1
|
Wang G, Feng L, Liu C, Han Z, Chen X. MiR-378 Inhibits Angiotensin II-Induced Cardiomyocyte Hypertrophy by Targeting AKT2. Int Heart J 2024; 65:528-536. [PMID: 38825497 DOI: 10.1536/ihj.23-485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cardiomyocyte hypertrophy plays a crucial role in heart failure development, potentially leading to sudden cardiac arrest and death. Previous studies suggest that micro-ribonucleic acids (miRNAs) show promise for the early diagnosis and treatment of cardiomyocyte hypertrophy.To investigate the miR-378 expression in the cardiomyocyte hypertrophy model, reverse transcription-polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence tests were conducted in angiotensin II (Ang II)-induced H9c2 cells and Ang II-induced mouse model of cardiomyocyte hypertrophy. The functional interaction between miR-378 and AKT2 was studied by dual-luciferase reporter, RNA pull-down, Western blot, and RT-qPCR assays.The results of RT-qPCR analysis showed the downregulated expression of miR-378 in both the cell and animal models of cardiomyocyte hypertrophy. It was observed that the introduction of the miR-378 mimic inhibited the hypertrophy of cardiomyocytes induced by Ang II. Furthermore, the co-transfection of AKT2 expression vector partially mitigated the negative impact of miR-378 overexpression on Ang II-induced cardiomyocytes. Molecular investigations provided evidence that miR-378 negatively regulated AKT2 expression by interacting with the 3' untranslated region (UTR) of AKT2 mRNA.Decreased miR-378 expression and AKT2 activation are linked to Ang II-induced cardiomyocyte hypertrophy. Targeting miR-378/AKT2 axis offers therapeutic opportunity to alleviate cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Guili Wang
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital
| | - Linlin Feng
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital
| | - Chunxiang Liu
- Department of Ultrasound, Beijing Xiaotangshan Hospital
| | - Zongqiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital
| | - Xia Chen
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital
| |
Collapse
|
2
|
Haybar H, Sadati NS, Purrahman D, Mahmoudian-Sani MR, Saki N. lncRNA TUG1 as potential novel biomarker for prognosis of cardiovascular diseases. Epigenomics 2023; 15:1273-1290. [PMID: 38088089 DOI: 10.2217/epi-2023-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are among the leading causes of death. In light of the high prevalence and mortality of CVDs, it is imperative to understand the molecules involved in CVD pathogenesis and the signaling pathways that they initiate. This may facilitate the development of more precise and expedient diagnostic techniques, the identification of more effective prognostic molecules and the identification of potential therapeutic targets. Numerous studies have examined the role of lncRNAs, such as TUG1, in CVD pathogenesis in recent years. According to this review article, TUG1 can be considered a biomarker for predicting the prognosis of CVD.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narjes Sadat Sadati
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Hampel N, Georgy J, Mehrabipour M, Lang A, Lehmkuhl I, Scheller J, Ahmadian MR, Floss DM, Piekorz RP. CoCl 2 -triggered pseudohypoxic stress induces proteasomal degradation of SIRT4 via polyubiquitination of lysines K78 and K299. FEBS Open Bio 2023; 13:2187-2199. [PMID: 37803520 PMCID: PMC10699113 DOI: 10.1002/2211-5463.13715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
SIRT4, together with SIRT3 and SIRT5, comprises the mitochondrially localized subgroup of sirtuins. SIRT4 regulates mitochondrial bioenergetics, dynamics (mitochondrial fusion), and quality control (mitophagy) via its NAD+ -dependent enzymatic activities. Here, we address the regulation of SIRT4 itself by characterizing its protein stability and degradation upon CoCl2 -induced pseudohypoxic stress that typically triggers mitophagy. Interestingly, we observed that of the mitochondrial sirtuins, only the protein levels of SIRT4 or ectopically expressed SIRT4-eGFP decrease upon CoCl2 treatment of HEK293 cells. Co-treatment with BafA1, an inhibitor of autophagosome-lysosome fusion required for autophagy/mitophagy, or the use of the proteasome inhibitor MG132, prevented CoCl2 -induced SIRT4 downregulation. Consistent with the proteasomal degradation of SIRT4, the lysine mutants SIRT4(K78R) and SIRT4(K299R) showed significantly reduced polyubiquitination upon CoCl2 treatment and were more resistant to pseudohypoxia-induced degradation as compared to SIRT4. Moreover, SIRT4(K78R) and SIRT4(K299R) displayed increased basal protein stability as compared to wild-type SIRT4 when subjected to MG132 treatment or cycloheximide (CHX) chase assays. Thus, our data indicate that stress-induced protein degradation of SIRT4 occurs through two mechanisms: (a) via mitochondrial autophagy/mitophagy, and (b) as a separate process via proteasomal degradation within the cytoplasm.
Collapse
Affiliation(s)
- Nils Hampel
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| | - Jacqueline Georgy
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| | - Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| | - Alexander Lang
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
- Present address:
Department of Cardiology, Pulmonology, and Vascular Medicine, Medical FacultyHeinrich Heine University DüsseldorfGermany
| | - Isabell Lehmkuhl
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| | - Doreen M. Floss
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| | - Roland P. Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical FacultyHeinrich Heine University DüsseldorfUniversitätsstrasse 1Düsseldorf40225Germany
| |
Collapse
|
4
|
Jiang Y, Cai W, Cai G, Wang D, Wu Q. The dysregulation of plasma miR-497/FGF23 axis, and its association with clinical characteristics and major adverse cardiovascular event in female premature acute coronary syndrome patients. Ir J Med Sci 2023; 192:2105-2115. [PMID: 36645571 DOI: 10.1007/s11845-022-03256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 01/17/2023]
Abstract
AIM MicroRNA-497 (miR-497) directly targets fibroblast growth factor 23 (FGF23) to participate in the pathology of acute coronary syndrome (ACS) by regulating atherosclerosis, inflammatory response, lipid metabolism, etc. This study intended to investigate the dysregulation of the miR-497/FGF23 axis, and its association with the major adverse cardiovascular event (MACE) in female premature ACS. METHODS MiR-497 and FGF23 from plasma samples were detected by RT-qPCR and ELISA in 979 newly diagnosed female premature ACS patients and 100 healthy controls (HCs). MACE was recorded during follow-up (median: 27.0, range: 1.0-54.0 months) in female premature ACS patients. RESULTS MiR-497/FGF23 axis was reduced in female premature ACS patients versus HCs [median (interquartile range): 0.7 (0.1-1.2) versus 1.9 (1.1-3.4)] (P < 0.001). Meanwhile, miR-497 negatively correlated with FGF23 in femal e premature ACS patients (P < 0.001), but not in HCs (P = 0.157). In female premature ACS patients, the miR-497/FGF23 axis was negatively associated with serum creatinine (P < 0.001), serum uric acid (P = 0.003), high-sensitivity C-reactive protein (P < 0.001), total cholesterol (P = 0.031), and low-density lipoprotein cholesterol (P = 0.003). The 1-year, 2-year, 3-year, and 4-year accumulating MACE rate was 2.9%, 8.6%, 16.7%, and 26.0%, respectively. Interestingly, a high level of miR-497/FGF23 axis predicted decreased accumulating MACE risk (P < 0.001). After adjustment by multivariate Cox's regression analysis, the high miR-497/FGF23 axis (hazard ratio (HR) = 0.005, P = 0.001) independently correlated with reduced accumulating MACE risk. CONCLUSION The plasma miR-497/FGF23 axis represents favorable kidney function, decreased inflammation, and reduced lipid level; meanwhile, this axis possesses prognostic value in predicting decreased accumulating MACE risk in female premature ACS patients.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Wenyao Cai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Guorong Cai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Dingkun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang of Jiangxi, 330006, China.
| |
Collapse
|
5
|
Elsakka EGE, Abulsoud AI, El-Mahdy HA, Ismail A, Elballal MS, Mageed SSA, Khidr EG, Mohammed OA, Sarhan OM, Elkhawaga SY, El-Husseiny AA, Abdelmaksoud NM, El-Demerdash AA, Shahin RK, Midan HM, Elrebehy MA, Doghish AA, Doghish AS. miRNAs orchestration of cardiovascular diseases - Particular emphasis on diagnosis, and progression. Pathol Res Pract 2023; 248:154613. [PMID: 37327567 DOI: 10.1016/j.prp.2023.154613] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs; miRs) are small non-coding ribonucleic acids sequences vital in regulating gene expression. They are significant in many biological and pathological processes and are even detectable in various body fluids such as serum, plasma, and urine. Research has demonstrated that the irregularity of miRNA in multiplying cardiac cells is linked to developmental deformities in the heart's structure. It has also shown that miRNAs are crucial in diagnosing and progressing several cardiovascular diseases (CVDs). The review covers the function of miRNAs in the pathophysiology of CVD. Additionally, the review provides an overview of the potential role of miRNAs as disease-specific diagnostic and prognostic biomarkers for human CVD, as well as their biological implications in CVD.
Collapse
Affiliation(s)
- Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia; Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Omnia M Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | | | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ayman A Doghish
- Department of Cardiovascular & Thoracic Surgery, Ain-Shams University Hospital, Faculty of Medicine, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
6
|
Liu YP, Wen R, Liu CF, Zhang TN, Yang N. Cellular and molecular biology of sirtuins in cardiovascular disease. Biomed Pharmacother 2023; 164:114931. [PMID: 37263163 DOI: 10.1016/j.biopha.2023.114931] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
Sirtuins (SIRTs) are a nicotinic adenine dinucleotide (+) -dependent histone deacetylase that regulates critical signaling pathways in prokaryotes and eukaryotes. Studies have identified seven mammalian homologs of the yeast SIRT silencing message regulator 2, namely, SIRT1-SIRT7. Recent in vivo and in vitro studies have successfully demonstrated the involvement of SIRTs in key pathways for cell biological function in physiological and pathological processes of the cardiovascular system, including processes including cellular senescence, oxidative stress, apoptosis, DNA damage, and cellular metabolism. Emerging evidence has stimulated a significant evolution in preventing and treating cardiovascular disease (CVD). Here, we review the important roles of SIRTs for the regulatory pathways involved in the pathogenesis of cardiovascular diseases and their molecular targets, including novel protein post-translational modifications of succinylation. In addition, we summarize the agonists and inhibitors currently identified to target novel specific small molecules of SIRTs. A better understanding of the role of SIRTs in the biology of CVD opens new avenues for therapeutic intervention with great potential for preventing and treating CVD.
Collapse
Affiliation(s)
- Yong-Ping Liu
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China
| | - Ri Wen
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China
| | - Chun-Feng Liu
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China
| | - Tie-Ning Zhang
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| | - Ni Yang
- Department of Pediatric, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Shenyang, Liaoning 110004, China.
| |
Collapse
|
7
|
He L, Liu Q, Cheng J, Cao M, Zhang S, Wan X, Li J, Tu H. SIRT4 in ageing. Biogerontology 2023; 24:347-362. [PMID: 37067687 DOI: 10.1007/s10522-023-10022-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/31/2023] [Indexed: 04/18/2023]
Abstract
Ageing is a phenomenon in which cells, tissues and organs undergo systemic pathological changes as individuals age, leading to the occurrence of ageing-related diseases and the end of life. It is associated with many phenotypes known as ageing characteristics, such as genomic instability, nutritional imbalance, mitochondrial dysfunction, cell senescence, stem cell depletion, and an altered microenvironment. The sirtuin family (SIRT), known as longevity proteins, is thought to delay ageing and prolong life, and mammals, including humans, have seven family members (SIRT1-7). SIRT4 has been studied less among the sirtuin family thus far, but it has been reported that it has important physiological functions in organisms, such as promoting DNA damage repair, participating in the energy metabolism of three substances, inhibiting inflammatory reactions and apoptosis, and regulating mitochondrial function. Recently, some studies have demonstrated the involvement of SIRT4 in age-related processes, but knowledge in this field is still scarce. Therefore, this review aims to analyse the relationship between SIRT4 and ageing characteristics as well as some age-related diseases (e.g., cardiovascular diseases, metabolic diseases, neurodegenerative diseases and cancer).
Collapse
Affiliation(s)
- Ling He
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Qingcheng Liu
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Jielong Cheng
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Mei Cao
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Shuaimei Zhang
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Xiaolin Wan
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Jian Li
- The Key Laboratory of Hematology of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| | - Huaijun Tu
- The Department of Geratology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
8
|
Ji H, Qu J, Peng W, Yang L. Downregulation of lncRNA MALAT1 Inhibits Angiotensin II-induced Hypertrophic Effects of Cardiomyocytes by Regulating SIRT4 via miR-93-5p. Int Heart J 2022; 63:602-611. [PMID: 35650160 DOI: 10.1536/ihj.21-332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cardiac hypertrophy is a leading risk for heart failure and sudden death. Long non-coding RNAs (lncRNAs) have been implicated in a variety of human diseases, including cardiac hypertrophy. We aimed to investigate the potential role and functional mechanism of lncRNA metastasis-associated in lung adenocarcinoma transcript 1 (MALAT1) in cardiac hypertrophy. C57BL/6 mice underwent transverse aortic constriction (TAC) to induce cardiac hypertrophy in vivo. The expression of MALAT1, miR-93-5p, and sirtuin 4 (SIRT4) mRNA was detected using a quantitative real-time polymerase chain reaction. The protein levels of cardiac hypertrophy-related markers, including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC), and SIRT4 were measured via western blotting. The putative interaction between miR-93-5p and MALAT1 or SIRT4 was verified using a dual-luciferase reporter assay, RNA immunoprecipitation assay, or pull-down assay. Consequently, the expression of MALAT1 and SIRT4 was increased in TAC-treated mouse heart and angiotensin II (Ang-II)-induced cardiomyocytes, whereas the expression of miR-93-5p was decreased. Ang-II promoted the expression of ANP, BNP, and β-MHC and the surface area of cardiomyocytes, whereas MALAT1 downregulation impaired their expression and cell area. MiR-93-5p was a target of MALAT1, and its inhibition reversed the effects of MALAT1 downregulation. More importantly, MALAT1 modulated SIRT4 expression by degrading miR-93-5p. The expression of ANP, BNP, and β-MHC suppressed by miR-93-5p restoration was recovered by SIRT4 promotion. Overall, MALAT1 knockdown ameliorated cardiac hypertrophy partly by regulating the miR-93-5p/SIRT4 network, indicating that MALAT1 was a substantial indicator of cardiac hypertrophy.
Collapse
Affiliation(s)
- Huanchun Ji
- Department of Cardiology, Dalian Second People's Hospital
| | - Jingxian Qu
- Department of Cardiology, Dalian Second People's Hospital
| | - Wei Peng
- Department of Cardiology, Dalian Second People's Hospital
| | - Long Yang
- Department of Cardiology, Dalian Second People's Hospital
| |
Collapse
|
9
|
Abstract
Sirtuins (SIRT) are unique posttranslational modification enzymes that utilize NAD + as co-substrate to remove acyl groups from lysine residues. SIRT act on variety of substrates and impact major metabolic process. All seven members of SIRT family are unique and targets wide range of cellular proteins in nucleus, cytoplasm, and mitochondria for post-translational modification by acetylation (SIRT1, 2, 3, and 5) or ADP-ribosylation (SIRT4 and 6). Each member of SIRT family is distinct. SIRT2 was first to be discovered that incited research on mammalian SIRT. Enzymatic activities of SIRT 4 are yet to be elucidated while only SIRT7 is localized in nucleoli that govern the transcription of RNA polymerase I. SIRT 5 and 6 exhibit weakest deacetylase activity. Out of all SIRT analogs, SIRT1 is identified as nutrient sensor. Increased expression of only SIRT3 is linked with longevity in humans. Since SIRT is regulated by the bioenergetic state of the cell, nutrition impacts it but very few studies about diet-mediated effect on SIRT are reported. The present review elaborates distribution, specific biological role and prominent effect of all SIRT on vital human tissue along with highlighting need to trace molecular mechanisms and identifying foods that may augment it beneficially.
Collapse
Affiliation(s)
- Shubhra Pande
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
10
|
MiRNA-29b and miRNA-497 Modulate the Expression of Carboxypeptidase X Member 2, a Candidate Gene Associated with Left Ventricular Hypertrophy. Int J Mol Sci 2022; 23:ijms23042263. [PMID: 35216380 PMCID: PMC8880112 DOI: 10.3390/ijms23042263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Left ventricular hypertrophy (LVH) is a major risk factor for adverse cardiovascular events. Recently, a novel candidate gene encoding the carboxypeptidase X member 2 (CPXM2) was found to be associated with hypertension-induced LVH. CPXM2 belongs to the M14 family of metallocarboxypeptidases, yet it lacks detectable enzyme activity, and its function remains unknown. Here, we investigated the impact of micro (mi)RNA-29b, miRNA-195, and miRNA-497 on the posttranscriptional expression control of CPXM2. Candidate miRNAs for CPXM2 expression control were identified in silico. CPXM2 expression in rat cardiomyocytes (H9C2) was characterized via real-time PCR, Western blotting, and immunofluorescence. Direct miRNA/target mRNA interaction was analysed by dual luciferase assay. CPXM2 was expressed in H9C2 and co-localised with z-disc associated protein PDZ and LIM domain 3 (Pdlim3). Transfection of H9C2 with miRNA-29b, miRNA-195, and miRNA-497 led to decreased levels of CPXM2 mRNA and protein, respectively. Results of dual luciferase assays revealed that miRNA-29b and miRNA-497, but not miRNA-195, directly regulated CPXM2 expression on a posttranscriptional level via binding to the 3′UTR of CPXM2 mRNA. We identified two miRNAs capable of the direct posttranscriptional expression control of CPXM2 expression in rat cardiomyocytes. This novel data may help to shed more light on the—so far—widely unexplored expression control of CPXM2 and its potential role in LVH.
Collapse
|
11
|
Gong FH, Chen XL, Zhang Q, Xiao XQ, Yang YS, Song BJ, Chao SP, Cheng WL. MicroRNA-183 as a Novel Regulator Protects Against Cardiomyocytes Hypertrophy via Targeting TIAM1. Am J Hypertens 2022; 35:87-95. [PMID: 32870256 DOI: 10.1093/ajh/hpaa144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/10/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MicroRNAs serve as important regulators of the pathogenesis of cardiac hypertrophy. Among them, miR-183 is well documented as a novel tumor suppressor in previous studies, whereas it exhibits a downregulated expression in cardiac hypertrophy recently. The present study was aimed to examine the effect of miR-183 on cardiomyocytes hypertrophy. METHODS Angiotensin II (Ang II) was used for establishment of cardiac hypertrophy model in vitro. Neonatal rat ventricular cardiomyocytes transfected with miR-183 mimic or negative control were further utilized for the phenotype analysis. Moreover, the bioinformatics analysis and luciferase reporter assays were used for exploring the potential target of miR-183 in cardiomyocytes. RESULTS We observed a significant decreased expression of miR-183 in hypertrophic cardiomyocytes. Overexpression of miR-183 significantly attenuated the cardiomyocytes size morphologically and prohypertrophic genes expression. Moreover, we demonstrated that TIAM1 was a direct target gene of miR-183 verified by bioinformatics analysis and luciferase reporter assays, which showed a decreased mRNA and protein expression in the cardiomyocytes transfected with miR-183 upon Ang II stimulation. Additionally, the downregulated TIAM1 expression was required for the attenuated effect of miR-183 on cardiomyocytes hypertrophy. CONCLUSIONS Taken together, these evidences indicated that miR-183 acted as a cardioprotective regulator for the development of cardiomyocytes hypertrophy via directly regulation of TIAM1.
Collapse
Affiliation(s)
- Fu-han Gong
- Department of Cardiology, Tongren Municipal People’s Hospital, Tongren, China
| | - Xi-Lu Chen
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-qiang Xiao
- Department of Cardiology, Tongren Municipal People’s Hospital, Tongren, China
| | - Yong-sheng Yang
- Department of Cardiology, Tongren Municipal People’s Hospital, Tongren, China
| | - Bian-jing Song
- Department of Cardiology, Tongren Municipal People’s Hospital, Tongren, China
| | - Sheng-ping Chao
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wen-Lin Cheng
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Gupta R, Ambasta RK, Kumar P. Multifaced role of protein deacetylase sirtuins in neurodegenerative disease. Neurosci Biobehav Rev 2021; 132:976-997. [PMID: 34742724 DOI: 10.1016/j.neubiorev.2021.10.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023]
Abstract
Sirtuins, a class III histone/protein deacetylase, is a central regulator of metabolic function and cellular stress response. This plays a pivotal role in the pathogenesis and progression of diseases such as cancer, neurodegeneration, metabolic syndromes, and cardiovascular disease. Sirtuins regulate biological and cellular processes, for instance, mitochondrial biogenesis, lipid and fatty acid oxidation, oxidative stress, gene transcriptional activity, apoptosis, inflammatory response, DNA repair mechanism, and autophagic cell degradation, which are known components for the progression of the neurodegenerative diseases (NDDs). Emerging evidence suggests that sirtuins are the useful molecular targets against NDDs like, Alzheimer's Disease (AD), Parkinson's Disease (PD), Huntington's Disease (HD), and Amyotrophic Lateral Sclerosis (ALS). However, the exact mechanism of neuroprotection mediated through sirtuins remains unsettled. The manipulation of sirtuins activity with its modulators, calorie restriction (CR), and micro RNAs (miR) is a novel therapeutic approach for the treatment of NDDs. Herein, we reviewed the current putative therapeutic role of sirtuins in regulating synaptic plasticity and cognitive functions, which are mediated through the different molecular phenomenon to prevent neurodegeneration. We also explained the implications of sirtuin modulators, and miR based therapies for the treatment of life-threatening NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
13
|
Feng Y, Huang W, Paul C, Liu X, Sadayappan S, Wang Y, Pauklin S. Mitochondrial nucleoid in cardiac homeostasis: bidirectional signaling of mitochondria and nucleus in cardiac diseases. Basic Res Cardiol 2021; 116:49. [PMID: 34392401 PMCID: PMC8364536 DOI: 10.1007/s00395-021-00889-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/20/2021] [Indexed: 01/11/2023]
Abstract
Metabolic function and energy production in eukaryotic cells are regulated by mitochondria, which have been recognized as the intracellular 'powerhouses' of eukaryotic cells for their regulation of cellular homeostasis. Mitochondrial function is important not only in normal developmental and physiological processes, but also in a variety of human pathologies, including cardiac diseases. An emerging topic in the field of cardiovascular medicine is the implication of mitochondrial nucleoid for metabolic reprogramming. This review describes the linear/3D architecture of the mitochondrial nucleoid (e.g., highly organized protein-DNA structure of nucleoid) and how it is regulated by a variety of factors, such as noncoding RNA and its associated R-loop, for metabolic reprogramming in cardiac diseases. In addition, we highlight many of the presently unsolved questions regarding cardiac metabolism in terms of bidirectional signaling of mitochondrial nucleoid and 3D chromatin structure in the nucleus. In particular, we explore novel techniques to dissect the 3D structure of mitochondrial nucleoid and propose new insights into the mitochondrial retrograde signaling, and how it regulates the nuclear (3D) chromatin structures in mitochondrial diseases.
Collapse
Affiliation(s)
- Yuliang Feng
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford, OX3 7LD, UK
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA
| | - Xingguo Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, Regenerative Medicine Research, University of Cincinnati College of Medicine, 231 Albert Sabin Way, CincinnatiCincinnati, OH, 45267-0529, USA.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
14
|
Zullo A, Mancini FP, Schleip R, Wearing S, Klingler W. Fibrosis: Sirtuins at the checkpoints of myofibroblast differentiation and profibrotic activity. Wound Repair Regen 2021; 29:650-666. [PMID: 34077595 DOI: 10.1111/wrr.12943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Fibrotic diseases are still a serious concern for public health, due to their high prevalence, complex etiology and lack of successful treatments. Fibrosis consists of excessive accumulation of extracellular matrix components. As a result, the structure and function of tissues are impaired, thus potentially leading to organ failure and death in several chronic diseases. Myofibroblasts represent the principal cellular mediators of fibrosis, due to their extracellular matrix producing activity, and originate from different types of precursor cells, such as mesenchymal cells, epithelial cells and fibroblasts. Profibrotic activation of myofibroblasts can be triggered by a variety of mechanisms, including the transforming growth factor-β signalling pathway, which is a major factor driving fibrosis. Interestingly, preclinical and clinical studies showed that fibrotic degeneration can stop and even reverse by using specific antifibrotic treatments. Increasing scientific evidence is being accumulated about the role of sirtuins in modulating the molecular pathways responsible for the onset and development of fibrotic diseases. Sirtuins are NAD+ -dependent protein deacetylases that play a crucial role in several molecular pathways within the cells, many of which at the crossroad between health and disease. In this context, we will report the current knowledge supporting the role of sirtuins in the balance between healthy and diseased myofibroblast activity. In particular, we will address the signalling pathways and the molecular targets that trigger the differentiation and profibrotic activation of myofibroblasts and can be modulated by sirtuins.
Collapse
Affiliation(s)
- Alberto Zullo
- Department of Sciences and Technologies, Benevento, Italy.,CEINGE Advanced Biotechnologies s.c.a.r.l. Naples, Italy
| | | | - Robert Schleip
- Department of Sport and Health Sciences, Technical University Munich, Germany.,Fascia Research Group, Department of Neurosurgery, Ulm University, Germany.,Diploma University of Applied Sciences, Bad Sooden-Allendorf, Germany
| | - Scott Wearing
- Department of Sport and Health Sciences, Technical University Munich, Germany.,Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Werner Klingler
- Department of Sport and Health Sciences, Technical University Munich, Germany.,Fascia Research Group, Department of Neurosurgery, Ulm University, Germany.,Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Department of Anaesthesiology, SRH Hospital Sigmaringen, Germany
| |
Collapse
|
15
|
Zhang G, Ni X. Knockdown of TUG1 rescues cardiomyocyte hypertrophy through targeting the miR-497/MEF2C axis. Open Life Sci 2021; 16:242-251. [PMID: 33817315 PMCID: PMC7968548 DOI: 10.1515/biol-2021-0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to investigate the detailed role and molecular mechanism of long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) in cardiac hypertrophy. Cardiac hypertrophy was established by transverse abdominal aortic constriction (TAC) in vivo or angiotensin II (Ang II) treatment in vitro. Levels of lncRNA TUG1, miR-497 and myocyte enhancer factor 2C (MEF2C) mRNA were assessed by quantitative reverse transcriptase PCR (qRT-PCR). Western blot assay was performed to determine the expression of MEF2C protein. The endogenous interactions among TUG1, miR-497 and MEF2C were confirmed by dual-luciferase reporter and RNA immunoprecipitation assays. Our data indicated that TUG1 was upregulated and miR-497 was downregulated in the TAC rat model and Ang II-induced cardiomyocytes. TUG1 knockdown or miR-497 overexpression alleviated the hypertrophy induced by Ang II in cardiomyocytes. Moreover, TUG1 acted as a sponge of miR-497, and MEF2C was directly targeted and repressed by miR-497. miR-497 overexpression mediated the protective role of TUG1 knockdown in Ang II-induced cardiomyocyte hypertrophy. MEF2C was a functional target of miR-497 in regulating Ang II-induced cardiomyocyte hypertrophy. In addition, TUG1 regulated MEF2C expression through sponging miR-497. Knockdown of TUG1 rescued Ang II-induced hypertrophy in cardiomyocytes at least partly through targeting the miR-497/MEF2C axis, highlighting a novel promising therapeutic target for cardiac hypertrophy treatment.
Collapse
Affiliation(s)
- Guorong Zhang
- Department of Internal Medicine-Cardiovascular, The Fourth Affiliated Hospital of Nanchang University, No. 133 The South Guangchang Road, Nanchang 330003, Jiangxi, China
| | - Xinghua Ni
- Department of the Seventh Medical Center, PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Tannous C, Booz GW, Altara R, Muhieddine DH, Mericskay M, Refaat MM, Zouein FA. Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiol (Oxf) 2021; 231:e13551. [PMID: 32853469 DOI: 10.1111/apha.13551] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an abundant cofactor that plays crucial roles in several cellular processes. NAD can be synthesized de novo starting with tryptophan, or from salvage pathways starting with NAD precursors like nicotinic acid (NA), nicotinamide (NAM) or nicotinamide riboside (NR), referred to as niacin/B3 vitamins, arising from dietary supply or from cellular NAD catabolism. Given the interconversion between its oxidized (NAD+ ) and reduced form (NADH), NAD participates in a wide range of reactions: regulation of cellular redox status, energy metabolism and mitochondrial biogenesis. Plus, NAD acts as a signalling molecule, being a cosubstrate for several enzymes such as sirtuins, poly-ADP-ribose-polymerases (PARPs) and some ectoenzymes like CD38, regulating critical biological processes like gene expression, DNA repair, calcium signalling and circadian rhythms. Given the large number of mitochondria present in cardiac tissue, the heart has the highest NAD levels and is one of the most metabolically demanding organs. In several models of heart failure, myocardial NAD levels are depressed and this depression is caused by mitochondrial dysfunction, metabolic remodelling and inflammation. Emerging evidence suggests that regulating NAD homeostasis by NAD precursor supplementation has therapeutic efficiency in improving myocardial bioenergetics and function. This review provides an overview of the latest understanding of the different NAD biosynthesis pathways, as well as its role as a signalling molecule particularly in cardiac tissue. We highlight the significance of preserving NAD equilibrium in various models of heart diseases and shed light on the potential pharmacological interventions aiming to use NAD boosters as therapeutic agents.
Collapse
Affiliation(s)
- Cynthia Tannous
- Department of Pharmacology and Toxicology Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - George W. Booz
- Department of Pharmacology and Toxicology University of Mississippi Medical Center Jackson MS USA
| | - Raffaele Altara
- Department of Pathology School of Medicine University of Mississippi Medical Center Jackson MS USA
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- KG Jebsen Center for Cardiac Research University of Oslo Oslo Norway
| | - Dina H. Muhieddine
- Department of Pharmacology and Toxicology Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Mathias Mericskay
- INSERM Department of Signalling and Cardiovascular Pathophysiology UMR‐S 1180 Université Paris‐Saclay Châtenay‐Malabry France
| | - Marwan M. Refaat
- Department of Internal Medicine Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
- Department of Biochemistry and Molecular Genetics Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
17
|
Zheng M, Wang M. A narrative review of the roles of the miR-15/107 family in heart disease: lessons and prospects for heart disease. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:66. [PMID: 33553359 PMCID: PMC7859774 DOI: 10.21037/atm-20-6073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart disease is one of the leading causes of morbidity and mortality globally. To reduce morbidity and mortality among patients with heart disease, it is important to identify drug targets and biomarkers for more effective diagnosis, prognosis, and treatment. MicroRNAs (miRNAs) are characterized as a group of endogenous, small non-coding RNAs, which function by directly inhibiting target genes. The miR-15/107 family is a group of evolutionarily conserved miRNAs comprising 10 members that share an identical motif of AGCAGC, which determines overlapping target genes and cooperation in the biological process. Accumulating evidence has demonstrated the predominant dysregulation of the miR-15/107 family in cardiovascular disease, neurodegenerative disease, and cancer. In this review, we summarize the current understanding of the miR-15/107 family, focusing on its role in the regulation in the development of the heart and the progression of heart disease. We also discuss the potential of different members of the miR-15/107 family as biomarkers for diverse heart disease, as well as the current applications and challenges in the use of the miR-15/107 family in clinical trials for various disease. This paper hopes to explore the potential of the miR-15/107 family as therapeutic targets or biomarkers and to provide directions for future research.
Collapse
Affiliation(s)
- Manni Zheng
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Min Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Rodrigues SC, Cardoso RMS, Duarte FV. Mitochondrial microRNAs: A Putative Role in Tissue Regeneration. BIOLOGY 2020; 9:biology9120486. [PMID: 33371511 PMCID: PMC7767490 DOI: 10.3390/biology9120486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
The most famous role of mitochondria is to generate ATP through oxidative phosphorylation, a metabolic pathway that involves a chain of four protein complexes (the electron transport chain, ETC) that generates a proton-motive force that in turn drives the ATP synthesis by the Complex V (ATP synthase). An impressive number of more than 1000 mitochondrial proteins have been discovered. Since mitochondrial proteins have a dual genetic origin, it is predicted that ~99% of these proteins are nuclear-encoded and are synthesized in the cytoplasmatic compartment, being further imported through mitochondrial membrane transporters. The lasting 1% of mitochondrial proteins are encoded by the mitochondrial genome and synthesized by the mitochondrial ribosome (mitoribosome). As a result, an appropriate regulation of mitochondrial protein synthesis is absolutely required to achieve and maintain normal mitochondrial function. Regarding miRNAs in mitochondria, it is well-recognized nowadays that several cellular mechanisms involving mitochondria are regulated by many genetic players that originate from either nuclear- or mitochondrial-encoded small noncoding RNAs (sncRNAs). Growing evidence collected from whole genome and transcriptome sequencing highlight the role of distinct members of this class, from short interfering RNAs (siRNAs) to miRNAs and long noncoding RNAs (lncRNAs). Some of the mechanisms that have been shown to be modulated are the expression of mitochondrial proteins itself, as well as the more complex coordination of mitochondrial structure and dynamics with its function. We devote particular attention to the role of mitochondrial miRNAs and to their role in the modulation of several molecular processes that could ultimately contribute to tissue regeneration accomplishment.
Collapse
Affiliation(s)
- Sílvia C. Rodrigues
- Exogenus Therapeutics, 3060-197 Cantanhede, Portugal;
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | - Filipe V. Duarte
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
19
|
Cui Y, Yang J, Bai Y, Zhang Y, Yao Y, Zheng T, Liu C, Wu F. miR-424-5p regulates cell proliferation and migration of esophageal squamous cell carcinoma by targeting SIRT4. J Cancer 2020; 11:6337-6347. [PMID: 33033517 PMCID: PMC7532497 DOI: 10.7150/jca.50587] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
Objective: The present research is aimed to elucidate the expression patterns of miR-424-5p and its role in tumorigenesis and progression of esophageal squamous cell carcinoma (ESCC). Methods: Both starBase and TCGA were utilized to assess miR-424-5p expression status in ESCC. The endogenous mRNA expression levels of miR-424-5p in ESCC and normal esophagus cell lines were detected by qRT-PCR. CCK8 and colony-forming assays were applied to determine the effects of miR-424-5p on ESCC proliferation. Transwell migration and wound healing assays were carried out to observe the changes of ESCC cell mobility after miR-424-5p mimic or inhibitor transfection. Impact of miR-424-5p on malignancy growth in vivo was further verified in a mouse xenograft model. The regulatory relationships between miR-424-5p and SIRT4 were validated by dual luciferase reporter assay, qRT-PCR and Western blot. Results: miR-424-5p expression was found upregulated in ESCC. miR-424-5p overexpression dramatically facilitated ESCC cells proliferation and migration capacity in vitro, while downregulation of miR-424-5p displayed the opposite trend. Inhibition of xenograft tumor growth was further evidenced in vivo. Moreover, SIRT4 was confirmed to be a specific target gene of miR-424-5p in ESCC and negatively modulated by miR-424-5p. Finally, SIRT4 overexpression strongly rescued the promoting influence of miR-424-5p on the proliferative and migratory capacity of ESCC cells. Conclusions: miR-424-5p had tumor promoting functions in proliferation and migration of ESCC by targeting SIRT4, suggesting that miR-424-5p may serve as a potential diagnostic biomarker and manipulation of miR-424-5p/SIRT4 axis could provide a novel therapeutic strategy for further ESCC treatment.
Collapse
Affiliation(s)
- Ying Cui
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jiani Yang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yibing Bai
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanqiao Zhang
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanfei Yao
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tongsen Zheng
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastrointestinal Medical oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Feng Wu
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Wang C, Liu Y, Zhu Y, Kong C. Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer. Oncol Lett 2020; 20:11. [PMID: 32774484 PMCID: PMC7405384 DOI: 10.3892/ol.2020.11872] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Sirtuins are mammalian homologs of yeast silent information regulator two (SIRT) and are a highly conserved family of proteins, which act as nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases. The seven sirtuins (SIRT1-7) share a conserved catalytic core domain; however, they have different enzyme activities, biological functions, and subcellular localizations. Among them, mitochondrial SIRT4 possesses ADP-ribosyltransferase, NAD+-dependent deacetylase, lipoamidase, and long-chain deacylase activities and can modulate the function of substrate proteins via ADP-ribosylation, delipoylation, deacetylation and long-chain deacylation. SIRT4 has been shown to play a crucial role in insulin secretion, fatty acid oxidation, amino acid metabolism, ATP homeostasis, apoptosis, neurodegeneration, and cardiovascular diseases. In addition, recent studies have demonstrated that SIRT4 acts as a tumor suppressor. Here, the present review summarizes the enzymatic activities and biological functions of SIRT4, as well as its roles in cellular metabolism and human cancer, which are described in the current literature.
Collapse
Affiliation(s)
- Changming Wang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Urological Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yan Liu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yuyan Zhu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Urological Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chuize Kong
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Urological Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
21
|
Wang W, Chen L, Shang C, Jin Z, Yao F, Bai L, Wang R, Zhao S, Liu E. miR-145 inhibits the proliferation and migration of vascular smooth muscle cells by regulating autophagy. J Cell Mol Med 2020; 24:6658-6669. [PMID: 32337837 PMCID: PMC7299691 DOI: 10.1111/jcmm.15316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 02/12/2020] [Accepted: 03/27/2020] [Indexed: 12/22/2022] Open
Abstract
miR-145, the most abundant miRNA in the vascular smooth muscle cells (VSMCs), regulates VSMC function in intimal hyperplasia. It has been reported that autophagy participates in the regulation of proliferation and migration of VSMCs. However, the effect of miR-145 on autophagy and related mechanism in the proliferation and migration of VSMCs remains unclear. Therefore, we aimed to determine the effect of miR-145 on autophagy and the mechanism in VSMCs. Cell autophagy was determined by transmission electron microscope, mRFP-GFP-LC3 assay and Western blotting. A recombinant lentivirus containing miR-145 was used to construct VSMCs with miR-145 overexpression. We found that miR-145 expression was decreased, and autophagy was increased in the carotid arteries of C57BL/6J mice with intimal hyperplasia and TGF-β1-stimulated VSMCs. Furthermore, miR-145 overexpression inhibited cell autophagy, whereas miR-145 inhibition promoted autophagy in TGF-β1-stimulated VSMCs. Meanwhile, miR-145 inhibited the proliferation and migration of VSMCs. More importantly, our study showed that autophagy inhibition augmented the inhibitory effect of miR-145 on the proliferation and migration of VSMCs. In addition, we found that the sirtuins are not direct targets of miR-145 in the proliferation and migration of VSMCs. These results suggest that miR-145 inhibits the proliferation and migration of VSMCs by suppressing the activation of autophagy.
Collapse
Affiliation(s)
- Weirong Wang
- Department of Medical Laboratory Animal ScienceSchool of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
- Research Institute of Atherosclerotic DiseaseXi’an Jiaotong University Cardiovascular Research CenterXi’anChina
| | - Lifang Chen
- Department of Medical Laboratory Animal ScienceSchool of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
- Research Institute of Atherosclerotic DiseaseXi’an Jiaotong University Cardiovascular Research CenterXi’anChina
| | - Chenxu Shang
- Department of PharmacologySchool of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Zhen Jin
- Department of PharmacologySchool of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Feng Yao
- Department of PharmacologySchool of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Liang Bai
- Department of Medical Laboratory Animal ScienceSchool of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
- Research Institute of Atherosclerotic DiseaseXi’an Jiaotong University Cardiovascular Research CenterXi’anChina
| | - Rong Wang
- Department of Medical Laboratory Animal ScienceSchool of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
- Research Institute of Atherosclerotic DiseaseXi’an Jiaotong University Cardiovascular Research CenterXi’anChina
| | - Sihai Zhao
- Department of Medical Laboratory Animal ScienceSchool of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
- Research Institute of Atherosclerotic DiseaseXi’an Jiaotong University Cardiovascular Research CenterXi’anChina
| | - Enqi Liu
- Department of Medical Laboratory Animal ScienceSchool of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
- Research Institute of Atherosclerotic DiseaseXi’an Jiaotong University Cardiovascular Research CenterXi’anChina
| |
Collapse
|
22
|
Tang R, Long T, Lui KO, Chen Y, Huang ZP. A Roadmap for Fixing the Heart: RNA Regulatory Networks in Cardiac Disease. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 20:673-686. [PMID: 32380417 PMCID: PMC7210385 DOI: 10.1016/j.omtn.2020.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/16/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
With the continuous development of RNA biology and massive genome-wide transcriptome analysis, more and more RNA molecules and their functions have been explored in the last decade. Increasing evidence has demonstrated that RNA-related regulatory networks play an important role in a variety of human diseases, including cardiovascular diseases. In this review, we focus on RNA regulatory networks in heart disease, most of which are devastating conditions with no known cure. We systemically summarize recent discoveries of important new components of RNA regulatory networks, including microRNAs, long non-coding RNAs, and circular RNAs, as well as multiple regulators that affect the activity of these networks in cardiac physiology and pathology. In addition, this review covers emerging micropeptides, which represent short open reading frames (sORFs) in long non-coding RNA transcripts that may modulate cardiac physiology. Based on the current knowledge of RNA regulatory networks, we think that ongoing discoveries will not only provide us a better understanding of the molecular mechanisms that underlie heart disease, but will also identify novel biomarkers and therapeutic targets for the diagnosis and treatment of cardiac disease.
Collapse
Affiliation(s)
- Rong Tang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Tianxin Long
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Kathy O Lui
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR 999077, China
| | - Yili Chen
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
23
|
Jusic A, Devaux Y. Mitochondrial noncoding RNA-regulatory network in cardiovascular disease. Basic Res Cardiol 2020; 115:23. [PMID: 32140778 DOI: 10.1007/s00395-020-0783-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022]
Abstract
Mitochondrial function and integrity are vital for the maintenance of cellular homeostasis, particularly in high-energy demanding cells. Cardiomyocytes have a large number of mitochondria, which provide a continuous and bulk supply of the ATP necessary for cardiac mechanical function. More than 90% of the ATP consumed by the heart is derived from the mitochondrial oxidative metabolism. Decreased energy supply as the main consequence of mitochondrial dysfunction is closely linked to cardiovascular disease (CVD). The discovery of noncoding RNA (ncRNAs) in the mitochondrial compartment has changed the traditional view of molecular pathways involved in the regulatory network of CVD. Mitochondrial ncRNAs participate in controlling cardiovascular pathogenesis by regulating glycolysis, mitochondrial energy status, and the expression of genes involved in mitochondrial metabolism. Understanding the underlying mechanisms of the association between impaired mitochondrial function resulting from fluctuation in expression levels of ncRNAs and specific disease phenotype can aid in preventing and treating CVD. This review presents an overview of the role of mitochondrial ncRNAs in the complex regulatory network of the cardiovascular pathology. We will summarize and discuss (1) mitochondrial microRNAs (mitomiRs) and long noncoding RNAs (lncRNAs) encoded either by nuclear or mitochondrial genome which are involved in the regulation of mitochondrial metabolism; (2) the role of mitomiRs and lncRNAs in the pathogenesis of several CVD such as hypertension, cardiac hypertrophy, acute myocardial infarction and heart failure; (3) the biomarker and therapeutic potential of mitochondrial ncRNAs in CVD; (4) and the challenges inherent to their translation into clinical application.
Collapse
Affiliation(s)
- Amela Jusic
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1A-B rue Edison, 1445, Strassen, Luxembourg.
| | | |
Collapse
|
24
|
Liu D, Zhou S, Mao H. MicroRNA-497/fibroblast growth factor-23 axis, a predictive indictor for decreased major adverse cardiac and cerebral event risk in end-stage renal disease patients who underwent continuous ambulatory peritoneal dialysis. J Clin Lab Anal 2020; 34:e23220. [PMID: 32077150 PMCID: PMC7307374 DOI: 10.1002/jcla.23220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/20/2019] [Accepted: 01/01/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE This study aimed at exploring the correlation of microRNA (miR)-497/fibroblast growth factor-23 (FGF-23) axis with major adverse cardiac and cerebral event (MACCE) occurrence in end-stage renal disease (ESRD) patients who underwent continuous ambulatory peritoneal dialysis (CAPD). METHODS Totally, 360 ESRD patients who underwent CAPD were enrolled. Their plasma samples were collected to detect miR-497 expression by real-time quantitative polymerase chain reaction, and FGF-23 level by enzyme-linked immunosorbent assay. All patients were followed up for 36 months, and the occurrence of MACCE during the follow-up was documented. RESULTS MiR-497 expression negatively correlated with FGF-23 level in ESRD patients who underwent CAPD (P < .001). The MACCE occurrence rate at 1, 2, and 3-year was 5.6%, 11.9%, and 15.0%, respectively. Furthermore, miR-497/FGF-23 axis high level (P < .001) and miR-497 high expression (P = .034) correlated with reduced accumulating MACCE occurrence, whereas FGF-23 high level (P = .008) correlated with increased accumulating MACCE occurrence. Forward stepwise multivariate Cox's regression disclosed that miR-497/FGF-23 axis high level (P = .008) was an independent predictive factor for lower accumulating MACCE occurrence, whereas age (≥55 years) (P < .001), body mass index (≥21.7 kg/m2 ) (P = .006), peritoneal dialysis duration (≥61.0 months) (P < .001), C-reactive protein (≥4.7 mg/L) (P = .001), serum uric acid (≥409.4 μmol/L) (P = .009), β-fibrinogen (≥5.8 mmol/L) (P < .001), and low-density lipoprotein cholesterol (≥2.7 mmol/L) (P = .003) were independent factors for predicting higher accumulating MACCE occurrence. CONCLUSION MiR-497/FGF-23 axis holds clinical significance for predicting attenuated MACCE risk in ESRD patients who underwent CAPD.
Collapse
Affiliation(s)
- Dianjun Liu
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Silian Zhou
- Emergency Department, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Mao
- Department of Nephrology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Qi J, Luo X, Ma Z, Zhang B, Li S, Zhang J. Downregulation of miR-26b-5p, miR-204-5p, and miR-497-3p Expression Facilitates Exercise-Induced Physiological Cardiac Hypertrophy by Augmenting Autophagy in Rats. Front Genet 2020; 11:78. [PMID: 32140172 PMCID: PMC7042403 DOI: 10.3389/fgene.2020.00078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022] Open
Abstract
Exercise-induced autophagy is associated with physiological left ventricular hypertrophy (LVH), and a growing body of evidence suggests that microRNAs (miRNAs) can regulate autophagy-related genes. However, the precise role of miRNAs in exercise induced autophagy in physiological LVH has not been fully defined. In this study, we investigated the microRNA–autophagy axis in physiological LVH and deciphered the underlying mechanism using a rat swimming exercise model. Rats were assigned to sedentary control (CON) and swimming exercise (EX) groups; those in the latter group completed a 10-week swimming exercise without any load. For in vitro studies, H9C2 cardiomyocyte cell line was stimulated with IGF-1 for hypertrophy. We found a significant increase in autophagy activity in the hearts of rats with exercise-induced physiological hypertrophy, and miRNAs showed a high score in the pathway enriched in autophagy. Moreover, the expression levels of miR-26b-5p, miR-204-5p, and miR-497-3p showed an obvious increase in rat hearts. Adenovirus-mediated overexpression of miR-26b-5p, miR-204-5p, and miR-497-3p markedly attenuated IGF-1-induced hypertrophy in H9C2 cells by suppressing autophagy. Furthermore, miR-26b-5p, miR-204-5p, and miR-497-3p attenuated autophagy in H9C2 cells through targeting ULK1, LC3B, and Beclin 1, respectively. Taken together, our results demonstrate that swimming exercise induced physiological LVH, at least in part, by modulating the microRNA–autophagy axis, and that miR-26b-5p, miR-204-5p, and miR-497-3p may help distinguish physiological and pathological LVH.
Collapse
Affiliation(s)
- Jie Qi
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Xue Luo
- Medical College, Yangzhou Polytechnic College, Yangzhou, China
| | - Zhichao Ma
- The School of Physical Education, Wuhan Business University, Wuhan, China
| | - Bo Zhang
- College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Shuyan Li
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Jun Zhang
- College of Physical Education, Shanghai Normal University, Shanghai, China
| |
Collapse
|
26
|
MiR-195-5p Promotes Cardiomyocyte Hypertrophy by Targeting MFN2 and FBXW7. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1580982. [PMID: 31341888 PMCID: PMC6614993 DOI: 10.1155/2019/1580982] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/02/2019] [Indexed: 11/17/2022]
Abstract
Cardiac hypertrophy mainly predicts heart failure and is highly linked with sudden loss of lives. MicroRNAs (miRNAs) play essential roles in the development of cardiac hypertrophy through binding to corresponding mRNA targets. In this study, in order to investigate the roles of two mature forms of miRNA-195, miR-195-3p, and miR-195-5p, in vitro and in vivo models of cardiac hypertrophy were established by applying angiotensin II (Ang II) to H9c2 cardiomyocytes and infusing chronic Ang II to mice, respectively. We found that miR-195-5p was evidently equally upregulated in the in vitro and in vivo studies of cardiac hypertrophy induced by Ang II. High expressed miR-195-5p could adequately promote hypertrophy, whereas the suppression of miR-195-5p prevented hypertrophy of H9c2 cardiomyocytes under Ang II treatment. Furthermore, the luciferase reporter system demonstrated that MFN2 and FBWX7 were target genes of miR-195-5p, which negatively regulated the expression of these two genes in H9c2 cells. By contrast, in both models, expression of miR-195-3p was only slightly changed without statistical significance. In addition, we observed a trend towards decreased expression of hypertrophic markers by overexpressing miR-195-3p in AngII-treated H9c2 cardiomyocytes in vitro. Taken together, our study indicates that miR-195-5p promotes cardiac hypertrophy via targeting MFN2 and FBXW7 and may provide promising therapeutic strategies for interfering cardiac hypertrophy.
Collapse
|
27
|
Betsinger CN, Cristea IM. Mitochondrial Function, Metabolic Regulation, and Human Disease Viewed through the Prism of Sirtuin 4 (SIRT4) Functions. J Proteome Res 2019; 18:1929-1938. [PMID: 30913880 DOI: 10.1021/acs.jproteome.9b00086] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As cellular metabolic hubs, mitochondria are the main energy producers for the cell. These organelles host essential energy producing biochemical processes, including the TCA cycle, fatty acid oxidation, and oxidative phosphorylation. An accumulating body of literature has demonstrated that a majority of mitochondrial proteins are decorated with diverse posttranslational modifications (PTMs). Given the critical roles of these proteins in cellular metabolic pathways and response to environmental stress or pathogens, understanding the role of PTMs in regulating their functions has become an area of intense investigation. A major family of enzymes that regulate PTMs within the mitochondria are sirtuins (SIRTs). Albeit until recently the least understood sirtuin, SIRT4 has emerged as an enzyme capable of removing diverse PTMs from its substrates, thereby modulating their functions. SIRT4 was shown to have ADP-ribosyltransferase, deacetylase, lipoamidase, and deacylase enzymatic activities. As metabolic dysfunction is linked to human disease, SIRT4 levels and activities have been implicated in modulating susceptibility to hyperinsulinemia and diabetes, liver disease, cancer, neurodegeneration, heart disease, aging, and pathogenic infections. Therefore, SIRT4 has emerged as a possible candidate for targeted therapeutics. Here, we discuss the diverse enzymatic activities and substrates of SIRT4 and its roles in human health and disease.
Collapse
Affiliation(s)
- Cora N Betsinger
- Department of Molecular Biology , Princeton University , Princeton , New Jersey 08544 , United States
| | - Ileana M Cristea
- Department of Molecular Biology , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
28
|
Sun H, Huang D, Liu G, Jian F, Zhu J, Zhang L. SIRT4 acts as a tumor suppressor in gastric cancer by inhibiting cell proliferation, migration, and invasion. Onco Targets Ther 2018; 11:3959-3968. [PMID: 30022839 PMCID: PMC6044351 DOI: 10.2147/ott.s156143] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Previous study has proven that SIRT4 is downregulated in gastric cancer (GC), but the role of SIRT4 has not been clearly understood. The aim of our work was to explore in detail the function and mechanism of SIRT4 in GC. Methods A total of 86 pairs of GC tumor tissues and adjacent normal tissues were collected, and quantitative real-time polymerase chain reaction and Western blotting analyses were used to determine the expression of SIRT4. Results Our study revealed that the expression of SIRT4 was downregulated in GC tissues and cells. In addition, the low expression of SIRT4 was negatively correlated with tumor size, pathological grade, and lymph node metastasis, which predicted a poor prognosis. Multiple functional experiments, including Cell Counting Kit-8 assay as well as colony formation assay, demonstrated SIRT4 suppressed cell proliferation. Moreover, we found epithelial-mesenchymal transition was regulated by SIRT4, thereby regulating cell migration and invasion. Conclusion Overall, our findings show that SIRT4 serves as a tumor suppressor in GC and might act as a novel biomarker and a therapeutic target of GC.
Collapse
Affiliation(s)
- Hongjie Sun
- Department of General Surgery, Changyi People's Hospital, Changyi, Shandong, People's Republic of China
| | - Dongli Huang
- Department of General Surgery, Changyi People's Hospital, Changyi, Shandong, People's Republic of China
| | - Guozheng Liu
- Department of General Surgery, Changyi People's Hospital, Changyi, Shandong, People's Republic of China
| | - Fengguo Jian
- Department of General Surgery, Changyi People's Hospital, Changyi, Shandong, People's Republic of China
| | - Jianfang Zhu
- Department of General Surgery, Changyi People's Hospital, Changyi, Shandong, People's Republic of China
| | - Lixia Zhang
- Department of Nuclear Medicine, Zhejiang Provincial Hospital of Traditional Chinese Medicine (The First Affiliated Hospital of Zhejiang Chinese Medical University), Hangzhou, Zhejiang, People's Republic of China,
| |
Collapse
|
29
|
Dong Y, Xu S, Liu J, Ponnusamy M, Zhao Y, Zhang Y, Wang Q, Li P, Wang K. Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy. Int J Biol Sci 2018; 14:1133-1141. [PMID: 29989099 PMCID: PMC6036733 DOI: 10.7150/ijbs.26215] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
Cardiac hypertrophy is an adaptive enlargement of myocardium in response to pressure overload caused various pathological insults, which is accompanied by alteration of a complex cascade of signaling pathways. During the hypertrophy process, many changes occur at cellular level including gene reprogramming by turning off chromatin regulators. Studies from the past decade have demonstrated that the abnormal epigenetic modifications, such as DNA methylation, histone modification, and oxidative modification of nucleic acid, could lead to changes in chromosome structure and cardiac dysfunction. Increasing evidence indicates that non-coding RNAs (ncRNAs) have functional significance in modulating the gene expression during those pathological events in the heart. Emerging evidences have highlighted that ncRNAs might serve as a signal for changing the state of chromatin, however, the knowledge about the ncRNA-linked epigenetic regulatory mechanisms in cardiac pathologies is still largely unexplored. In this review, we summarize the current information on association between ncRNAs and epigenetic modifications in cardiac hypertrophy, and we have discussed their crosstalk. In addition, this review provides insights into their therapeutic and diagnostic potential for treating hypertrophic heart disease.
Collapse
Affiliation(s)
- Yanhan Dong
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Sheng Xu
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Jing Liu
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Murugavel Ponnusamy
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yanfang Zhao
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yanhui Zhang
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Qi Wang
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Kun Wang
- Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| |
Collapse
|
30
|
Sun YL, Li SH, Yang L, Wang Y. miR-376b-3p attenuates mitochondrial fission and cardiac hypertrophy by targeting mitochondrial fission factor. Clin Exp Pharmacol Physiol 2018; 45:779-787. [PMID: 29570827 DOI: 10.1111/1440-1681.12938] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Yong Le Sun
- Department of Cardiology; Shandong Provincial Hospital Affiliated to Shandong University; Jinan Shandong Province China
| | - Shao Hua Li
- Department of Cardiology; Shandong Provincial Hospital Affiliated to Shandong University; Jinan Shandong Province China
| | - Le Yang
- Department of Cardiology; Shandong Provincial Hospital Affiliated to Shandong University; Jinan Shandong Province China
| | - Yong Wang
- Department of Cardiology; Shandong Provincial Hospital Affiliated to Shandong University; Jinan Shandong Province China
| |
Collapse
|
31
|
Piek A, Du W, de Boer RA, Silljé HHW. Novel heart failure biomarkers: why do we fail to exploit their potential? Crit Rev Clin Lab Sci 2018; 55:246-263. [PMID: 29663841 DOI: 10.1080/10408363.2018.1460576] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasma biomarkers are useful tools in the diagnosis and prognosis of heart failure (HF). In the last decade, numerous studies have aimed to identify novel HF biomarkers that would provide superior and/or additional diagnostic, prognostic, or stratification utility. Although numerous biomarkers have been identified, their implementation in clinical practice has so far remained largely unsuccessful. Whereas cardiac-specific biomarkers, including natriuretic peptides (ANP and BNP) and high sensitivity troponins (hsTn), are widely used in clinical practice, other biomarkers have not yet proven their utility. Galectin-3 (Gal-3) and soluble suppression of tumorigenicity 2 (sST2) are the only novel HF biomarkers that are included in the ACC/AHA HF guidelines, but their clinical utility still needs to be demonstrated. In this review, we will describe natriuretic peptides, hsTn, and novel HF biomarkers, including Gal-3, sST2, human epididymis protein 4 (HE4), insulin-like growth factor-binding protein 7 (IGFBP-7), heart fatty acid-binding protein (H-FABP), soluble CD146 (sCD146), interleukin-6 (IL-6), growth differentiation factor 15 (GDF-15), procalcitonin (PCT), adrenomedullin (ADM), microRNAs (miRNAs), and metabolites like 5-oxoproline. We will discuss the biology of these HF biomarkers and conclude that most of them are markers of general pathological processes like fibrosis, cell death, and inflammation, and are not cardiac- or HF-specific. These characteristics explain to a large degree why it has been difficult to relate these biomarkers to a single disease. We propose that, in addition to clinical investigations, it will be pivotal to perform comprehensive preclinical biomarker investigations in animal models of HF in order to fully reveal the potential of these novel HF biomarkers.
Collapse
Affiliation(s)
- Arnold Piek
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Weijie Du
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands.,b Department of Pharmacology, College of Pharmacy , Harbin Medical University , Harbin , China
| | - Rudolf A de Boer
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Herman H W Silljé
- a Department of Cardiology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
32
|
Wang XL, Zhao YY, Sun L, Shi Y, Li ZQ, Zhao XD, Xu CG, Ji HG, Wang M, Xu WR, Zhu W. Exosomes derived from human umbilical cord mesenchymal stem cells improve myocardial repair via upregulation of Smad7. Int J Mol Med 2018; 41:3063-3072. [PMID: 29484378 DOI: 10.3892/ijmm.2018.3496] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/09/2018] [Indexed: 12/13/2022] Open
Abstract
It has been previously reported that exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC)‑exosomes exhibit cardioprotective effects on the rat acute myocardial infarction (AMI) models and cardiomyocyte hypoxia injury models in vitro, however the exact mechanisms involved require further investigation. The present study aimed to investigate the repair effects of hucMSC‑exosomes on myocardial injury via the regulation of mothers against decapentaplegic homolog 7 (Smad7) expression. Compared with sham or normoxia groups (in vivo and in vitro, respectively), western blotting demonstrated that Smad7 expression was significantly decreased in the borderline area of infraction myocardium and in H9C2(2‑1) cells following hypoxia‑induced injury. Additionally, microRNA (miR)‑125b‑5p expression was markedly increased using reverse transcription‑quantitative polymerase chain reaction, but was reversed by hucMSC‑exosomes. Trypan blue staining and lactate dehydrogenase release detection demonstrated that cell injury was significantly increased in the AMI + PBS and hypoxia group compared with in the sham and normoxia groups and was inhibited by hucMSC‑exosomes. A dual luciferase reporter gene assay confirmed that Smad7 is a target gene of miR‑125b‑5p. In addition, miR‑125b‑5p mimics promoted H9C2(2‑1) cell injury following 48 h exposure to hypoxia. Downregulation of Smad7 expression under hypoxia was increased by miR‑125b‑5p mimics compared with the mimic negative control, and hucMSC‑exosomes partially alleviated this phenomenon. In conclusion, hucMSC‑exosomes may promote Smad7 expression by inhibiting miR‑125b‑5p to increase myocardial repair. The present study may provide a potential therapeutic approach to improve myocardial repair following AMI.
Collapse
Affiliation(s)
- Xin-Long Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuan-Yuan Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Li Sun
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yu Shi
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhu-Qian Li
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiang-Dong Zhao
- Department of Clinical Laboratory, Zhenjiang Provincial Blood Center, Zhenjiang, Jiangsu 212000, P.R. China
| | - Chang-Gen Xu
- Department of Clinical Laboratory, Zhenjiang Provincial Blood Center, Zhenjiang, Jiangsu 212000, P.R. China
| | - Hong-Ge Ji
- Department of Clinical Laboratory, Zhenjiang Provincial Blood Center, Zhenjiang, Jiangsu 212000, P.R. China
| | - Mei Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wen-Rong Xu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
33
|
Matasic DS, Brenner C, London B. Emerging potential benefits of modulating NAD + metabolism in cardiovascular disease. Am J Physiol Heart Circ Physiol 2017; 314:H839-H852. [PMID: 29351465 DOI: 10.1152/ajpheart.00409.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) and related metabolites are central mediators of fuel oxidation and bioenergetics within cardiomyocytes. Additionally, NAD+ is required for the activity of multifunctional enzymes, including sirtuins and poly(ADP-ribose) polymerases that regulate posttranslational modifications, DNA damage responses, and Ca2+ signaling. Recent research has indicated that NAD+ participates in a multitude of processes dysregulated in cardiovascular diseases. Therefore, supplementation of NAD+ precursors, including nicotinamide riboside that boosts or repletes the NAD+ metabolome, may be cardioprotective. This review examines the molecular physiology and preclinical data with respect to NAD+ precursors in heart failure-related cardiac remodeling, ischemic-reperfusion injury, and arrhythmias. In addition, alternative NAD+-boosting strategies and potential systemic effects of NAD+ supplementation with implications on cardiovascular health and disease are surveyed.
Collapse
Affiliation(s)
- Daniel S Matasic
- Division of Cardiovascular Medicine, Department of Medicine, University of Iowa , Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Charles Brenner
- Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa.,Department of Biochemistry, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Barry London
- Division of Cardiovascular Medicine, Department of Medicine, University of Iowa , Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa , Iowa City, Iowa.,Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| |
Collapse
|
34
|
MicroRNA as a Therapeutic Target in Cardiac Remodeling. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1278436. [PMID: 29094041 PMCID: PMC5637866 DOI: 10.1155/2017/1278436] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/23/2017] [Accepted: 08/09/2017] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small RNA molecules that contain 18–25 nucleotides. The alterations in their expression level play crucial role in the development of many disorders including heart diseases. Myocardial remodeling is the final pathological consequence of a variety of myocardial diseases. miRNAs have central role in regulating pathogenesis of myocardial remodeling by modulating cardiac hypertrophy, cardiomyocytes injury, cardiac fibrosis, angiogenesis, and inflammatory response through multiple mechanisms. The balancing and tight regulation of different miRNAs is a key to drive the cellular events towards functional recovery and any fall in this leads to detrimental effect on cardiac function following various insults. In this review, we discuss the impact of alterations of miRNAs expression on cardiac hypertrophy, cardiomyocytes injury, cardiac fibrosis, angiogenesis, and inflammatory response. We have also described the targets (receptors, signaling molecules, transcription factors, etc.) of miRNAs on which they act to promote or attenuate cardiac remodeling processes in different type cells of cardiac tissues.
Collapse
|
35
|
Yang Y, Yu T, Jiang S, Zhang Y, Li M, Tang N, Ponnusamy M, Wang JX, Li PF. miRNAs as potential therapeutic targets and diagnostic biomarkers for cardiovascular disease with a particular focus on WO2010091204. Expert Opin Ther Pat 2017. [PMID: 28627982 DOI: 10.1080/13543776.2017.1344217] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION A number of miRNAs have been reported to be critically involved in the regulation of cardiovascular disease (CVDs). Therefore, the development of potent analogues/inhibitors for miRNAs have thus become a key focus in the present drug discovery. In this review, we discuss the basic research and clinical use of miRNAs as the early diagnosis and therapeutic targets for CVD. We have also focused on the efficiency of therapeutically targeting miR-499, which is considered as one of the most promising molecules for treating CVDs. Areas covered: In this review, we have discussed the patents and patent applications related to miRNAs detected in CVD patients published in recent years. This review also covers the expression pattern of miR-499, as well as it highlights functions of its inhibitors in CVD. We used Google and Pubmed search engines to find relevant patents. Expert opinion: Although a massive number of miRNAs are patented as CVD biomarkers, further work is absolutely required to evaluate the reliable diagnostic values and therapeutic potential of these candidates. Overall, targeting miRNAs is definitely a promising strategy to be investigated for diagnosis and treatment of CVDs in future, however, the delivery system and off-targets effects are still a difficult challenge need to be elucidated.
Collapse
Affiliation(s)
- Yanyan Yang
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Tao Yu
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Shaoyan Jiang
- b Department of cardiology , The Affiliated Cardiovascular Hospital of Qingdao University , Qingdao , People's Republic of China
| | - Yinfeng Zhang
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Mengpeng Li
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Ningning Tang
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Murugavel Ponnusamy
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Jian-Xun Wang
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Pei-Feng Li
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| |
Collapse
|
36
|
Bao Q, Zhao M, Chen L, Wang Y, Wu S, Wu W, Liu X. MicroRNA-297 promotes cardiomyocyte hypertrophy via targeting sigma-1 receptor. Life Sci 2017; 175:1-10. [PMID: 28286226 DOI: 10.1016/j.lfs.2017.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/04/2017] [Accepted: 03/09/2017] [Indexed: 02/05/2023]
Abstract
AIMS Sigma-1 receptor (Sig-1R) is a ligand-regulated endoplasmic reticulum (ER) chaperone involved in cardiac hypertrophy, but it is not known whether Sig-1R is regulated by microRNAs (miRNAs). According to bioinformatic analysis, miR-297 was suggested as a potential target miRNA for Sig-1R. Therefore, we verified whether miR-297 could target Sig-1R and investigated the possible mechanisms underlying the role of miR-297 in cardiac hypertrophy. MAIN METHODS Bioinformatic analysis combined with laboratory experiments, including quantitative RT-PCR, Western blotting, and luciferase assay, were performed to identify the target miRNA of Sig-1R. Transverse aortic constriction (TAC) model and neonatal rat cardiomyocytes (NCMs) stimulated with angiotensin II (AngII) were used to explore the relationship between miR-297 and Sig-1R. Additionally, the function of miR-297 in cardiomyocyte hypertrophy and ER stress/unfolded protein response (UPR) signaling pathway was investigated by transfecting miR-297 mimics/inhibitor. KEY FINDINGS miR-297 levels were increased in both TAC-induced hypertrophic heart tissue and AngII-induced cardiomyocyte hypertrophy. Up-regulation of miR-297 by specific mimics exacerbated AngII-induced cardiomyocyte hypertrophy, whereas inhibition of miR-297 suppressed the process. During cardiomyocyte hypertrophy, Sig-1R expression, which was negatively regulated by miR-297 by directly targeting its 3'untranslated region (UTR), was decreased. Furthermore, attenuation of miR-297 inhibited the activation of X-box binding protein 1 (Xbp1) and activating transcriptional factor 4 (ATF4) signaling pathways in NCMs. SIGNIFICANCE Our data demonstrate that miR-297 promotes cardiomyocyte hypertrophy by inhibiting the expression of Sig-1R and activation of ER stress signaling, which provides a novel interpretation for cardiac hypertrophy.
Collapse
Affiliation(s)
- Qinxue Bao
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mingyue Zhao
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wang
- Laboratory of Molecular Diagnosis of Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siyuan Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Gao J, Xu W, Wang J, Wang K, Li P. The Role and Molecular Mechanism of Non-Coding RNAs in Pathological Cardiac Remodeling. Int J Mol Sci 2017; 18:608. [PMID: 28287427 PMCID: PMC5372624 DOI: 10.3390/ijms18030608] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not encode proteins. Studies show that ncRNAs are not only involved in cell proliferation, apoptosis, differentiation, metabolism and other physiological processes, but also involved in the pathogenesis of diseases. Cardiac remodeling is the main pathological basis of a variety of cardiovascular diseases. Many studies have shown that the occurrence and development of cardiac remodeling are closely related with the regulation of ncRNAs. Recent research of ncRNAs in heart disease has achieved rapid development. Thus, we summarize here the latest research progress and mainly the molecular mechanism of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), in cardiac remodeling, aiming to look for new targets for heart disease treatment.
Collapse
Affiliation(s)
- Jinning Gao
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| | - Wenhua Xu
- Department of Basic Medical College, Qingdao University Medical College, Ningxia Road 308, Qingdao 266071, China.
| | - Jianxun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| | - Kun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| | - Peifeng Li
- Center for Developmental Cardiology, Institute for Translational Medicine, Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| |
Collapse
|