1
|
Lu Y, Duan M, Li Y, Zhang S, Hu X, Liu L. Altitude-associated trends in bacterial communities in ultrahigh-altitude residences. ENVIRONMENT INTERNATIONAL 2024; 185:108503. [PMID: 38377724 DOI: 10.1016/j.envint.2024.108503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Indoor bacterial communities may change with altitude because their major contributors, outdoor bacterial communities, vary with altitude. People's health effects from bacteria inhalation exposure can also vary with altitude because human respiratory physiology changes with oxygen content in air. Accordingly, adjusting indoor bacterial communities may help to acclimate newcomers from low-altitude environments to ultrahigh-altitude environments. To lay the groundwork for further research, we aimed to first elucidate the bacterial communities in ultrahigh-altitude residences and the effects of altitude on these communities. We collected 187 environmental samples from residential communities at ultrahigh altitudes of 3811-4651 m in Ngari, China and sequenced bacterial 16S rRNA genes. RESULTS On one hand, when abundant genera in ultrahigh-altitude residences and those reported by previous studies on low-altitude residences were compared, nine genera were shared, whereas other five genera were abundant only at ultrahigh altitudes. On the other hand, when the bacterial communities of residences at different ultrahigh altitudes were further compared, the bacterial composition in indoor surface samples varied significantly with altitude. The relative abundance of five bacterial genera in indoor air samples and 10 genera and three phyla in indoor surface samples varied monotonically with altitude. CONCLUSIONS Altitude may be a long-neglected factor that shapes residential bacterial communities and thus warrants attention.
Collapse
Affiliation(s)
- Yiran Lu
- Department of Building Science, Tsinghua University, Beijing 100084, China; Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Mengjie Duan
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China; Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Yifan Li
- Department of Building Science, Tsinghua University, Beijing 100084, China; Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Shengyu Zhang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaomin Hu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li Liu
- Department of Building Science, Tsinghua University, Beijing 100084, China; Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
l-Serine Biosensor-Controlled Fermentative Production of l-Tryptophan Derivatives by Corynebacterium glutamicum. BIOLOGY 2022; 11:biology11050744. [PMID: 35625472 PMCID: PMC9138238 DOI: 10.3390/biology11050744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary l-tryptophan is an amino acid found in proteins. Its derivatives, such as hydroxylated or halogenated l-tryptophans, find applications in the chemical and pharmaceutical industries, for example, in therapeutic peptides. Biotechnology provides a sustainable way for the production of l-tryptophan and its derivatives. In the final reaction of l-tryptophan biosynthesis in bacteria, such as Corynebacterium glutamicum, another amino acid, l-serine, is incorporated. Here, we show that C. glutamicum TrpB is able to convert indole derivatives, which were added to cells synthesizing l-serine, to the corresponding l-tryptophan derivatives. The gene trpB was expressed under the control of the l-serine-responsive transcriptional activator SerR in the C. glutamicum cells engineered for this fermentation process. Abstract l-Tryptophan derivatives, such as hydroxylated or halogenated l-tryptophans, are used in therapeutic peptides and agrochemicals and as precursors of bioactive compounds, such as serotonin. l-Tryptophan biosynthesis depends on another proteinogenic amino acid, l-serine, which is condensed with indole-3-glycerophosphate by tryptophan synthase. This enzyme is composed of the α-subunit TrpA, which catalyzes the retro-aldol cleavage of indole-3-glycerol phosphate, yielding glyceraldehyde-3-phosphate and indole, and the β-subunit TrpB that catalyzes the β-substitution reaction between indole and l-serine to water and l-tryptophan. TrpA is reported as an allosteric actuator, and its absence severely attenuates TrpB activity. In this study, however, we showed that Corynebacterium glutamicum TrpB is catalytically active in the absence of TrpA. Overexpression of C. glutamicumtrpB in a trpBA double deletion mutant supported growth in minimal medium only when exogenously added indole was taken up into the cell and condensed with intracellularly synthesized l-serine. The fluorescence reporter gene of an l-serine biosensor, which was based on the endogenous transcriptional activator SerR and its target promoter PserE, was replaced by trpB. This allowed for l-serine-dependent expression of trpB in an l-serine-producing strain lacking TrpA. Upon feeding of the respective indole derivatives, this strain produced the l-tryptophan derivatives 5-hydroxytryptophan, 7-bromotryptophan, and 5-fluorotryptophan.
Collapse
|
3
|
Kawaguchi H, Hasunuma T, Ohnishi Y, Sazuka T, Kondo A, Ogino C. Enhanced production of γ-amino acid 3-amino-4-hydroxybenzoic acid by recombinant Corynebacterium glutamicum under oxygen limitation. Microb Cell Fact 2021; 20:228. [PMID: 34949178 PMCID: PMC8697445 DOI: 10.1186/s12934-021-01714-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background Bio-based aromatic compounds are of great interest to the industry, as commercial production of aromatic compounds depends exclusively on the unsustainable use of fossil resources or extraction from plant resources. γ-amino acid 3-amino-4-hydroxybenzoic acid (3,4-AHBA) serves as a precursor for thermostable bioplastics. Results Under aerobic conditions, a recombinant Corynebacterium glutamicum strain KT01 expressing griH and griI genes derived from Streptomyces griseus produced 3,4-AHBA with large amounts of amino acids as by-products. The specific productivity of 3,4-AHBA increased with decreasing levels of dissolved oxygen (DO) and was eightfold higher under oxygen limitation (DO = 0 ppm) than under aerobic conditions (DO ≥ 2.6 ppm). Metabolic profiles during 3,4-AHBA production were compared at three different DO levels (0, 2.6, and 5.3 ppm) using the DO-stat method. Results of the metabolome analysis revealed metabolic shifts in both the central metabolic pathway and amino acid metabolism at a DO of < 33% saturated oxygen. Based on this metabolome analysis, metabolic pathways were rationally designed for oxygen limitation. An ldh deletion mutant, with the loss of lactate dehydrogenase, exhibited 3.7-fold higher specific productivity of 3,4-AHBA at DO = 0 ppm as compared to the parent strain KT01 and produced 5.6 g/L 3,4-AHBA in a glucose fed-batch culture. Conclusions Our results revealed changes in the metabolic state in response to DO concentration and provided insights into oxygen supply during fermentation and the rational design of metabolic pathways for improved production of related amino acids and their derivatives. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01714-z.
Collapse
Affiliation(s)
- Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo, Tokyo, 113-8657, Japan
| | - Takashi Sazuka
- Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. .,Biomass Engineering Research Division, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Chiaki Ogino
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
4
|
Galvão-Lima LJ, Morais AHF, Valentim RAM, Barreto EJSS. miRNAs as biomarkers for early cancer detection and their application in the development of new diagnostic tools. Biomed Eng Online 2021; 20:21. [PMID: 33593374 PMCID: PMC7885381 DOI: 10.1186/s12938-021-00857-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, microRNAs (miRNAs) have emerged as important molecules associated with the regulation of gene expression in humans and other organisms, expanding the strategies available to diagnose and handle several diseases. This paper presents a systematic review of literature of miRNAs related to cancer development and explores the main techniques used to quantify these molecules and their limitations as screening strategy. The bibliographic research was conducted using the online databases, PubMed, Google Scholar, Web of Science, and Science Direct searching the terms "microRNA detection", "miRNA detection", "miRNA and prostate cancer", "miRNA and cervical cancer", "miRNA and cervix cancer", "miRNA and breast cancer", and "miRNA and early cancer diagnosis". Along the systematic review over 26,000 published papers were reported, and 252 papers were returned after applying the inclusion and exclusion criteria, which were considered during this review. The aim of this study is to identify potential miRNAs related to cancer development that may be useful for early cancer diagnosis, notably in the breast, prostate, and cervical cancers. In addition, we suggest a preliminary top 20 miRNA panel according to their relevance during the respective cancer development. Considering the progressive number of new cancer cases every year worldwide, the development of new diagnostic tools is critical to refine the accuracy of screening tests, improving the life expectancy and allowing a better prognosis for the affected patients.
Collapse
Affiliation(s)
- Leonardo J. Galvão-Lima
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Avenue Senador Salgado Filho 1559, Natal, RN 59015-000 Brazil
| | - Antonio H. F. Morais
- Advanced Nucleus of Technological Innovation (NAVI), Federal Institute of Rio Grande do Norte (IFRN), Avenue Senador Salgado Filho 1559, Natal, RN 59015-000 Brazil
| | - Ricardo A. M. Valentim
- Laboratory of Technological Innovation in Health (LAIS), Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Campus Lagoa Nova, Natal, RN Brazil
| | - Elio J. S. S. Barreto
- Division of Oncology and Hematology, Hospital Universitário Onofre Lopes (HUOL), Federal University of Rio Grande do Norte (UFRN), Campus Lagoa Nova, Natal, RN Brazil
| |
Collapse
|
5
|
Effect of dissolved oxygen on L-methionine production from glycerol by Escherichia coli W3110BL using metabolic flux analysis method. J Ind Microbiol Biotechnol 2020; 47:287-297. [PMID: 32052230 DOI: 10.1007/s10295-020-02264-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
L-Methionine is an essential amino acid in humans, which plays an important role in the synthesis of some important amino acids and proteins. In this work, metabolic flux of batch fermentation of L-methionine with recombinant Escherichia coli W3110BL was analyzed using the flux balance analysis method, which estimated the intracellular flux distributions under different dissolved oxygen conditions. The results revealed the producing L-methionine flux of 4.8 mmol/(g cell·h) [based on the glycerol uptake flux of 100 mmol/(g cell·h)] was obtained at 30% dissolved oxygen level which was higher than that of other dissolved oxygen levels. The carbon fluxes for synthesizing L-methionine were mainly obtained from the pathway of phosphoenolpyruvate to oxaloacetic acid [15.6 mmol/(g cell·h)] but not from the TCA cycle. Hence, increasing the flow from phosphoenolpyruvate to oxaloacetic acid by enhancing the enzyme activity of phosphoenolpyruvate carboxylase might be conducive to the production of L-methionine. Additionally, pentose phosphate pathway could provide a large amount of reducing power NADPH for the synthesis of amino acids and the flux could increase from 41 mmol/(g cell·h) to 51 mmol/(g cell·h) when changing the dissolved oxygen levels, thus meeting the requirement of NADPH for L-methionine production and biomass synthesis. Therefore, the following modification of the strains should based on the improvement of the key pathway and the NAD(P)/NAD(P)H metabolism.
Collapse
|
6
|
Zhao C, Fang H, Wang J, Zhang S, Zhao X, Li Z, Lin C, Shen Z, Cheng L. Application of fermentation process control to increase l-tryptophan production in Escherichia coli. Biotechnol Prog 2019; 36:e2944. [PMID: 31804750 DOI: 10.1002/btpr.2944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/04/2019] [Accepted: 11/26/2019] [Indexed: 11/11/2022]
Abstract
In this study, process engineering and process control were applied to increase the production of l-tryptophan using Escherichia coli Dmtr/pta-Y. Different dissolved oxygen (DO) and pH control strategies were applied in l-tryptophan production. DO and pH were maintained at [20% (0-20 hr); 30% (20-40 hr)] and [7.0 (0-20 hr), 6.5 (20-40 hr)], respectively, which increased l-tryptophan production, glucose conversion percentage [g (l-tryptophan)/g (glucose)], and transcription levels of key genes for tryptophan biosynthesis and tryptophan biosynthesis flux, and decreased the accumulation of acetate and transcription levels of genes related to acetate synthesis and acetate synthesis flux. Using E. coli Dmtr/pta-Y with optimized DO [20% (0-20 hr); 30% (20-40 hr)] and pH [7.0 (0-20 hr), 6.5 (20-40 hr)] values, the highest l-tryptophan production (52.57 g/L) and glucose conversion percentage (20.15%) were obtained. The l-tryptophan production was increased by 26.58%, the glucose conversion percentage was increased by 22.64%, and the flux of tryptophan biosynthesis was increased to 21.5% compared with different conditions for DO [50% (0-20 hr), 20% (20-40 hr)] and pH [7.0].
Collapse
Affiliation(s)
- Chunguang Zhao
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,School of Agriculture, Ningxia University, Ningxia Eppen Biotech Co., Ltd, Yinchuan, China
| | - Haitian Fang
- School of Agriculture, Ningxia University, Ningxia Eppen Biotech Co., Ltd, Yinchuan, China
| | - Jing Wang
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Department of Critical Care Medicine, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Shasha Zhang
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Xiubao Zhao
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Zengliang Li
- Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co., Ltd, Binzhou, China
| | - Chuwen Lin
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co., Ltd, Binzhou, China
| | - Zhiqiang Shen
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co., Ltd, Binzhou, China
| | - Likun Cheng
- Key Laboratory of Fermentation Engineering, Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China.,Shandong Research Center of High Cell Density Fermentation and Efficient Expression Technology, Shandong Lvdu Bio-science and Technology Co., Ltd, Binzhou, China
| |
Collapse
|
7
|
Wang X, Peng F, Dong G, Sun Y, Dai X, Yang Y, Liu X, Bai Z. Identification and validation of appropriate reference genes for qRT-PCR analysis in Corynebacterium glutamicum. FEMS Microbiol Lett 2019; 365:4840241. [PMID: 29420726 DOI: 10.1093/femsle/fny030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/05/2018] [Indexed: 12/30/2022] Open
Abstract
Real-time quantitative PCR (qRT-PCR) is a fast and efficient technology for detecting gene expression levels in the study of the Corynebacterium glutamicum protein expression system, but it requires normalization to ensure the reliability of the results obtained. We selected 13 genes from the commonly used housekeeping genes and from transcriptome data as candidate reference genes. The Ct values of the 13 genes were obtained by qRT-PCR at different fermentation stages and under three stress conditions (temperature, acid and salt). The expression stability of the reference genes was evaluated by geNorm and NormFinder software. For the study of different growth stages, the most appropriate reference genes are Ncgl2772 and leua, which encode acetyl-CoA carboxylase beta subunit and 2-isopropylmalate synthase, separately. For the study of different stress factors, the optimal minimum number of reference genes is 3, with Ncgl2772, gyrb encoding DNA gyrase B and siga encoding RNA polymerase sigma factor A as the most suitable combination. Additionally, clpx and clpc, encoding ClpX and ClpC protease subunits, were used to validate the candidate reference genes. The identification of new reference genes makes qRT-PCR more convenient, and using these genes for normalization can improve the accuracy and reliability of the measurements of target gene expression levels obtained by qRT-PCR for C. glutamicum.
Collapse
Affiliation(s)
- XinYue Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feng Peng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guibin Dong
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Sun
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Dai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Pérez-García F, Brito LF, Wendisch VF. Function of L-Pipecolic Acid as Compatible Solute in Corynebacterium glutamicum as Basis for Its Production Under Hyperosmolar Conditions. Front Microbiol 2019; 10:340. [PMID: 30858843 PMCID: PMC6397837 DOI: 10.3389/fmicb.2019.00340] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Pipecolic acid or L-PA is a cyclic amino acid derived from L-lysine which has gained interest in the recent years within the pharmaceutical and chemical industries. L-PA can be produced efficiently using recombinant Corynebacterium glutamicum strains by expanding the natural L-lysine biosynthetic pathway. L-PA is a six-membered ring homolog of the five-membered ring amino acid L-proline, which serves as compatible solute in C. glutamicum. Here, we show that de novo synthesized or externally added L-PA partially is beneficial for growth under hyper-osmotic stress conditions. C. glutamicum cells accumulated L-PA under elevated osmotic pressure and released it after an osmotic down shock. In the absence of the mechanosensitive channel YggB intracellular L-PA concentrations increased and its release after osmotic down shock was slower. The proline permease ProP was identified as a candidate L-PA uptake system since RNAseq analysis revealed increased proP RNA levels upon L-PA production. Under hyper-osmotic conditions, a ΔproP strain showed similar growth behavior than the parent strain when L-proline was added externally. By contrast, the growth impairment of the ΔproP strain under hyper-osmotic conditions could not be alleviated by addition of L-PA unless proP was expressed from a plasmid. This is commensurate with the view that L-proline can be imported into the C. glutamicum cell by ProP and other transporters such as EctP and PutP, while ProP appears of major importance for L-PA uptake under hyper-osmotic stress conditions.
Collapse
Affiliation(s)
- Fernando Pérez-García
- Genetics of Prokaryotes, Faculty of Biology - CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Luciana F Brito
- Genetics of Prokaryotes, Faculty of Biology - CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology - CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
9
|
Veldmann KH, Minges H, Sewald N, Lee JH, Wendisch VF. Metabolic engineering of Corynebacterium glutamicum for the fermentative production of halogenated tryptophan. J Biotechnol 2019; 291:7-16. [DOI: 10.1016/j.jbiotec.2018.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022]
|
10
|
Hemmerich J, Moch M, Jurischka S, Wiechert W, Freudl R, Oldiges M. Combinatorial impact of Sec signal peptides fromBacillus subtilisand bioprocess conditions on heterologous cutinase secretion byCorynebacterium glutamicum. Biotechnol Bioeng 2018; 116:644-655. [DOI: 10.1002/bit.26873] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/11/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Johannes Hemmerich
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
| | - Matthias Moch
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
| | - Sarah Jurischka
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
| | - Wolfgang Wiechert
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
- Computational Systems Biotechnology (AVT.CSB)RWTH Aachen UniversityAachen Germany
| | - Roland Freudl
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
| | - Marco Oldiges
- Forschungszentrum JülichInstitute of Bio‐ and Geosciences—Biotechnology (IBG‐1)Jülich Germany
- Bioeconomy Science Center (BioSC)c/o Forschungszentrum JülichJülich Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen Germany
| |
Collapse
|
11
|
Retraction: Transcriptome and Multivariable Data Analysis of Corynebacterium glutamicum under Different Dissolved Oxygen Conditions in Bioreactors. PLoS One 2018; 13:e0205785. [PMID: 30308046 PMCID: PMC6181409 DOI: 10.1371/journal.pone.0205785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Wei H, Ma Y, Chen Q, Cui Y, Du L, Ma Q, Li Y, Xie X, Chen N. Identification and application of a novel strong constitutive promoter in Corynebacterium glutamicum. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1344-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
13
|
Castillo H, Li X, Schilkey F, Smith GB. Transcriptome analysis reveals a stress response of Shewanella oneidensis deprived of background levels of ionizing radiation. PLoS One 2018; 13:e0196472. [PMID: 29768440 PMCID: PMC5955497 DOI: 10.1371/journal.pone.0196472] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/13/2018] [Indexed: 11/21/2022] Open
Abstract
Natural ionizing background radiation has exerted a constant pressure on organisms since the first forms of life appeared on Earth, so that cells have developed molecular mechanisms to avoid or repair damages caused directly by radiation or indirectly by radiation-induced reactive oxygen species (ROS). In the present study, we investigated the transcriptional effect of depriving Shewanella oneidensis cultures of background levels of radiation by growing the cells in a mine 655 m underground, thus reducing the dose rate from 72.1 to 0.9 nGy h-1 from control to treatment, respectively. RNASeq transcriptome analysis showed the differential expression of 4.6 and 7.6% of the S. oneidensis genome during early- and late-exponential phases of growth, respectively. The greatest change observed in the treatment was the downregulation of ribosomal proteins (21% of all annotated ribosomal protein genes during early- and 14% during late-exponential) and tRNA genes (14% of all annotated tRNA genes in early-exponential), indicating a marked decrease in protein translation. Other significant changes were the upregulation of membrane transporters, implying an increase in the traffic of substrates across the cell membrane, as well as the up and downregulation of genes related to respiration, which could be interpreted as a response to insufficient oxidants in the cells. In other reports, there is evidence in multiple species that some ROS not just lead to oxidative stress, but act as signaling molecules to control cellular metabolism at the transcriptional level. Consistent with these reports, several genes involved in the metabolism of carbon and biosynthesis of amino acids were also regulated, lending support to the idea of a wide metabolic response. Our results indicate that S. oneidensis is sensitive to the withdrawal of background levels of ionizing radiation and suggest that a transcriptional response is required to maintain homeostasis and retain normal growth.
Collapse
Affiliation(s)
- Hugo Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| | - Xiaoping Li
- Department of Botany and Plant Pathology, Oregon State University, Hermiston, OR, United States of America
| | - Faye Schilkey
- National Center for Genome Resources, Santa Fe, NM, United States of America
| | - Geoffrey B Smith
- Department of Biology, New Mexico State University, Las Cruces, NM, United States of America
| |
Collapse
|
14
|
Peng F, Wang X, Sun Y, Dong G, Yang Y, Liu X, Bai Z. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Microb Cell Fact 2017; 16:201. [PMID: 29137643 PMCID: PMC5686833 DOI: 10.1186/s12934-017-0814-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/08/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Corynebacterium glutamicum (C. glutamicum) has traditionally been used as a microbial cell factory for the industrial production of many amino acids and other industrially important commodities. C. glutamicum has recently been established as a host for recombinant protein expression; however, some intrinsic disadvantages could be improved by genetic modification. Gene editing techniques, such as deletion, insertion, or replacement, are important tools for modifying chromosomes. RESULTS In this research, we report a CRISPR/Cas9 system in C. glutamicum for rapid and efficient genome editing, including gene deletion and insertion. The system consists of two plasmids: one containing a target-specific guide RNA and a homologous sequence to a target gene, the other expressing Cas9 protein. With high efficiency (up to 100%), this system was used to disrupt the porB, mepA, clpX and Ncgl0911 genes, which affect the ability to express proteins. The porB- and mepA-deletion strains had enhanced expression of green fluorescent protein, compared with the wild-type stain. This system can also be used to engineer point mutations and gene insertions. CONCLUSIONS In this study, we adapted the CRISPR/Cas9 system from S. pyogens to gene deletion, point mutations and insertion in C. glutamicum. Compared with published genome modification methods, methods based on the CRISPR/Cas9 system can rapidly and efficiently achieve genome editing. Our research provides a powerful tool for facilitating the study of gene function, metabolic pathways, and enhanced productivity in C. glutamicum.
Collapse
Affiliation(s)
- Feng Peng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xinyue Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Yang Sun
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Guibin Dong
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
15
|
Oliveira A, Oliveira LC, Aburjaile F, Benevides L, Tiwari S, Jamal SB, Silva A, Figueiredo HCP, Ghosh P, Portela RW, De Carvalho Azevedo VA, Wattam AR. Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species. Front Microbiol 2017; 8:1937. [PMID: 29075239 PMCID: PMC5643470 DOI: 10.3389/fmicb.2017.01937] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/21/2017] [Indexed: 11/22/2022] Open
Abstract
This review gathers recent information about genomic and transcriptomic studies in the Corynebacterium genus, exploring, for example, prediction of pathogenicity islands and stress response in different pathogenic and non-pathogenic species. In addition, is described several phylogeny studies to Corynebacterium, exploring since the identification of species until biological speciation in one species belonging to the genus Corynebacterium. Important concepts associated with virulence highlighting the role of Pld protein and Tox gene. The adhesion, characteristic of virulence factor, was described using the sortase mechanism that is associated to anchorage to the cell wall. In addition, survival inside the host cell and some diseases, were too addressed for pathogenic corynebacteria, while important biochemical pathways and biotechnological applications retain the focus of this review for non-pathogenic corynebacteria. Concluding, this review broadly explores characteristics in genus Corynebacterium showing to have strong relevance inside the medical, veterinary, and biotechnology field.
Collapse
Affiliation(s)
- Alberto Oliveira
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Leticia C Oliveira
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flavia Aburjaile
- Center of Genomics and System Biology, Federal University of Pará, Belém, Brazil
| | - Leandro Benevides
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sandeep Tiwari
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Syed B Jamal
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Arthur Silva
- Center of Genomics and System Biology, Federal University of Pará, Belém, Brazil
| | - Henrique C P Figueiredo
- Aquacen, National Reference Laboratory for Aquatic Animal Diseases, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Preetam Ghosh
- Department of Computational Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Ricardo W Portela
- Laboratory of Immunology and Molecular Bióloga, Health Sciences Institute, Federal University of Bahiaa, Salvador, Brazil
| | - Vasco A De Carvalho Azevedo
- Molecular and Cellular Laboratory, General Biology Department, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Alice R Wattam
- Biocomplexity Institute of Virginia Tech, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
16
|
Sun Y, Guo W, Wang F, Zhan C, Yang Y, Liu X, Bai Z. Transcriptome analysis of Corynebacterium glutamicum in the process of recombinant protein expression in bioreactors. PLoS One 2017; 12:e0174824. [PMID: 28369109 PMCID: PMC5378358 DOI: 10.1371/journal.pone.0174824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023] Open
Abstract
Corynebacterium glutamicum (C. glutamicum) is a favorable host cell for the production of recombinant proteins, such as important enzymes and pharmaceutical proteins, due to its excellent potential advantages. Herein, we sought to systematically explore the influence of recombinant protein expression on the transcription and metabolism of C. glutamicum. Two C. glutamicum strains, the wild-type strain and an engineered strain expressing enhanced green fluorescent protein (EGFP), were cultured in parallel in 5-L bioreactors to study the change in metabolism in the process of EGFP expression. The results revealed that EGFP expression had great effects on the growth and metabolism of C. glutamicum and contributed to metabolism-like anaerobic conditions as follows: glycolysis was enhanced, the TCA cycle was shunted, and Glu, Val, Met, lactate and acetate were accumulated to produce sufficient ATP for EGFP production and transfer. Many differentially expressed genes related to ribosomal protein, transcriptional regulators, and energy metabolism were found to be expressed in the presence of EGFP, laying the foundation for identifying genomic loci to change the flow of the host cell metabolism to improve the ability of expressing foreign proteins in C. glutamicum.
Collapse
Affiliation(s)
- Yang Sun
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wenwen Guo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Fen Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chunjun Zhan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Pérez-García F, Max Risse J, Friehs K, Wendisch VF. Fermentative production of L-pipecolic acid from glucose and alternative carbon sources. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600646] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/28/2017] [Accepted: 02/06/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Fernando Pérez-García
- Genetics of Prokaryotes; Faculty of Biology & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| | - Joe Max Risse
- Fermentation Technology; Technical Faculty & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| | - Karl Friehs
- Fermentation Technology; Technical Faculty & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| | - Volker F. Wendisch
- Genetics of Prokaryotes; Faculty of Biology & Center for Biotechnology; Bielefeld University; Bielefeld Germany
| |
Collapse
|