California,
Los Angeles, United States
| | - Xiaomeng Lei
- USC Radiomics Laboratory, Department of Radiology, Keck School
of Medicine, University of Southern California,
Los Angeles, United States
| | - Chloe Martin-King
- USC Radiomics Laboratory, Department of Radiology, Keck School
of Medicine, University of Southern California,
Los Angeles, United States
| | - Steven Yong Cen
- USC Radiomics Laboratory, Department of Radiology, Keck School
of Medicine, University of Southern California,
Los Angeles, United States
| | - Vinay Anant Duddalwar
- USC Radiomics Laboratory, Department of Radiology, Keck School
of Medicine, University of Southern California,
Los Angeles, United States
| |
Collapse
|
27
|
Bao J, Feng X, Ma Y, Wang Y, Qi J, Qin C, Tan X, Tian Y. The latest application progress of radiomics in prediction and diagnosis of liver diseases. Expert Rev Gastroenterol Hepatol 2022; 16:707-719. [PMID: 35880549 DOI: 10.1080/17474124.2022.2104711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Early detection and individualized treatment of patients with liver disease is the key to survival. Radiomics can extract high-throughput quantitative features by multimode imaging, which has good application prospects for the diagnosis, staging and prognosis of benign and malignant liver diseases. Therefore, this paper summarizes the current research status in the field of liver disease, in order to help these patients achieve personalized and precision medical care. AREAS COVERED This paper uses several keywords on the PubMed database to search the references, and reviews the workflow of traditional radiomics, as well as the characteristics and influencing factors of different imaging modes. At the same time, the references on the application of imaging in different benign and malignant liver diseases were also summarized. EXPERT OPINION For patients with liver disease, the traditional imaging evaluation can only provide limited information. Radiomics exploits the characteristics of high-throughput and high-dimensional extraction, enabling liver imaging capabilities far beyond the scope of traditional visual image analysis. Recent studies have demonstrated the prospect of this technology in personalized diagnosis and treatment decision in various fields of the liver. However, further clinical validation is needed in its application and practice.
Collapse
Affiliation(s)
- Jiaying Bao
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Xiao Feng
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Yan Ma
- Department of Ultrasound, Zibo Central Hospital, Zibo, P.R. China
| | - Yanyan Wang
- Departments of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Jianni Qi
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Chengyong Qin
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, P.R. China
| | - Xu Tan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Yongmei Tian
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| |
Collapse
|
28
|
Radiomics model for preoperative prediction of 3-year survival-based CT image biomarkers in esophageal cancer. Eur Arch Otorhinolaryngol 2022; 279:5433-5443. [PMID: 35857100 DOI: 10.1007/s00405-022-07510-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/04/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE This work aimed to develop a radiomics nomogram to predict 3-year overall survival of esophageal cancer patients after chemoradiotherapy. METHODS A total of 109 esophageal cancer patients, diagnosed from November 2012 to February 2015, were enrolled in this retrospective study. They were randomly divided into training set (77 cases) and verification set (32 cases). Image standardization was performed prior to feature extraction. And then, about 1670 radiomics features were extracted from the pretreatment diagnostic computed tomography image. A radiomics signature was constructed with the lasso algorithm; then, a radiomics score was calculated to reflect survival probability using the radiomics signature for each patient. A radiomics nomogram was developed by incorporating the radiomics score and clinical factors. A clinical model was constructed using clinical factors only. The performance of the nomogram was assessed with respect to its calibration and discrimination. Kaplan-Meier survival analysis was performed. RESULTS Sixteen radiomics features were selected to build the radiomics signature. The radiomics nomogram showed better calibration and classification capacity than the clinical model with AUC 0.96 vs. 0.72 for the training cohort, and 0.87 vs. 0.67 for the validation cohort. The model showed good discrimination with a Harrell's Concordance Index of 0.76 in the training cohort and 0.81 in the validation cohort. Decision curve analysis demonstrated the clinical usefulness of the radiomics nomogram. A significant difference (p value < 0.05; log-rank test) was observed between the survival curves of the nomogram-predicted survival and non-survival groups. CONCLUSIONS The present study proposed a radiomics-based nomogram involving the radiomics signature and clinical factors. It can be potentially applied in the individual preoperative prediction of 3-year survival in esophageal cancer patients.
Collapse
|
29
|
CT Reconstruction Kernels and the Effect of Pre- and Post-Processing on the Reproducibility of Handcrafted Radiomic Features. J Pers Med 2022; 12:jpm12040553. [PMID: 35455668 PMCID: PMC9030848 DOI: 10.3390/jpm12040553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Handcrafted radiomics features (HRFs) are quantitative features extracted from medical images to decode biological information to improve clinical decision making. Despite the potential of the field, limitations have been identified. The most important identified limitation, currently, is the sensitivity of HRF to variations in image acquisition and reconstruction parameters. In this study, we investigated the use of Reconstruction Kernel Normalization (RKN) and ComBat harmonization to improve the reproducibility of HRFs across scans acquired with different reconstruction kernels. A set of phantom scans (n = 28) acquired on five different scanner models was analyzed. HRFs were extracted from the original scans, and scans were harmonized using the RKN method. ComBat harmonization was applied on both sets of HRFs. The reproducibility of HRFs was assessed using the concordance correlation coefficient. The difference in the number of reproducible HRFs in each scenario was assessed using McNemar’s test. The majority of HRFs were found to be sensitive to variations in the reconstruction kernels, and only six HRFs were found to be robust with respect to variations in reconstruction kernels. The use of RKN resulted in a significant increment in the number of reproducible HRFs in 19 out of the 67 investigated scenarios (28.4%), while the ComBat technique resulted in a significant increment in 36 (53.7%) scenarios. The combination of methods resulted in a significant increment in 53 (79.1%) scenarios compared to the HRFs extracted from original images. Since the benefit of applying the harmonization methods depended on the data being harmonized, reproducibility analysis is recommended before performing radiomics analysis. For future radiomics studies incorporating images acquired with similar image acquisition and reconstruction parameters, except for the reconstruction kernels, we recommend the systematic use of the pre- and post-processing approaches (respectively, RKN and ComBat).
Collapse
|
30
|
Ibrahim A, Barufaldi B, Refaee T, Silva Filho TM, Acciavatti RJ, Salahuddin Z, Hustinx R, Mottaghy FM, Maidment ADA, Lambin P. MaasPenn Radiomics Reproducibility Score: A Novel Quantitative Measure for Evaluating the Reproducibility of CT-Based Handcrafted Radiomic Features. Cancers (Basel) 2022; 14:cancers14071599. [PMID: 35406372 PMCID: PMC8997100 DOI: 10.3390/cancers14071599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The reproducibility of handcrafted radiomic features (HRFs) has been reported to be affected by variations in imaging acquisition and reconstruction parameters. However, to date, these effects have not been understood or quantified. In this study, we analyzed a significantly large number of scenarios in an effort to quantify the effects of variations on the reproducibility of HRFs. In addition, we assessed the performance of ComBat harmonization in each of the 31,375 investigated scenarios. We developed a novel score that can be considered the first attempt to objectively assess the number of reproducible HRFs in different scenario. Following further validation, the score could be used to decide on the inclusion of data acquired differently, as well as the assessment of the generalizability of developed radiomic signatures. Abstract The reproducibility of handcrafted radiomic features (HRFs) has been reported to be affected by variations in imaging parameters, which significantly affect the generalizability of developed signatures and translation to clinical practice. However, the collective effect of the variations in imaging parameters on the reproducibility of HRFs remains unclear, with no objective measure to assess it in the absence of reproducibility analysis. We assessed these effects of variations in a large number of scenarios and developed the first quantitative score to assess the reproducibility of CT-based HRFs without the need for phantom or reproducibility studies. We further assessed the potential of image resampling and ComBat harmonization for removing these effects. Our findings suggest a need for radiomics-specific harmonization methods. Our developed score should be considered as a first attempt to introduce comprehensive metrics to quantify the reproducibility of CT-based handcrafted radiomic features. More research is warranted to demonstrate its validity in clinical contexts and to further improve it, possibly by the incorporation of more realistic situations, which better reflect real patients’ situations.
Collapse
Affiliation(s)
- Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (T.R.); (Z.S.); (P.L.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands;
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU de Liege, CRC In Vivo Imaging, University of Liège, 4000 Liege, Belgium;
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
- Correspondence:
| | - Bruno Barufaldi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.B.); (R.J.A.); (A.D.A.M.)
| | - Turkey Refaee
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (T.R.); (Z.S.); (P.L.)
- Department of Diagnostic Radiology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Telmo M. Silva Filho
- Department of Statistics, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Raymond J. Acciavatti
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.B.); (R.J.A.); (A.D.A.M.)
| | - Zohaib Salahuddin
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (T.R.); (Z.S.); (P.L.)
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU de Liege, CRC In Vivo Imaging, University of Liège, 4000 Liege, Belgium;
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands;
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
| | - Andrew D. A. Maidment
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.B.); (R.J.A.); (A.D.A.M.)
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (T.R.); (Z.S.); (P.L.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands;
| |
Collapse
|
31
|
Li MD, Cheng MQ, Chen LD, Hu HT, Zhang JC, Ruan SM, Huang H, Kuang M, Lu MD, Li W, Wang W. Reproducibility of radiomics features from ultrasound images: influence of image acquisition and processing. Eur Radiol 2022; 32:5843-5851. [PMID: 35314881 DOI: 10.1007/s00330-022-08662-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/20/2022] [Accepted: 02/13/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To systematically assess the reproducibility of radiomics features from ultrasound (US) images during image acquisition and processing. MATERIALS AND METHODS A standardized phantom was scanned to obtain US images. Reproducibility of radiomics features from US images, also known as ultrasomics features, was explored via (a) intra-US machine: changing the US acquisition parameters including gain, focus, and frequency; (b) inter-US machine: comparing three different scanners; (c) changing segmentation locations; and (d) inter-platform: comparing features extracted by the Ultrasomics and PyRadiomics algorithm platforms. Reproducible ultrasomics features were selected based on coefficients of variation. RESULTS A total of 108 US images from three scanners were obtained; 5253 ultrasomics features including seven categories of features were extracted and evaluated for each US image. From intra-US machine analysis, 37.0-38.8% of features showed good reproducibility. From inter-US machine analysis, 42.8% (2248/5253) of features exhibited good reproducibility. From segmentation location analysis, 55.7-57.6% of features showed good reproducibility. No significant difference in the normalized feature ranges was found between the 100 features extracted by the Ultrasomics and PyRadiomics platforms with the same algorithm (p = 0.563). A total of 1452 (27.6%) ultrasomics features were reproducible whenever intra-/inter-US machine or segmentation location were changed, most of which were wavelet and shearlet features. CONCLUSIONS Different acquisition parameters, US scanners, segmentation locations, and feature extraction platforms affected the reproducibility of ultrasomics features. Wavelet and shearlet features showed the best reproducibility across all procedures. KEY POINTS • Different acquisition parameters, US scanners, segmentation locations, and feature extraction platforms affected the reproducibility of ultrasomics features. • A total of 1452 (27.6%) ultrasomics features were reproducible whenever intra-/inter-US machine or segmentation location were changed. • Wavelet and shearlet features showed the best reproducibility across all procedures.
Collapse
Affiliation(s)
- Ming-De Li
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Mei-Qing Cheng
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Li-Da Chen
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Hang-Tong Hu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Jian-Chao Zhang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Si-Min Ruan
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Hui Huang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Ming Kuang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ming-De Lu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wei Li
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Wei Wang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
32
|
Linsalata S, Borgheresi R, Marfisi D, Barca P, Sainato A, Paiar F, Neri E, Traino AC, Giannelli M. Radiomics of Patients with Locally Advanced Rectal Cancer: Effect of Preprocessing on Features Estimation from Computed Tomography Imaging. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2003286. [PMID: 35355820 PMCID: PMC8958068 DOI: 10.1155/2022/2003286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 12/24/2022]
Abstract
The purpose of this study was to investigate the effect of image preprocessing on radiomic features estimation from computed tomography (CT) imaging of locally advanced rectal cancer (LARC). CT images of 20 patients with LARC were used to estimate 105 radiomic features of 7 classes (shape, first-order, GLCM, GLDM, GLRLM, GLSZM, and NGTDM). Radiomic features were estimated for 6 different isotropic resampling voxel sizes, using 10 interpolation algorithms (at fixed bin width) and 6 different bin widths (at fixed interpolation algorithm). The intraclass correlation coefficient (ICC) and the coefficient of variation (CV) were calculated to assess the variability in radiomic features estimation due to preprocessing. A repeated measures correlation analysis was performed to assess any linear correlation between radiomic feature estimate and resampling voxel size or bin width. Reproducibility of radiomic feature estimate, when assessed through ICC analysis, was nominally excellent (ICC > 0.9) for shape features, good (0.75 < ICC ≤ 0.9) or moderate (0.5 < ICC ≤ 0.75) for first-order features, and moderate or poor (0 ≤ ICC ≤ 0.5) for textural features. A number of radiomic features characterized by good or excellent reproducibility in terms of ICC showed however median CV values greater than 15%. For most textural features, a significant (p < 0.05) correlation between their estimate and resampling voxel size or bin width was found. In CT imaging of patients with LARC, the estimate of textural features, as well as of first-order features to a lesser extent, is appreciably biased by preprocessing. Accordingly, this should be taken into account when planning clinical or research studies, as well as when comparing results from different studies and performing multicenter studies.
Collapse
Affiliation(s)
- Stefania Linsalata
- Unit of Medical Physics, Pisa University Hospital “Azienda Ospedaliero-Universitaria Pisana”, Pisa, Italy
| | - Rita Borgheresi
- Unit of Medical Physics, Pisa University Hospital “Azienda Ospedaliero-Universitaria Pisana”, Pisa, Italy
| | - Daniela Marfisi
- Unit of Medical Physics, Pisa University Hospital “Azienda Ospedaliero-Universitaria Pisana”, Pisa, Italy
| | - Patrizio Barca
- Unit of Medical Physics, Pisa University Hospital “Azienda Ospedaliero-Universitaria Pisana”, Pisa, Italy
| | - Aldo Sainato
- Radiation Oncology Unit, Pisa University Hospital “Azienda Ospedaliero-Universitaria Pisana”, Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital “Azienda Ospedaliero-Universitaria Pisana”, Pisa, Italy
| | - Emanuele Neri
- Diagnostic and Interventional Radiology, Department of Translational Research, University of Pisa, Pisa, Italy
| | - Antonio Claudio Traino
- Unit of Medical Physics, Pisa University Hospital “Azienda Ospedaliero-Universitaria Pisana”, Pisa, Italy
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital “Azienda Ospedaliero-Universitaria Pisana”, Pisa, Italy
| |
Collapse
|
33
|
Generalized ComBat harmonization methods for radiomic features with multi-modal distributions and multiple batch effects. Sci Rep 2022; 12:4493. [PMID: 35296726 PMCID: PMC8927332 DOI: 10.1038/s41598-022-08412-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/07/2022] [Indexed: 01/20/2023] Open
Abstract
Radiomic features have a wide range of clinical applications, but variability due to image acquisition factors can affect their performance. The harmonization tool ComBat is a promising solution but is limited by inability to harmonize multimodal distributions, unknown imaging parameters, and multiple imaging parameters. In this study, we propose two methods for addressing these limitations. We propose a sequential method that allows for harmonization of radiomic features by multiple imaging parameters (Nested ComBat). We also employ a Gaussian Mixture Model (GMM)-based method (GMM ComBat) where scans are split into groupings based on the shape of the distribution used for harmonization as a batch effect and subsequent harmonization by a known imaging parameter. These two methods were evaluated on features extracted with CapTK and PyRadiomics from two public lung computed tomography datasets. We found that Nested ComBat exhibited similar performance to standard ComBat in reducing the percentage of features with statistically significant differences in distribution attributable to imaging parameters. GMM ComBat improved harmonization performance over standard ComBat (− 11%, − 10% for Lung3/CAPTK, Lung3/PyRadiomics harmonizing by kernel resolution). Features harmonized with a variant of the Nested method and the GMM split method demonstrated similar c-statistics and Kaplan–Meier curves when used in survival analyses.
Collapse
|
34
|
Dercle L, Zhao B, Gönen M, Moskowitz CS, Firas A, Beylergil V, Connors DE, Yang H, Lu L, Fojo T, Carvajal R, Karovic S, Maitland ML, Goldmacher GV, Oxnard GR, Postow MA, Schwartz LH. Early Readout on Overall Survival of Patients With Melanoma Treated With Immunotherapy Using a Novel Imaging Analysis. JAMA Oncol 2022; 8:385-392. [PMID: 35050320 PMCID: PMC8778619 DOI: 10.1001/jamaoncol.2021.6818] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
IMPORTANCE Existing criteria to estimate the benefit of a therapy in patients with cancer rely almost exclusively on tumor size, an approach that was not designed to estimate survival benefit and is challenged by the unique properties of immunotherapy. More accurate prediction of survival by treatment could enhance treatment decisions. OBJECTIVE To validate, using radiomics and machine learning, the performance of a signature of quantitative computed tomography (CT) imaging features for estimating overall survival (OS) in patients with advanced melanoma treated with immunotherapy. DESIGN, SETTING, AND PARTICIPANTS This prognostic study used radiomics and machine learning to retrospectively analyze CT images obtained at baseline and first follow-up and their associated clinical metadata. Data were prospectively collected in the KEYNOTE-002 (Study of Pembrolizumab [MK-3475] Versus Chemotherapy in Participants With Advanced Melanoma; 2017 analysis) and KEYNOTE-006 (Study to Evaluate the Safety and Efficacy of Two Different Dosing Schedules of Pembrolizumab [MK-3475] Compared to Ipilimumab in Participants With Advanced Melanoma; 2016 analysis) multicenter clinical trials. Participants included 575 patients with a diagnosis of advanced melanoma who were randomly assigned to training and validation sets. Data for the present study were collected from November 20, 2012, to June 3, 2019, and analyzed from July 1, 2019, to September 15, 2021. INTERVENTIONS KEYNOTE-002 featured trial groups testing intravenous pembrolizumab, 2 mg/kg or 10 mg/kg every 2 or every 3 weeks based on randomization, or investigator-choice chemotherapy; KEYNOTE-006 featured trial groups testing intravenous ipilimumab, 3 mg/kg every 3 weeks and intravenous pembrolizumab, 10 mg/kg every 2 or 3 weeks based on randomization. MAIN OUTCOMES AND MEASURES The performance of the signature CT imaging features for estimating OS at the month 6 posttreatment landmark in patients who received pembrolizumab was measured using an area under the time-dependent receiver operating characteristics curve (AUC). RESULTS A random forest model combined 25 imaging features extracted from tumors segmented on CT images to identify the combination (signature) that best estimated OS with pembrolizumab in 575 patients. The signature combined 4 imaging features, 2 related to tumor size and 2 reflecting changes in tumor imaging phenotype. In the validation set (287 patients treated with pembrolizumab), the signature reached an AUC for estimation of OS status of 0.92 (95% CI, 0.89-0.95). The standard method, Response Evaluation Criteria in Solid Tumors 1.1, achieved an AUC of 0.80 (95% CI, 0.75-0.84) and classified tumor outcomes as partial or complete response (93 of 287 [32.4%]), stable disease (90 of 287 [31.3%]), or progressive disease (104 of 287 [36.2%]). CONCLUSIONS AND RELEVANCE The findings of this prognostic study suggest that the radiomic signature discerned from conventional CT images at baseline and on first follow-up may be used in clinical settings to provide an accurate early readout of future OS probability in patients with melanoma treated with single-agent programmed cell death 1 blockade.
Collapse
Affiliation(s)
- Laurent Dercle
- Department of Radiology, Columbia University Medical Center, New York, New York,Department of Radiology, New York Presbyterian Hospital, New York, New York
| | - Binsheng Zhao
- Department of Radiology, Columbia University Medical Center, New York, New York,Department of Radiology, New York Presbyterian Hospital, New York, New York
| | - Mithat Gönen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chaya S. Moskowitz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmed Firas
- Department of Radiology, Columbia University Medical Center, New York, New York,Department of Radiology, New York Presbyterian Hospital, New York, New York
| | - Volkan Beylergil
- Department of Radiology, Columbia University Medical Center, New York, New York,Department of Radiology, New York Presbyterian Hospital, New York, New York
| | - Dana E. Connors
- Foundation for the National Institutes of Health, North Bethesda, Maryland
| | - Hao Yang
- Department of Radiology, Columbia University Medical Center, New York, New York,Department of Radiology, New York Presbyterian Hospital, New York, New York
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, New York, New York,Department of Radiology, New York Presbyterian Hospital, New York, New York
| | - Tito Fojo
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, New York
| | - Richard Carvajal
- Columbia University Herbert Irving Comprehensive Cancer Center, New York, New York
| | - Sanja Karovic
- Inova Center for Personalized Health and Schar Cancer Institute, Fairfax, Virginia
| | - Michael L. Maitland
- Inova Center for Personalized Health and Schar Cancer Institute, Fairfax, Virginia,University of Virginia Cancer Center, Charlottesville
| | | | - Geoffrey R. Oxnard
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Michael A. Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Lawrence H. Schwartz
- Department of Radiology, Columbia University Medical Center, New York, New York,Department of Radiology, New York Presbyterian Hospital, New York, New York
| |
Collapse
|
35
|
Ziegelmayer S, Reischl S, Harder F, Makowski M, Braren R, Gawlitza J. Feature Robustness and Diagnostic Capabilities of Convolutional Neural Networks Against Radiomics Features in Computed Tomography Imaging. Invest Radiol 2022; 57:171-177. [PMID: 34524173 DOI: 10.1097/rli.0000000000000827] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
MATERIALS AND METHODS Imaging phantoms were scanned twice on 3 computed tomography scanners from 2 different manufactures with varying tube voltages and currents. Phantoms were segmented, and features were extracted using PyRadiomics and a pretrained CNN. After standardization the concordance correlation coefficient (CCC), mean feature variance, feature range, and the coefficient of variant were calculated to assess feature robustness. In addition, the cosine similarity was calculated for the vectorized activation maps for an exemplary phantom. For the in vivo comparison, the radiomics and CNN features of 30 patients with hepatocellular carcinoma (HCC) and 30 patients with hepatic colon carcinoma metastasis were compared. RESULTS In total, 851 radiomics features and 256 CNN features were extracted for each phantom. For all phantoms, the global CCC of the CNN features was above 98%, whereas the highest CCC for the radiomics features was 36%. The mean feature variance and feature range was significantly lower for the CNN features. Using a coefficient of variant ≤0.2 as a threshold to define robust features and averaging across all phantoms 346 of 851 (41%) radiomics features and 196 of 256 (77%) CNN features were found to be robust. The cosine similarity was greater than 0.98 for all scanner and parameter variations. In the retrospective analysis, 122 of the 256 CNN (49%) features showed significant differences between HCC and hepatic colon metastasis. DISCUSSION Convolutional neural network features were more stable compared with radiomics features against technical variations. Moreover, the possibility of tumor entity differentiation based on CNN features was shown. Combined with visualization methods, CNN features are expected to increase reproducibility of quantitative image representations. Further studies are warranted to investigate the impact of feature stability on radiological image-based prediction of clinical outcomes.
Collapse
Affiliation(s)
- Sebastian Ziegelmayer
- From the Institute of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University Munich
| | - Stefan Reischl
- From the Institute of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University Munich
| | - Felix Harder
- From the Institute of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University Munich
| | - Marcus Makowski
- From the Institute of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University Munich
| | | | - Joshua Gawlitza
- From the Institute of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University Munich
| |
Collapse
|
36
|
Reproducibility of radiomic features in CT images of NSCLC patients: an integrative analysis on the impact of acquisition and reconstruction parameters. Eur Radiol Exp 2022; 6:2. [PMID: 35075539 PMCID: PMC8786992 DOI: 10.1186/s41747-021-00258-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We investigated to what extent tube voltage, scanner model, and reconstruction algorithm affect radiomic feature reproducibility in a single-institution retrospective database of computed tomography images of non-small-cell lung cancer patients. METHODS This study was approved by the Institutional Review Board (UID 2412). Images of 103 patients were considered, being acquired on either among two scanners, at 100 or 120 kVp. For each patient, images were reconstructed with six iterative blending levels, and 1414 features were extracted from each reconstruction. At univariate analysis, Wilcoxon-Mann-Whitney test was applied to evaluate feature differences within scanners and voltages, whereas the impact of the reconstruction was established with the overall concordance correlation coefficient (OCCC). A multivariable mixed model was also applied to investigate the independent contribution of each acquisition/reconstruction parameter. Univariate and multivariable analyses were combined to analyse feature behaviour. RESULTS Scanner model and voltage did not affect features significantly. The reconstruction blending level showed a significant impact at both univariate analysis (154/1414 features yielding an OCCC < 0.85) and multivariable analysis, with most features (1042/1414) revealing a systematic trend with the blending level (multiple comparisons adjusted p < 0.05). Reproducibility increased in association to image processing with smooth filters, nonetheless specific investigation in relation to clinical endpoints should be performed to ensure that textural information is not removed. CONCLUSIONS Combining univariate and multivariable models is allowed to identify features for which corrections may be applied to reduce the trend with the algorithm and increase reproducibility. Subsequent clustering may be applied to eliminate residual redundancy.
Collapse
|
37
|
Lin FY, Chang YC, Huang HY, Li CC, Chen YC, Chen CM. A radiomics approach for lung nodule detection in thoracic CT images based on the dynamic patterns of morphological variation. Eur Radiol 2022; 32:3767-3777. [PMID: 35020016 DOI: 10.1007/s00330-021-08456-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/20/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To propose and evaluate a set of radiomic features, called morphological dynamics features, for pulmonary nodule detection, which were rooted in the dynamic patterns of morphological variation and needless precise lesion segmentation. MATERIALS AND METHODS Two datasets were involved, namely, university hospital (UH) and LIDC datasets, comprising 72 CT scans (360 nodules) and 888 CT scans (2230 nodules), respectively. Each nodule was annotated by multiple radiologists. Denoted the category of nodules identified by at least k radiologists as ALk. A nodule detection algorithm, called CAD-MD algorithm, was proposed based on the morphological dynamics radiomic features, characterizing a lesion by ten sets of the same features with different values extracted from ten different thresholding results. Each nodule candidate was classified by a two-level classifier, including ten decision trees and a random forest, respectively. The CAD-MD algorithm was compared with a deep learning approach, the N-Net, using the UH dataset. RESULTS On the AL1 and AL2 of the UH dataset, the AUC of the AFROC curves were 0.777 and 0.851 for the CAD-MD algorithm and 0.478 and 0.472 for the N-Net, respectively. The CAD-MD algorithm achieved the sensitivities of 84.4% and 91.4% with 2.98 and 3.69 FPs/scan and the N-Net 74.4% and 80.7% with 3.90 and 4.49 FPs/scan, respectively. On the LIDC dataset, the CAD-MD algorithm attained the sensitivities of 87.6%, 89.2%, 92.2%, and 95.0% with 4 FPs/scan for AL1-AL4, respectively. CONCLUSION The morphological dynamics radiomic features might serve as an effective set of radiomic features for lung nodule detection. KEY POINTS • Texture features varied with such CT system settings as reconstruction kernels of CT images, CT scanner models, and parameter settings, and so on. • Shape and first-order statistics were shown to be the most robust features against variation in CT imaging parameters. • The morphological dynamics radiomic features, which mainly characterized the dynamic patterns of morphological variation, were shown to be effective for lung nodule detection.
Collapse
Affiliation(s)
- Fan-Ya Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 100, Taiwan
| | - Yeun-Chung Chang
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Chia-Chen Li
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 100, Taiwan
| | - Yi-Chang Chen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 100, Taiwan.,Department of Medical Imaging, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Chung-Ming Chen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 1, Jen-Ai Road, Taipei, 100, Taiwan.
| |
Collapse
|
38
|
Yoon JH, Sun SH, Xiao M, Yang H, Lu L, Li Y, Schwartz LH, Zhao B. Convolutional Neural Network Addresses the Confounding Impact of CT Reconstruction Kernels on Radiomics Studies. Tomography 2021; 7:877-892. [PMID: 34941646 PMCID: PMC8707549 DOI: 10.3390/tomography7040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/31/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
Achieving high feature reproducibility while preserving biological information is one of the main challenges for the generalizability of current radiomics studies. Non-clinical imaging variables, such as reconstruction kernels, have shown to significantly impact radiomics features. In this study, we retrain an open-source convolutional neural network (CNN) to harmonize computerized tomography (CT) images with various reconstruction kernels to improve feature reproducibility and radiomic model performance using epidermal growth factor receptor (EGFR) mutation prediction in lung cancer as a paradigm. In the training phase, the CNN was retrained and tested on 32 lung cancer patients’ CT images between two different groups of reconstruction kernels (smooth and sharp). In the validation phase, the retrained CNN was validated on an external cohort of 223 lung cancer patients’ CT images acquired using different CT scanners and kernels. The results showed that the retrained CNN could be successfully applied to external datasets with different CT scanner parameters, and harmonization of reconstruction kernels from sharp to smooth could significantly improve the performance of radiomics model in predicting EGFR mutation status in lung cancer. In conclusion, the CNN based method showed great potential in improving feature reproducibility and generalizability by harmonizing medical images with heterogeneous reconstruction kernels.
Collapse
Affiliation(s)
- Jin H. Yoon
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
| | - Shawn H. Sun
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
| | - Manjun Xiao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Hao Yang
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
| | - Lin Lu
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
- Correspondence: (L.L.); (Y.L.); Tel.: +1-212-342-3018 (L.L.)
| | - Yajun Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Correspondence: (L.L.); (Y.L.); Tel.: +1-212-342-3018 (L.L.)
| | - Lawrence H. Schwartz
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
| | - Binsheng Zhao
- Department of Radiology, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY 10039, USA; (J.H.Y.); (S.H.S.); (H.Y.); (L.H.S.); (B.Z.)
| |
Collapse
|
39
|
Gong XQ, Tao YY, Wu Y, Liu N, Yu X, Wang R, Zheng J, Liu N, Huang XH, Li JD, Yang G, Wei XQ, Yang L, Zhang XM. Progress of MRI Radiomics in Hepatocellular Carcinoma. Front Oncol 2021; 11:698373. [PMID: 34616673 PMCID: PMC8488263 DOI: 10.3389/fonc.2021.698373] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the sixth most common cancer in the world and the third leading cause of cancer-related death. Although the diagnostic scheme of HCC is currently undergoing refinement, the prognosis of HCC is still not satisfactory. In addition to certain factors, such as tumor size and number and vascular invasion displayed on traditional imaging, some histopathological features and gene expression parameters are also important for the prognosis of HCC patients. However, most parameters are based on postoperative pathological examinations, which cannot help with preoperative decision-making. As a new field, radiomics extracts high-throughput imaging data from different types of images to build models and predict clinical outcomes noninvasively before surgery, rendering it a powerful aid for making personalized treatment decisions preoperatively. OBJECTIVE This study reviewed the workflow of radiomics and the research progress on magnetic resonance imaging (MRI) radiomics in the diagnosis and treatment of HCC. METHODS A literature review was conducted by searching PubMed for search of relevant peer-reviewed articles published from May 2017 to June 2021.The search keywords included HCC, MRI, radiomics, deep learning, artificial intelligence, machine learning, neural network, texture analysis, diagnosis, histopathology, microvascular invasion, surgical resection, radiofrequency, recurrence, relapse, transarterial chemoembolization, targeted therapy, immunotherapy, therapeutic response, and prognosis. RESULTS Radiomics features on MRI can be used as biomarkers to determine the differential diagnosis, histological grade, microvascular invasion status, gene expression status, local and systemic therapeutic responses, and prognosis of HCC patients. CONCLUSION Radiomics is a promising new imaging method. MRI radiomics has high application value in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xue-Qin Gong
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yun-Yun Tao
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yao–Kun Wu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ning Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xi Yu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ran Wang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Zheng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Nian Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Hua Huang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing-Dong Li
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Gang Yang
- Department of Hepatocellular Surgery, Institute of Hepato-Biliary-Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Qin Wei
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Lin Yang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiao-Ming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
40
|
Evaluation of radiomics and machine learning in identification of aggressive tumor features in renal cell carcinoma (RCC). Abdom Radiol (NY) 2021; 46:4278-4288. [PMID: 33855609 DOI: 10.1007/s00261-021-03083-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the use of CT radiomics features and machine learning analysis to identify aggressive tumor features, including high nuclear grade (NG) and sarcomatoid (sarc) features, in large renal cell carcinomas (RCCs). METHODS CT-based volumetric radiomics analysis was performed on non-contrast (NC) and portal venous (PV) phase multidetector computed tomography images of large (> 7 cm) untreated RCCs in 141 patients (46W/95M, mean age 60 years). Machine learning analysis was applied to the extracted radiomics data to evaluate for association with high NG (grade 3-4), with multichannel analysis for NG performed in a subset of patients (n = 80). A similar analysis was performed in a sarcomatoid rich cohort (n = 43, 31M/12F, mean age 63.7 years) using size-matched non-sarcomatoid controls (n = 49) for identification of sarcomatoid change. RESULTS The XG Boost Model performed best on the tested data. After manual and machine feature extraction, models consisted of 3, 7, 5, 10 radiomics features for NC sarc, PV sarc, NC NG and PV NG, respectively. The area under the receiver operating characteristic curve (AUC) for these models was 0.59, 0.65, 0.69 and 0.58 respectively. The multichannel NG model extracted 6 radiomic features using the feature selection strategy and showed an AUC of 0.67. CONCLUSIONS Statistically significant but weak associations between aggressive tumor features (high nuclear grade, sarcomatoid features) in large RCC were identified using 3D radiomics and machine learning analysis.
Collapse
|
41
|
Mahmoudi S, Martin SS, Ackermann J, Zhdanovich Y, Koch I, Vogl TJ, Albrecht MH, Lenga L, Bernatz S. Potential of high dimensional radiomic features to assess blood components in intraaortic vessels in non-contrast CT scans. BMC Med Imaging 2021; 21:123. [PMID: 34384385 PMCID: PMC8359593 DOI: 10.1186/s12880-021-00654-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To assess the potential of radiomic features to quantify components of blood in intraaortic vessels to non-invasively predict moderate-to-severe anemia in non-contrast enhanced CT scans. METHODS One hundred patients (median age, 69 years; range, 19-94 years) who received CT scans of the thoracolumbar spine and blood-testing for hemoglobin and hematocrit levels ± 24 h between 08/2018 and 11/2019 were retrospectively included. Intraaortic blood was segmented using a spherical volume of interest of 1 cm diameter with consecutive radiomic analysis applying PyRadiomics software. Feature selection was performed applying analysis of correlation and collinearity. The final feature set was obtained to differentiate moderate-to-severe anemia. Random forest machine learning was applied and predictive performance was assessed. A decision-tree was obtained to propose a cut-off value of CT Hounsfield units (HU). RESULTS High correlation with hemoglobin and hematocrit levels was shown for first-order radiomic features (p < 0.001 to p = 0.032). The top 3 features showed high correlation to hemoglobin values (p) and minimal collinearity (r) to the top ranked feature Median (p < 0.001), Energy (p = 0.002, r = 0.387), Minimum (p = 0.032, r = 0.437). Median (p < 0.001) and Minimum (p = 0.003) differed in moderate-to-severe anemia compared to non-anemic state. Median yielded superiority to the combination of Median and Minimum (p(AUC) = 0.015, p(precision) = 0.017, p(accuracy) = 0.612) in the predictive performance employing random forest analysis. A Median HU value ≤ 36.5 indicated moderate-to-severe anemia (accuracy = 0.90, precision = 0.80). CONCLUSIONS First-order radiomic features correlate with hemoglobin levels and may be feasible for the prediction of moderate-to-severe anemia. High dimensional radiomic features did not aid augmenting the data in our exemplary use case of intraluminal blood component assessment. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Scherwin Mahmoudi
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Simon S. Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörg Ackermann
- Department of Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University, Robert-Mayer-Str. 11-15, 60325 Frankfurt am Main, Germany
| | - Yauheniya Zhdanovich
- Department of Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University, Robert-Mayer-Str. 11-15, 60325 Frankfurt am Main, Germany
| | - Ina Koch
- Department of Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University, Robert-Mayer-Str. 11-15, 60325 Frankfurt am Main, Germany
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Moritz H. Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Lukas Lenga
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Simon Bernatz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
42
|
Patel H, Vock DM, Marai GE, Fuller CD, Mohamed ASR, Canahuate G. Oropharyngeal cancer patient stratification using random forest based-learning over high-dimensional radiomic features. Sci Rep 2021; 11:14057. [PMID: 34234160 PMCID: PMC8263609 DOI: 10.1038/s41598-021-92072-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/10/2021] [Indexed: 11/27/2022] Open
Abstract
To improve risk prediction for oropharyngeal cancer (OPC) patients using cluster analysis on the radiomic features extracted from pre-treatment Computed Tomography (CT) scans. 553 OPC Patients randomly split into training (80%) and validation (20%), were classified into 2 or 3 risk groups by applying hierarchical clustering over the co-occurrence matrix obtained from a random survival forest (RSF) trained over 301 radiomic features. The cluster label was included together with other clinical data to train an ensemble model using five predictive models (Cox, random forest, RSF, logistic regression, and logistic-elastic net). Ensemble performance was evaluated over the independent test set for both recurrence free survival (RFS) and overall survival (OS). The Kaplan-Meier curves for OS stratified by cluster label show significant differences for both training and testing (p val < 0.0001). When compared to the models trained using clinical data only, the inclusion of the cluster label improves AUC test performance from .62 to .79 and from .66 to .80 for OS and RFS, respectively. The extraction of a single feature, namely a cluster label, to represent the high-dimensional radiomic feature space reduces the dimensionality and sparsity of the data. Moreover, inclusion of the cluster label improves model performance compared to clinical data only and offers comparable performance to the models including raw radiomic features.
Collapse
Affiliation(s)
- Harsh Patel
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, 52242, USA
| | - David M Vock
- Division of Biostatistics, University of Minnesota, Minneapolis, 55455, USA
| | - G Elisabeta Marai
- Department of Department of Computer Science, University of Illinois at Chicago, Chicago, 60607, USA
| | - Clifton D Fuller
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, 77030, USA
| | - Abdallah S R Mohamed
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, 77030, USA
| | - Guadalupe Canahuate
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, 52242, USA.
| |
Collapse
|
43
|
Lu L, Sun SH, Yang H, E L, Guo P, Schwartz LH, Zhao B. Radiomics Prediction of EGFR Status in Lung Cancer-Our Experience in Using Multiple Feature Extractors and The Cancer Imaging Archive Data. ACTA ACUST UNITED AC 2021; 6:223-230. [PMID: 32548300 PMCID: PMC7289249 DOI: 10.18383/j.tom.2020.00017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We investigated the performance of multiple radiomics feature extractors/software on predicting epidermal growth factor receptor mutation status in 228 patients with non–small cell lung cancer from publicly available data sets in The Cancer Imaging Archive. The imaging and clinical data were split into training (n = 105) and validation cohorts (n = 123). Two of the most cited open-source feature extractors, IBEX (1563 features) and Pyradiomics (1319 features), and our in-house software, Columbia Image Feature Extractor (CIFE) (1160 features), were used to extract radiomics features. Univariate and multivariate analyses were performed sequentially to predict EGFR mutation status using each individual feature extractor. Our univariate analysis integrated an unsupervised clustering method to identify nonredundant and informative candidate features for the creation of prediction models by multivariate analyses. In training, unsupervised clustering-based univariate analysis identified 5, 6, and 4 features from IBEX, Pyradiomics, and CIFE as candidate features, respectively. Multivariate prediction models using these features from IBEX, Pyradiomics, and CIFE yielded similar areas under the receiver operating characteristic curve of 0.68, 0.67, and 0.69. However, in validation, areas under the receiver operating characteristic curve of multivariate prediction models from IBEX, Pyradiomics, and CIFE decreased to 0.54, 0.56 and 0.64, respectively. Different feature extractors select different radiomics features, which leads to prediction models with varying performance. However, correlation between those selected features from different extractors may indicate these features measure similar imaging phenotypes associated with similar biological characteristics. Overall, attention should be paid to the generalizability of individual radiomics features and radiomics prediction models.
Collapse
Affiliation(s)
- Lin Lu
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY; and
| | - Shawn H Sun
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY; and
| | - Hao Yang
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY; and
| | - Linning E
- Department of Radiology, Shanxi DAYI Hospital, Taiyuan, Shanxi, China
| | - Pingzhen Guo
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY; and
| | - Lawrence H Schwartz
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY; and
| | - Binsheng Zhao
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY; and
| |
Collapse
|
44
|
Brossard C, Lemasson B, Attyé A, de Busschère JA, Payen JF, Barbier EL, Grèze J, Bouzat P. Contribution of CT-Scan Analysis by Artificial Intelligence to the Clinical Care of TBI Patients. Front Neurol 2021; 12:666875. [PMID: 34177773 PMCID: PMC8222716 DOI: 10.3389/fneur.2021.666875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/15/2021] [Indexed: 01/29/2023] Open
Abstract
The gold standard to diagnose intracerebral lesions after traumatic brain injury (TBI) is computed tomography (CT) scan, and due to its accessibility and improved quality of images, the global burden of CT scan for TBI patients is increasing. The recent developments of automated determination of traumatic brain lesions and medical-decision process using artificial intelligence (AI) represent opportunities to help clinicians in screening more patients, identifying the nature and volume of lesions and estimating the patient outcome. This short review will summarize what is ongoing with the use of AI and CT scan for patients with TBI.
Collapse
Affiliation(s)
| | - Benjamin Lemasson
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Lu L, Ahmed FS, Akin O, Luk L, Guo X, Yang H, Yoon J, Hakimi AA, Schwartz LH, Zhao B. Uncontrolled Confounders May Lead to False or Overvalued Radiomics Signature: A Proof of Concept Using Survival Analysis in a Multicenter Cohort of Kidney Cancer. Front Oncol 2021; 11:638185. [PMID: 34123789 PMCID: PMC8191735 DOI: 10.3389/fonc.2021.638185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/06/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose We aimed to explore potential confounders of prognostic radiomics signature predicting survival outcomes in clear cell renal cell carcinoma (ccRCC) patients and demonstrate how to control for them. Materials and Methods Preoperative contrast enhanced abdominal CT scan of ccRCC patients along with pathological grade/stage, gene mutation status, and survival outcomes were retrieved from The Cancer Imaging Archive (TCIA)/The Cancer Genome Atlas-Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) database, a publicly available dataset. A semi-automatic segmentation method was applied to segment ccRCC tumors, and 1,160 radiomics features were extracted from each segmented tumor on the CT images. Non-parametric principal component decomposition (PCD) and unsupervised hierarchical clustering were applied to build the radiomics signature models. The factors confounding the radiomics signature were investigated and controlled sequentially. Kaplan-Meier curves and Cox regression analyses were performed to test the association between radiomics signatures and survival outcomes. Results 183 patients of TCGA-KIRC cohort with available imaging, pathological, and clinical outcomes were included in this study. All 1,160 radiomics features were included in the first radiomics signature. Three additional radiomics signatures were then modelled in successive steps removing redundant radiomics features first, removing radiomics features biased by CT slice thickness second, and removing radiomics features dependent on tumor size third. The final radiomics signature model was the most parsimonious, unbiased by CT slice thickness, and independent of tumor size. This final radiomics signature stratified the cohort into radiomics phenotypes that are different by cancer-specific and recurrence-free survival; HR (95% CI) = 3.0 (1.5-5.7), p <0.05 and HR (95% CI) = 6.6 (3.1-14.1), p <0.05, respectively. Conclusion Radiomics signature can be confounded by multiple factors, including feature redundancy, image acquisition parameters like slice thickness, and tumor size. Attention to and proper control for these potential confounders are necessary for a reliable and clinically valuable radiomics signature.
Collapse
Affiliation(s)
- Lin Lu
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Firas S Ahmed
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Lyndon Luk
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Xiaotao Guo
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Hao Yang
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Jin Yoon
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - A Aari Hakimi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Lawrence H Schwartz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Binsheng Zhao
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
46
|
Ibrahim A, Refaee T, Leijenaar RTH, Primakov S, Hustinx R, Mottaghy FM, Woodruff HC, Maidment ADA, Lambin P. The application of a workflow integrating the variable reproducibility and harmonizability of radiomic features on a phantom dataset. PLoS One 2021; 16:e0251147. [PMID: 33961646 PMCID: PMC8104396 DOI: 10.1371/journal.pone.0251147] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
Radiomics–the high throughput extraction of quantitative features from medical images and their correlation with clinical and biological endpoints- is the subject of active and extensive research. Although the field shows promise, the generalizability of radiomic signatures is affected significantly by differences in scan acquisition and reconstruction settings. Previous studies reported on the sensitivity of radiomic features (RFs) to test-retest variability, inter-observer segmentation variability, and intra-scanner variability. A framework involving robust radiomics analysis and the application of a post-reconstruction feature harmonization method using ComBat was recently proposed to address these challenges. In this study, we investigated the reproducibility of RFs across different scanners and scanning parameters using this framework. We analysed thirteen scans of a ten-layer phantom that were acquired differently. Each layer was subdivided into sixteen regions of interest (ROIs), and the scans were compared in a pairwise manner, resulting in seventy-eight different scenarios. Ninety-one RFs were extracted from each ROI. As hypothesized, we demonstrate that the reproducibility of a given RF is not a constant but is dependent on the heterogeneity found in the data under analysis. The number (%) of reproducible RFs varied across the pairwise scenarios investigated, having a wide range between 8 (8.8%) and 78 (85.7%) RFs. Furthermore, in contrast to what has been previously reported, and as hypothesized in the robust radiomics analysis framework, our results demonstrate that ComBat cannot be applied to all RFs but rather on a percentage of those–the “ComBatable” RFs–which differed depending on the data being harmonized. The number (%) of reproducible RFs following ComBat harmonization varied across the pairwise scenarios investigated, ranging from 14 (15.4%) to 80 (87.9%) RFs, and was found to depend on the heterogeneity in the data. We conclude that the standardization of image acquisition protocols remains the cornerstone for improving the reproducibility of RFs, and the generalizability of the signatures developed. Our proposed approach helps identify the reproducible RFs across different datasets.
Collapse
Affiliation(s)
- Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liège and GIGA CRC-in vivo imaging, University of Liège, Liege, Belgium
- Department of Nuclear Medicine and Comprehensive Diagnostic Centre Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
- * E-mail:
| | - Turkey Refaee
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
- Faculty of Applied Medical Sciences, Department of Diagnostic Radiology, Jazan University, Jazan, Saudi Arabia
| | | | - Sergey Primakov
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
- Department of Nuclear Medicine and Comprehensive Diagnostic Centre Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liège and GIGA CRC-in vivo imaging, University of Liège, Liege, Belgium
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Nuclear Medicine and Comprehensive Diagnostic Centre Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Andrew D. A. Maidment
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
47
|
Wang Z, Li N, Zheng F, Sui X, Han W, Xue F, Xu X, Yang C, Hu Y, Wang L, Song W, Jiang J. Optimizing the timing of diagnostic testing after positive findings in lung cancer screening: a proof of concept radiomics study. J Transl Med 2021; 19:191. [PMID: 33947428 PMCID: PMC8094528 DOI: 10.1186/s12967-021-02849-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/18/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The timeliness of diagnostic testing after positive screening remains suboptimal because of limited evidence and methodology, leading to delayed diagnosis of lung cancer and over-examination. We propose a radiomics approach to assist with planning of the diagnostic testing interval in lung cancer screening. METHODS From an institute-based lung cancer screening cohort, we retrospectively selected 92 patients with pulmonary nodules with diameters ≥ 3 mm at baseline (61 confirmed as lung cancer by histopathology; 31 confirmed cancer-free). Four groups of region-of-interest-based radiomic features (n = 310) were extracted for quantitative characterization of the nodules, and eight features were proven to be predictive of cancer diagnosis, noise-robust, phenotype-related, and non-redundant. A radiomics biomarker was then built with the random survival forest method. The patients with nodules were divided into low-, middle- and high-risk subgroups by two biomarker cutoffs that optimized time-dependent sensitivity and specificity for decisions about diagnostic workup within 3 months and about repeat screening after 12 months, respectively. A radiomics-based follow-up schedule was then proposed. Its performance was visually assessed with a time-to-diagnosis plot and benchmarked against lung RADS and four other guideline protocols. RESULTS The radiomics biomarker had a high time-dependent area under the curve value (95% CI) for predicting lung cancer diagnosis within 12 months; training: 0.928 (0.844, 0.972), test: 0.888 (0.766, 0.975); the performance was robust in extensive cross-validations. The time-to-diagnosis distributions differed significantly between the three patient subgroups, p < 0.001: 96.2% of high-risk patients (n = 26) were diagnosed within 10 months after baseline screen, whereas 95.8% of low-risk patients (n = 24) remained cancer-free by the end of the study. Compared with the five existing protocols, the proposed follow-up schedule performed best at securing timely lung cancer diagnosis (delayed diagnosis rate: < 5%) and at sparing patients with cancer-free nodules from unnecessary repeat screenings and examinations (false recommendation rate: 0%). CONCLUSIONS Timely management of screening-detected pulmonary nodules can be substantially improved with a radiomics approach. This proof-of-concept study's results should be further validated in large programs.
Collapse
Affiliation(s)
- Zixing Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ning Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Fuling Zheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Sui
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Han
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Fang Xue
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoli Xu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Cuihong Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yaoda Hu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lei Wang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingmei Jiang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences/School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Chen H, He Y, Zhao C, Zheng L, Pan N, Qiu J, Zhang Z, Niu X, Yuan Z. Reproducibility of radiomics features derived from intravoxel incoherent motion diffusion-weighted MRI of cervical cancer. Acta Radiol 2021; 62:679-686. [PMID: 32640886 DOI: 10.1177/0284185120934471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The reproducibility of intravoxel incoherent motion (IVIM)-based radiomics studies in humans has not been reported. PURPOSE To determine the inter- and intra-observer variability on the reproducibility of IVIM-based radiomics features in cervical cancer (CC). MATERIAL AND METHODS The IVIM images of 25 patients with CC were retrospectively collected. Based on the high-resolution T2-weighted images, the regions of interest (ROIs) were independently delineated twice in diffusion-weighted images at a b value of 1000 s/mm2 (interval time was one month) by two radiologists. This was done at the largest transversal cross-sections of the tumors. The ROI was subsequently used in apparent diffusion coefficient (ADC), true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) maps derived from IVIM images. In total, 105 radiomics features were then finally extracted from the IVIM-derived maps. The inter- and intra-observer reproducibility of IVIM-derived features was then evaluated using the intraclass correlation coefficient. RESULTS Inter- and intra-observer variability affected the reproducibility of radiomics features. D* map had 100% and 95% reproducible features, ADC map had 89% and 93%, D map had 97% and 86%, while f map had 54% and 62% reproducible features with good to excellent reliability in the intra-observer analysis. Similarly, D* map had 90% and 94%, ADC map had 85% and 70%, D map had 81% and 78%, while f map had 41% and 93% reproducible features with good to excellent reliability in the inter-observer analysis. CONCLUSION Inter- and intra-observer variability can affect radiomics analysis. Cognizant to this, multicenter studies should pay more attention to intra- and inter-observer variability.
Collapse
Affiliation(s)
- Hao Chen
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yaoyao He
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Cecheng Zhao
- College of informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Lili Zheng
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ning Pan
- College of Biomedical Engineering, South Central University for Nationalities, Wuhan, PR China
- Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Wuhan, PR China
| | - Jianfeng Qiu
- Medical Engineering and Technology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, PR China
| | - Zhaoxi Zhang
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiaohui Niu
- College of informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Zilong Yuan
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
49
|
Pszczolkowski S, Manzano-Patrón JP, Law ZK, Krishnan K, Ali A, Bath PM, Sprigg N, Dineen RA. Quantitative CT radiomics-based models for prediction of haematoma expansion and poor functional outcome in primary intracerebral haemorrhage. Eur Radiol 2021; 31:7945-7959. [PMID: 33860831 PMCID: PMC8452575 DOI: 10.1007/s00330-021-07826-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To test radiomics-based features extracted from noncontrast CT of patients with spontaneous intracerebral haemorrhage for prediction of haematoma expansion and poor functional outcome and compare them with radiological signs and clinical factors. MATERIALS AND METHODS Seven hundred fifty-four radiomics-based features were extracted from 1732 scans derived from the TICH-2 multicentre clinical trial. Features were harmonised and a correlation-based feature selection was applied. Different elastic-net parameterisations were tested to assess the predictive performance of the selected radiomics-based features using grid optimisation. For comparison, the same procedure was run using radiological signs and clinical factors separately. Models trained with radiomics-based features combined with radiological signs or clinical factors were tested. Predictive performance was evaluated using the area under the receiver operating characteristic curve (AUC) score. RESULTS The optimal radiomics-based model showed an AUC of 0.693 for haematoma expansion and an AUC of 0.783 for poor functional outcome. Models with radiological signs alone yielded substantial reductions in sensitivity. Combining radiomics-based features and radiological signs did not provide any improvement over radiomics-based features alone. Models with clinical factors had similar performance compared to using radiomics-based features, albeit with low sensitivity for haematoma expansion. Performance of radiomics-based features was boosted by incorporating clinical factors, with time from onset to scan and age being the most important contributors for haematoma expansion and poor functional outcome prediction, respectively. CONCLUSION Radiomics-based features perform better than radiological signs and similarly to clinical factors on the prediction of haematoma expansion and poor functional outcome. Moreover, combining radiomics-based features with clinical factors improves their performance. KEY POINTS • Linear models based on CT radiomics-based features perform better than radiological signs on the prediction of haematoma expansion and poor functional outcome in the context of intracerebral haemorrhage. • Linear models based on CT radiomics-based features perform similarly to clinical factors known to be good predictors. However, combining these clinical factors with radiomics-based features increases their predictive performance.
Collapse
Affiliation(s)
- Stefan Pszczolkowski
- Radiological Sciences, Division of Clinical Neuroscience, Precision Imaging Beacon, University of Nottingham, Queen's Medical Centre, Derby Road, Nottingham, NG7 2UH, UK. .,Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK.
| | - José P Manzano-Patrón
- Radiological Sciences, Division of Clinical Neuroscience, Precision Imaging Beacon, University of Nottingham, Queen's Medical Centre, Derby Road, Nottingham, NG7 2UH, UK
| | - Zhe K Law
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK.,Department of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Kailash Krishnan
- Stroke, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Azlinawati Ali
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Philip M Bath
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK.,Stroke, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Nikola Sprigg
- Stroke Trials Unit, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK.,Stroke, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Rob A Dineen
- Radiological Sciences, Division of Clinical Neuroscience, Precision Imaging Beacon, University of Nottingham, Queen's Medical Centre, Derby Road, Nottingham, NG7 2UH, UK.,Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK.,NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| |
Collapse
|
50
|
Reiazi R, Abbas E, Famiyeh P, Rezaie A, Kwan JYY, Patel T, Bratman SV, Tadic T, Liu FF, Haibe-Kains B. The impact of the variation of imaging parameters on the robustness of Computed Tomography radiomic features: A review. Comput Biol Med 2021; 133:104400. [PMID: 33930766 DOI: 10.1016/j.compbiomed.2021.104400] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/23/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
The field of radiomics is at the forefront of personalized medicine. However, there is concern that high variation in imaging parameters will impact robustness of radiomic features and subsequently the performance of the predictive models built upon them. Therefore, our review aims to evaluate the impact of imaging parameters on the robustness of radiomic features. We also provide insights into the validity and discrepancy of different methodologies applied to investigate the robustness of radiomic features. We selected 47 papers based on our predefined inclusion criteria and grouped these papers by the imaging parameter under investigation: (i) scanner parameters, (ii) acquisition parameters and (iii) reconstruction parameters. Our review highlighted that most of the imaging parameters are disruptive parameters, and shape along with First order statistics were reported as the most robust radiomic features against variation in imaging parameters. This review identified inconsistencies related to the methodology of the reviewed studies such as the metrics used for robustness, the feature extraction techniques, the reporting style, and their outcome inclusion. We hope this review will aid the scientific community in conducting research in a way that is more reproducible and avoids the pitfalls of previous analyses.
Collapse
Affiliation(s)
- Reza Reiazi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Engy Abbas
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Petra Famiyeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aria Rezaie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jennifer Y Y Kwan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tirth Patel
- Techna Institute, University Health Network, Toronto, Ontario, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Tony Tadic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Computer Science, University of Toronto, Toronto, Ontario, Canada; Vector Institute, Toronto, Ontario, Canada.
| |
Collapse
|