1
|
Qin X, Zhang M, Chen S, Tang Y, Cui J, Ding G. Short-chain fatty acids in fetal development and metabolism. Trends Mol Med 2024:S1471-4914(24)00329-0. [PMID: 39694776 DOI: 10.1016/j.molmed.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Short-chain fatty acids (SCFAs), primarily derived from gut microbiota, play a role in regulating fetal development; however, the mechanism remains unclear. Fetal SCFAs levels depends on maternal SCFAs transported via the placenta. Metabolic stress, particularly from diabetes and obesity, can disrupt maternal SCFAs levels, impairing fetal metabolic reprogramming. Dysregulated SCFAs may negatively impact the development of the fetal cardiovascular, nervous, and immune systems, potentially contributing to adverse outcomes in adulthood. This review focuses on recent advances regarding the role of maternal SCFAs in shaping the metabolic profile of offspring, especially in the context of various maternal metabolic disorders. Given that SCFAs may influence fetal development through the placenta-embryo axis, targeted SCFAs supplementation could be a promising strategy against developmental diseases associated with intrauterine risk factors.
Collapse
Affiliation(s)
- Xueyun Qin
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Mo Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Shiting Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Yunhui Tang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Jiajun Cui
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Guolian Ding
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China; Shanghai Key Laboratory of Reproduction and Development, Shanghai, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
2
|
Kamel AA, Taha S, Mosa AA. Circulating expression patterns of TL1A and FFAR2 in patients with stable and unstable angina. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abstract
Background and aim
The primary factor in sudden cardiac death is coronary artery disease. We intended to discover the diagnostic worth of circulating tumor necrosis factor like cytokine 1A (TL1A) and free fatty acid receptor 2 (FFAR2) as early, noninvasive indicators for individuals with stable angina (SA) and unstable angina (UA).
Methods
In all, 90 people were enrolled in the current case–control study: 30 patients with SA, 30 patients with UA, and 30 healthy volunteers. Circulating TL1A and FFAR2 gene expression levels were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). FBG, TC, TG, and HDL-C were assessed by spectrophotometry, while hs-CRP and troponin T were measured by ELISA.
Results
Circulating TL1A expression was significantly elevated in SA (P < 0.001) and UA patients (P < 0.001) as compared to controls and also was significantly higher in UA patients (P < 0.001) as compared to SA patients. Circulating FFAR2 expression was significantly decreased in SA (P < 0.001) and UA patients (P < 0.001) in comparison with controls and was significantly lowered in UA patients (P = 0.001) in comparison with SA patients. Our results show that TL1A and FFAR2 were sensitive and specific biomarkers for discriminating SA patients from controls. Moreover, TL1A and FFAR2 displayed a remarkable ability to distinguish UA from SA. Multivariate regression analysis revealed that TL1A, FFAR2, FBG, TC, TG, LDL-C, and Troponin T were independent risk factors for SA, while TL1A, TG, and hs-CRP were independent risk factors for UA. TL1A has a significant positive correlation with LDL-C (r = 0.406, P = 0.001), hs-CRP (r = 0.673, P < 0.001), and troponin T (r = 0.653, P < 0.001). There was a significant inverse relationship between FFAR2 and each of TL1A (r = − 0.858, P < 0.001), FBG (r = − 0.325, P = 0.011), TC(r = − 0.306, P = 0.017), TG (r = − 0.368, P = 0.004), LDL-C (r = − 0.413, P = 0.001), hs-CRP (r = − 0.737, P < 0.001), and troponin T (r = − 0.715, P < 0.001).
Conclusion
Gene expression of TL1A and FFAR2 is a good new blood-based molecular indicator for early detection of SA and UA. Early detection of a possible UA is crucial for initiating appropriate treatment that results in better patient health.
Collapse
|
3
|
Free Fatty Acid Receptors 2 and 3 as Microbial Metabolite Sensors to Shape Host Health: Pharmacophysiological View. Biomedicines 2020; 8:biomedicines8060154. [PMID: 32521775 PMCID: PMC7344995 DOI: 10.3390/biomedicines8060154] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
The role of the gut microbiome in human health is becoming apparent. The major functional impact of the gut microbiome is transmitted through the microbial metabolites that are produced in the gut and interact with host cells either in the local gut environment or are absorbed into circulation to impact distant cells/organs. Short-chain fatty acids (SCFAs) are the major microbial metabolites that are produced in the gut through the fermentation of non-digestible fibers. SCFAs are known to function through various mechanisms, however, their signaling through free fatty acid receptors 2 and 3 (FFAR2/3; type of G-coupled protein receptors) is a new therapeutic approach. FFAR2/3 are widely expressed in diverse cell types in human and mice, and function as sensors of SCFAs to change several physiological and cellular functions. FFAR2/3 modulate neurological signaling, energy metabolism, intestinal cellular homeostasis, immune response, and hormone synthesis. FFAR2/3 function through Gi and/or Gq signaling, that is mediated through specific structural features of SCFAs-FFAR2/3 bindings and modulating specific signaling pathway. In this review, we discuss the wide-spread expression and structural homologies between human and mice FFAR2/3, and their role in different human health conditions. This information can unlock opportunities to weigh the potential of FFAR2/3 as a drug target to prevent human diseases.
Collapse
|
4
|
Ruan J, Meng H, Wang X, Chen W, Tian X, Meng F. Low Expression of FFAR2 in Peripheral White Blood Cells May Be a Genetic Marker for Early Diagnosis of Acute Myocardial Infarction. Cardiol Res Pract 2020; 2020:3108124. [PMID: 32411444 PMCID: PMC7204345 DOI: 10.1155/2020/3108124] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/08/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE To find molecular markers for the diagnosis of acute myocardial infarction (AMI), this research further verified the relationship between the expression level of FFAR2 gene and AMI by expanding the sample size based on the previous gene chip results. METHODS Peripheral venous leukocytes were collected from 113 patients with AMI and 94 patients with noncoronary artery disease as the experimental group and the control group, respectively. Real-time fluorescence quantitative polymerase chain reaction was used to detect the expression of the FFAR2 gene. Western blot analysis was applied to detect the relative expression of the FFAR2 gene at the level of protein. Furthermore, the relationship between gene expression and clinical data was also analyzed and compared. RESULTS The level of expression of FFAR2 gene in peripheral blood of patients with AMI was significantly lower than that of the control group (0.33 [0.04-1.08], 0.62 [0.07-1.86], respectively; p < 0.05), which was 0.53 times that of the control group. Western blot results presented that the FFAR2 protein level in the peripheral blood of the AMI group was lower than that of the control group (0.114; p=0.004). Analyzing clinical data of the subjects indicated that the average age of the AMI group was significantly higher than the age of control group (p < 0.01). Also, the fasting blood glucose level was higher (p < 0.01), and the high-density lipoprotein cholesterol (HDL-C) level was lower (p=0.03). The FFAR2 mRNA level correlated positively with the HDL-C level (p < 0.01). Logistic regression analysis suggested that the low expression of the FFAR2 gene in peripheral blood may be a risk factor for AMI independent of age, family history of diabetes, fasting blood glucose level, and HDL-C level (p=0.025). Compared with the high FFAR2 expression group, the risk of AMI in the low FFAR2 expression group was 6.308 times higher. CONCLUSION The expression level of the FFAR2 gene in peripheral blood of patients with AMI was significantly lower than that in the control group. Low expression of the FFAR2 gene in peripheral blood is an independent risk factor for AMI. Hence, it may also be a potential biomarker to predict AMI.
Collapse
Affiliation(s)
- Jianjun Ruan
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis (Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease Jilin Provincial Cardiovascular Research Institute), Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Heyu Meng
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis (Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease Jilin Provincial Cardiovascular Research Institute), Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xue Wang
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis (Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease Jilin Provincial Cardiovascular Research Institute), Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Weiwei Chen
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis (Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease Jilin Provincial Cardiovascular Research Institute), Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xiaomin Tian
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis (Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease Jilin Provincial Cardiovascular Research Institute), Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Fanbo Meng
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis (Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease Jilin Provincial Cardiovascular Research Institute), Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
5
|
Pingitore A, Gonzalez-Abuin N, Ruz-Maldonado I, Huang GC, Frost G, Persaud SJ. Short chain fatty acids stimulate insulin secretion and reduce apoptosis in mouse and human islets in vitro: Role of free fatty acid receptor 2. Diabetes Obes Metab 2019; 21:330-339. [PMID: 30203438 DOI: 10.1111/dom.13529] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/28/2022]
Abstract
AIMS To evaluate the role of free fatty acid receptor 2 (FFAR2)/G-protein coupled receptor 43 in mediating the effects of the short chain fatty acids (SCFAs) sodium acetate (SA) and sodium propionate (SP) on islet function in vitro, and to identify the intracellular signalling pathways used in SCFA-induced potentiation of glucose-induced insulin secretion. MATERIALS AND METHODS Islets of Langerhans were isolated from wild-type and FFAR2-/- mice and from human donors without diabetes. The effects of SA and SP on dynamic insulin secretion from perifused islets were quantified by radioimmunoassay, signalling downstream of SCFAs was profiled by single-cell calcium microfluorimetry, and measurement of cAMP was performed using a fluorescence assay. Islet apoptosis was induced by exposure to cytokines or sodium palmitate, and the effects of SA and SP in regulating islet apoptosis were assessed by quantification of caspase 3/7 activities. RESULTS Deletion of FFAR2 did not affect islet morphology or insulin content. SA and SP reversibly potentiated insulin secretion from mouse islets in a FFAR2-dependent manner. SCFA-induced potentiation of insulin secretion was coupled to Gq activation of phospholipase C and protein kinase C, with no evidence of Gi-mediated signalling. SA and SP protected human and mouse islets from apoptosis, and these pro-survival properties were dependent on islet expression of FFAR2. CONCLUSION Our results indicate that FFAR2 directly mediates both the stimulatory effects of SA and SP on insulin secretion and their protection against islet apoptosis. We have also shown that SCFA coupling in islets occurs via Gq-coupled intracellular signalling.
Collapse
Affiliation(s)
- Attilio Pingitore
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Noemi Gonzalez-Abuin
- Division of Human Nutrition, Faculty of Medicine, Imperial College London, London, UK
| | - Inmaculada Ruz-Maldonado
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Guo C Huang
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Gary Frost
- Division of Human Nutrition, Faculty of Medicine, Imperial College London, London, UK
| | - Shanta J Persaud
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
6
|
Lv Y, Yan Z, Zhao X, Gang X, He G, Sun L, Li Z, Wang G. The effects of gut microbiota on metabolic outcomes in pregnant women and their offspring. Food Funct 2019; 9:4537-4547. [PMID: 30101246 DOI: 10.1039/c8fo00601f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabolic diseases such as gestational diabetes mellitus and obesity during pregnancy have become severe health issues due to adverse pregnant outcomes in recent years. Maternal metabolic disorders can influence the long-term health of mothers and their offspring. Current evidence demonstrated that gut microbiota plays a crucial role in metabolic dysfunction during gestation. Maternal status is associated with alterations in the compositions and diversity of the intestinal microbiota community during gestation. Antibiotic treatments may disturb the gut microbiota of pregnant women, and scientific probiotic and prebiotic supplements have positive effects on mothers and their offspring. This review discusses the role of gut microbiota on metabolic outcomes in pregnant women and their offspring, and further illustrates the impact of interventions on metabolic disorders in pregnancy. Our study may provide a novel target for health management during pregnancy.
Collapse
Affiliation(s)
- You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lu CC, Ma KL, Ruan XZ, Liu BC. Intestinal dysbiosis activates renal renin-angiotensin system contributing to incipient diabetic nephropathy. Int J Med Sci 2018; 15:816-822. [PMID: 30008592 PMCID: PMC6036087 DOI: 10.7150/ijms.25543] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/14/2018] [Indexed: 02/07/2023] Open
Abstract
Considerable interest nowadays has focused on gut microbiota owing to their pleiotropic roles in human health and diseases. This intestinal community can arouse a variety of activities in the host and function as "a microbial organ" by generating bioactive metabolites and participating in a series of metabolism-dependent pathways. Alternations in the composition of gut microbiota, referred to as intestinal dysbiosis, are reportedly associated with several diseases, especially diabetes mellitus and its complications. Here we focus on the relationship between gut microbiota and diabetic nephropathy (DN), as the latter is one of the major causes of chronic kidney diseases. The activation of renin angiotensin system (RAS) is a critical factor to the onset of DN, and emerging data has demonstrated a provoking and mediating role of gut microbiota for this system in the context of metabolic diseases. The purpose of the current review is to highlight some research updates about the underlying interplay between gut microbiota, their metabolites, and the development and progression of DN, along with exploring innovative approaches to targeting this intestinal community as a therapeutic perspective in clinical management of DN patients.
Collapse
Affiliation(s)
- Chen Chen Lu
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing City, Jiangsu Province, China
| | - Kun Ling Ma
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing City, Jiangsu Province, China
| | - Xiong Zhong Ruan
- Centre for Nephrology, University College London (UCL) Medical School, Royal Free Campus, UK
| | - Bi Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing City, Jiangsu Province, China
| |
Collapse
|