1
|
Socha P, Jańczyk W, Zanetto A, Burra P, Czlonkowska A, Debray D, Ferenci P, Merle U, Nicastro E, Poujois A, Schmidt H, Tsochatzis E. EASL-ERN Clinical Practice Guidelines on Wilson's disease. J Hepatol 2025; 82:S0168-8278(24)02706-5. [PMID: 40089450 DOI: 10.1016/j.jhep.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 03/17/2025]
Abstract
Wilson's disease is an autosomal recessive disorder of copper metabolism which affects the liver, brain and other organs. Diagnosis is based on: clinical features; biochemical tests, including plasma ceruloplasmin concentration, 24-h urinary copper excretion, copper content in the liver; and molecular analysis. Leipzig score and additionally relative exchangeable copper determination are recommended for diagnosis. Pharmacological therapy comprises chelating agents (penicillamine, trientine) and zinc salts, while only chelators are recommended for significant liver disease. Monitoring is based on clinical symptoms, liver tests and copper metabolism (urinary copper excretion, exchangeable copper) to detect poor compliance and over/under-treatment. Acute liver failure is challenging as making a diagnosis is difficult and pharmacological therapy may not be sufficient to save life. Liver transplantation has a well-defined role in Wilsonian acute hepatic failure but may also be considered in neurological disease.
Collapse
|
2
|
Gromadzka G, Bendykowska M, Przybyłkowski A. Wilson’s Disease—Genetic Puzzles with Diagnostic Implications. Diagnostics (Basel) 2023; 13:diagnostics13071287. [PMID: 37046505 PMCID: PMC10093728 DOI: 10.3390/diagnostics13071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
(1) Introduction: Wilson’s disease (WND) is an autosomal recessive disorder of copper metabolism. The WND gene is ATP7B, located on chromosome 13. WND is characterized by high clinical variability, which causes diagnostic difficulties. (2) Methods: The PubMed, Science Direct, and Wiley Online Library medical databases were reviewed using the following phrases: “Wilson’s disease”, “ATP7B genotype”, “genotype-phenotype”, “epigenetics”, “genetic modifiers”, and their combinations. Publications presenting the results of experimental and clinical studies, as well as review papers, were selected, which concerned: (i) the diversity of genetic strategies and tests used in WND diagnosis; (ii) the difficulties of genetic diagnosis, including uncertainty as to the pathogenicity of variants; (iii) genetic counseling; (iv) phenotypic effects of ATP7B variants in patients with WND and in heterozygous carriers (HzcWND); (v) genetic and epigenetics factors modifying the clinical picture of the disease. (3) Results and conclusions: The genetic diagnosis of WND is carried out using a variety of strategies and tests. Due to the large number of known variants in the ATP7B gene (>900), the usefulness of genetic tests in routine diagnostics is still relatively small and even analyses performed using the most advanced technologies, including next-generation sequencing, require additional tests, including biochemical evidence of abnormal copper metabolism, to confirm the diagnosis of WND. Pseudodominant inheritance, the presence of three various pathogenic variants in the same patient, genotypes indicating the possibility of segmental uniparental disomy, have been reported. Genotype–phenotype relationships in WND are complex. The ATP7B genotype, to some extent, determines the clinical picture of the disease, but other genetic and epigenetic modifiers are also relevant.
Collapse
|
3
|
Roy S, Ghosh S, Ray J, Ray K, Sengupta M. Missing heritability of Wilson disease: a search for the uncharacterized mutations. Mamm Genome 2023; 34:1-11. [PMID: 36462057 DOI: 10.1007/s00335-022-09971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Wilson disease (WD), a copper metabolism disorder caused by mutations in ATP7B, manifests heterogeneous clinical features. Interestingly, in a fraction of clinically diagnosed WD patients, mutations in ATP7B appears to be missing. In this review we discuss the plausible explanations of this missing heritability and propose a workflow that can identify the hidden mutations. Mutation analyses of WD generally includes targeted sequencing of ATP7B exons, exon-intron boundaries, and rarely, the proximal promoter region. We propose that variants in the distal cis-regulatory elements and/or deep intronic variants that impact splicing might well represent the hidden mutations. Heterozygous del/ins that remain refractory to conventional PCR-sequencing method may also represent such mutations. In this review, we also hypothesize that mutations in the key copper metabolism genes, like, ATOX1, COMMD1, and SLC31A1, could possibly lead to a WD-like phenotype. In fact, WD does present overlapping symptoms with other rare genetic disorders; hence, the possibility of a misdiagnosis and thus adding to missing heritability cannot be excluded. In this regard, it seems that whole-genome analysis will provide a comprehensive and rapid molecular diagnosis of WD. However, considering the associated cost for such a strategy, we propose an alternative customized screening schema of WD which include targeted sequencing of ATP7B locus as well as other key copper metabolism genes. Success of such a schema has been tested in a pilot study.
Collapse
Affiliation(s)
- Shubhrajit Roy
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
- Post-doctoral Fellow, Physiology Department, Johns Hopkins University, Baltimore, USA
| | - Sampurna Ghosh
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Jharna Ray
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Kunal Ray
- Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata, 700 103, India.
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
4
|
The Power of Clinical Diagnosis for Deciphering Complex Genetic Mechanisms in Rare Diseases. Genes (Basel) 2023; 14:genes14010196. [PMID: 36672937 PMCID: PMC9858967 DOI: 10.3390/genes14010196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Complex genetic disease mechanisms, such as structural or non-coding variants, currently pose a substantial difficulty in frontline diagnostic tests. They thus may account for most unsolved rare disease patients regardless of the clinical phenotype. However, the clinical diagnosis can narrow the genetic focus to just a couple of genes for patients with well-established syndromes defined by prominent physical and/or unique biochemical phenotypes, allowing deeper analyses to consider complex genetic origin. Then, clinical-diagnosis-driven genome sequencing strategies may expedite the development of testing and analytical methods to account for complex disease mechanisms as well as to advance functional assays for the confirmation of complex variants, clinical management, and the development of new therapies.
Collapse
|
5
|
Panzer M, Viveiros A, Schaefer B, Baumgartner N, Seppi K, Djamshidian A, Todorov T, Griffiths WJH, Schott E, Schuelke M, Eurich D, Stättermayer AF, Bomford A, Foskett P, Vodopiutz J, Stauber R, Pertler E, Morell B, Tilg H, Müller T, Kiechl S, Jimenez‐Heredia R, Weiss KH, Hahn SH, Janecke A, Ferenci P, Zoller H. Synonymous mutation in adenosine triphosphatase copper-transporting beta causes enhanced exon skipping in Wilson disease. Hepatol Commun 2022; 6:1611-1619. [PMID: 35271763 PMCID: PMC9234614 DOI: 10.1002/hep4.1922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/25/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022] Open
Abstract
Wilson disease (WD) is caused by biallelic pathogenic variants in adenosine triphosphatase copper-transporting beta (ATP7B); however, genetic testing identifies only one or no pathogenic ATP7B variant in a number of patients with WD. Synonymous single-nucleotide sequence variants have been recognized as pathogenic in individual families. The aim of the present study was to evaluate the prevalence and disease mechanism of the synonymous variant c.2292C>T (p.Phe764=) in WD. A cohort of 280 patients with WD heterozygous for a single ATP7B variant was investigated for the presence of c.2292C>T (p.Phe764=). In this cohort of otherwise genetically unexplained WD, the allele frequency of c.2292C>T (p.Phe764=) was 2.5% (14 of 560) compared to 7.1 × 10-6 in the general population (2 of 280,964 in the Genome Aggregation Database; p < 10-5 ; Fisher exact test). In an independent United Kingdom (UK) cohort, 2 patients with WD homozygous for p.Phe764= were identified. RNA analysis of ATP7B transcripts from patients homozygous or heterozygous for c.2292C>T and control fibroblasts showed that this variant caused high expression of an ATP7B transcript variant lacking exon 8. Conclusion: The synonymous ATP7B variant c.2292C>T (p.Phe764=) causes abnormal messenger RNA processing of ATP7B transcripts and is associated with WD in compound heterozygotes and homozygotes.
Collapse
Affiliation(s)
- Marlene Panzer
- Department of Medicine IMedical University of InnsbruckInnsbruckAustria
- VASCage Research Center on Vascular Ageing and StrokeInnsbruckAustria
| | - André Viveiros
- Department of Medicine IMedical University of InnsbruckInnsbruckAustria
| | - Benedikt Schaefer
- Department of Medicine IMedical University of InnsbruckInnsbruckAustria
| | - Nadja Baumgartner
- Department of Medicine IMedical University of InnsbruckInnsbruckAustria
| | - Klaus Seppi
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Atbin Djamshidian
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Theodor Todorov
- Department of Medical Genetics and Molecular BiologyUniversity Hospital LozenetzSofiaBulgaria
| | - William J. H. Griffiths
- Cambridge Liver UnitCambridge University Hospitals National Health Service (NHS) Foundation TrustCambridgeUK
| | - Eckart Schott
- Helios Klinikum Emil von Behring GmbHKlinik für Innere Medizin IIBerlinGermany
| | - Markus Schuelke
- Department of NeuropediatricsCharité University Medical Center BerlinBerlinGermany
| | - Dennis Eurich
- Department of SurgeryCharité University Medical Center BerlinBerlinGermany
| | - Albert Friedrich Stättermayer
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University ViennaViennaAustria
| | - Adrian Bomford
- Institute of Liver StudiesKing's College Hospital NHS Foundation TrustLondonUK
| | - Pierre Foskett
- Institute of Liver StudiesKing's College Hospital NHS Foundation TrustLondonUK
| | - Julia Vodopiutz
- Division of Pediatric Pulmology, Allergology, and EndocrinologyDepartment of Pediatrics and Adolescent MedicineComprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Rudolf Stauber
- Division of Gastroenterology and HepatologyDepartment of Internal MedicineMedical University of GrazGrazAustria
| | - Elke Pertler
- Department of Medicine IMedical University of InnsbruckInnsbruckAustria
- Christian Doppler Laboratory on Iron and Phosphate BiologyInnsbruckAustria
| | - Bernhard Morell
- Department of Gastroenterology and HepatologyUniversity Hospital ZurichZurichSwitzerland
| | - Herbert Tilg
- Department of Medicine IMedical University of InnsbruckInnsbruckAustria
| | - Thomas Müller
- Department of Pediatrics IMedical University of InnsbruckInnsbruckAustria
| | - Stefan Kiechl
- Department of NeurologyMedical University of InnsbruckInnsbruckAustria
| | - Raul Jimenez‐Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
- St. Anna Children's Cancer Research InstituteViennaAustria
| | - Karl Heinz Weiss
- Internal MedicineKrankenhaus Salem der Evangelischen StadtmissionHeidelbergGermany
| | - Si Houn Hahn
- University of Washington School of MedicineSeattle Children’s HospitalSeattleWashingtonUSA
| | - Andreas Janecke
- Department of Pediatrics IMedical University of InnsbruckInnsbruckAustria
| | - Peter Ferenci
- Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University ViennaViennaAustria
| | - Heinz Zoller
- Department of Medicine IMedical University of InnsbruckInnsbruckAustria
- Christian Doppler Laboratory on Iron and Phosphate BiologyInnsbruckAustria
| |
Collapse
|
6
|
Sánchez-Monteagudo A, Ripollés E, Berenguer M, Espinós C. Wilson's Disease: Facing the Challenge of Diagnosing a Rare Disease. Biomedicines 2021; 9:1100. [PMID: 34572285 PMCID: PMC8471362 DOI: 10.3390/biomedicines9091100] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Wilson disease (WD) is a rare disorder caused by mutations in ATP7B, which leads to the defective biliary excretion of copper. The subsequent gradual accumulation of copper in different organs produces an extremely variable clinical picture, which comprises hepatic, neurological psychiatric, ophthalmological, and other disturbances. WD has a specific treatment, so that early diagnosis is crucial to avoid disease progression and its devastating consequences. The clinical diagnosis is based on the Leipzig score, which considers clinical, histological, biochemical, and genetic data. However, even patients with an initial WD diagnosis based on a high Leipzig score may harbor other conditions that mimic the WD's phenotype (Wilson-like). Many patients are diagnosed using current available methods, but others remain in an uncertain area because of bordering ceruloplasmin levels, inconclusive genetic findings and unclear phenotypes. Currently, the available biomarkers for WD are ceruloplasmin and copper in the liver or in 24 h urine, but they are not solid enough. Therefore, the characterization of biomarkers that allow us to anticipate the evolution of the disease and the monitoring of new drugs is essential to improve its diagnosis and prognosis.
Collapse
Affiliation(s)
- Ana Sánchez-Monteagudo
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (A.S.-M.); (E.R.)
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
| | - Edna Ripollés
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (A.S.-M.); (E.R.)
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
| | - Marina Berenguer
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
- Hepatology-Liver Transplantation Unit, Digestive Medicine Service, IIS La Fe and CIBER-EHD, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (A.S.-M.); (E.R.)
- Joint Unit on Rare Diseases CIPF-IIS La Fe, 46012 Valencia, Spain;
| |
Collapse
|
7
|
Xiao Z, Yang Y, Huang H, Tang H, Liu L, Tang J, Shi X. Molecular analysis of 53 Chinese families with Wilson's disease: Six novel mutations identified. Mol Genet Genomic Med 2021; 9:e1735. [PMID: 34324271 PMCID: PMC8457707 DOI: 10.1002/mgg3.1735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 11/06/2022] Open
Abstract
Background Wilson's disease (WD) is a rare autosomal recessive inherited disorder that is induced by defects of the ATP7B gene and characterized by damage to the liver and nervous system caused by aberrant copper metabolism. The identification of pathogenic mutations on two homologous chromosomes has become the gold standard for the diagnosis of WD. Methods Sanger sequencing and multiplex ligation‐dependent probe amplification (MLPA) were combined to establish a genetic diagnosis for patients from 53 unrelated Chinese WD families. Results Biallelic mutations were detected by Sanger sequencing in 50 of the probands, while single heterozygous mutations were detected in the remaining three probands. A total of 45 diverse pathogenic mutations were detected, and 6 previously unreported mutations were involved. Five asymptomatic patients were screened from 85 family members of 38 probands participating in the study. Conclusion This study contributes to the enlargement of the mutational spectrum of the ATP7B gene among the population of China and highlights the significance of genetic testing for asymptomatic patients.
Collapse
Affiliation(s)
- Zhongyan Xiao
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yuan Yang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), ICU, Peking University Cancer Hospital & Institute, Beijing, 100142, People's Republic of China
| | - Hui Huang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Haiyan Tang
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jianguang Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
8
|
Al-Dhamin Z, Liu LD, Li DD, Zhang SY, Dong SM, Nan YM. Therapeutic efficiency of bone marrow-derived mesenchymal stem cells for liver fibrosis: A systematic review of in vivo studies. World J Gastroenterol 2020; 26:7444-7469. [PMID: 33384547 PMCID: PMC7754546 DOI: 10.3748/wjg.v26.i47.7444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/31/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Although multiple drugs are accessible for recovering liver function in patients, none are considered efficient. Liver transplantation is the mainstay therapy for end-stage liver fibrosis. However, the worldwide shortage of healthy liver donors, organ rejection, complex surgery, and high costs are prompting researchers to develop novel approaches to deal with the overwhelming liver fibrosis cases. Mesenchymal stem cell (MSC) therapy is an emerging alternative method for treating patients with liver fibrosis. However, many aspects of this therapy remain unclear, such as the efficiency compared to conventional treatment, the ideal MSC sources, and the most effective way to use it. Because bone marrow (BM) is the largest source for MSCs, this paper used a systematic review approach to study the therapeutic efficiency of MSCs against liver fibrosis and related factors. We systematically searched multiple published articles to identify studies involving liver fibrosis and BM-MSC-based therapy. Analyzing the selected studies showed that compared with conventional treatment BM-MSC therapy may be more efficient for liver fibrosis in some cases. In contrast, the cotreatment presented a more efficient way. Nevertheless, BM-MSCs are lacking as a therapy for liver fibrosis; thus, this paper also reviews factors that affect BM-MSC efficiency, such as the implementation routes and strategies employed to enhance the potential in alleviating liver fibrosis. Ultimately, our review summarizes the recent advances in the BM-MSC therapy for liver fibrosis. It is grounded in recent developments underlying the efficiency of BM-MSCs as therapy, focusing on the preclinical in vivo experiments, and comparing to other treatments or sources and the strategies used to enhance its potential while mentioning the research gaps.
Collapse
Affiliation(s)
- Zaid Al-Dhamin
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| | - Ling-Di Liu
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| | - Dong-Dong Li
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| | - Si-Yu Zhang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| | - Shi-Ming Dong
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| | - Yue-Min Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Shijiazhuang 050051, Hebei Province, China
| |
Collapse
|
9
|
Xi Y, Chen G, Lei C, Wu J, Zhang S, Xiao M, Zhang W, Zhang Y, Sun X. Expanded carrier screening in Chinese patients seeking the help of assisted reproductive technology. Mol Genet Genomic Med 2020; 8:e1340. [PMID: 32573981 PMCID: PMC7507411 DOI: 10.1002/mgg3.1340] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 01/05/2023] Open
Abstract
Background Expanded carrier screening (ECS) has emerged as an effective approach to identify at‐risk couples (ARCs)—before they initiate attempts at reproduction—who possess a high probability of having a child affected by severe recessive diseases. The objective of this study was to evaluate the clinical utility of ECS in Chinese patients seeking the help of assisted reproductive technology (ART). Methods An ECS test, which covers 201 genes implicated in 135 recessive (autosomal or X‐linked) diseases, was routinely offered to all ART patients in a single genetics and in vitro fertilization clinic. Additional options for preimplantation or prenatal genetic diagnosis were discussed and offered to all ARCs. All ECS results were aggregated and the clinical decisions of the ARCs were surveyed. Results A total of 2,923 ART patients, representing 1,462 couples, were screened. Overall, 46.73% of the individuals were found to be the carriers for at least 1 of the 135 diseases. Of the tested couples, 2.26% (n = 33) were identified as ARCs. As of the completion of this study, 21 (63.6%) ARCs have decided to avert an affected pregnancy with the help of preimplantation genetic testing for monogenetic conditions. The cumulative carrier rate of the 187 autosomal recessive genes in the ECS panel for the 2,836 Han Chinese individuals without a family history was estimated to be 45.91%. The estimated at‐risk couple rate indicates that the screening for only the top 31 genes with gene carrier rates >0.5% would identify more than 94% of the ARCs identified by screening all 187 genes. Conclusion Our study demonstrates that ESC yields a significant clinical value for ART patients in China. In addition, by estimating the yields of the ECS panel, we identify genes that are appropriate for screening the Han population.
Collapse
Affiliation(s)
- Yanping Xi
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Guangquan Chen
- WuXi NextCODE Genomics (Shanghai) Co., Ltd., Shanghai, China
| | - Caixia Lei
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Junping Wu
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Shuo Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Min Xiao
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wenbi Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Yueping Zhang
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics & IVF Institute, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics, and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
10
|
Sapuppo A, Pavone P, Praticò AD, Ruggieri M, Bertino G, Fiumara A. Genotype-phenotype variable correlation in Wilson disease: clinical history of two sisters with the similar genotype. BMC MEDICAL GENETICS 2020; 21:128. [PMID: 32532207 PMCID: PMC7291468 DOI: 10.1186/s12881-020-01062-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Wilson disease (WD) is an Autosomal-Recessive disorder due to mutations of ATP7B gene on chromosome 13q14.3. Inadequate protein function leads to low ceruloplasmin blood levels and copper accumulation in liver, basal ganglia and chornea. Main clinical manifestations are hypertransaminasemia, tremors, dysarthria, dystonia and psychiatric symptoms. The phenotypic variability in WD is considerable and its onset can be heterogeneous: the most common type in childhood is the hepatic involvement, followed by the neurological one or others. The presence of a genotype-phenotype correlation has not yet been fully demonstrated. The phenotypic variability may be explained by the intervention of other modifier genes regulating copper metabolism in the presence of mutations ATP7B. CASE PRESENTATION A streaking phenotypic variability was observed in two Sicilian sisters carrying the same genotype for ATB7B gene [c.3207C > A / c.3904-2A > G]. Although both started to present signs at age 10 years, onset was characterized by neurological signs in the first (tremors, motor incoordination, language and cognitive impairment), while liver involvement has been the only sign in the other. They started the same chelation therapy. After a 20-year follow-up the former is severely affected (MRI evidence of basal ganglia copper deposits and hyperchogenic liver, thrombocytopenia), while the latter presents only a moderate liver enlargement. In literature, the splice mutation c.3904-2A > G is also reported in Egypt population, associated with acute liver failure or chronic hepatic disease, and it could be typical of Mediterranean area, not being reported in other geographical zones. CONCLUSION Based on our clinical experience in Eastern Sicily, there is a considerable phenotypic variability in WD, even in the presence of an identical genotype. The mutation c.3904-2A > G could be associated with this phenotypic variability in Mediterranean population, but further studies should be conducted. This condition could be explained by the intervention of modifier genes regulating copper metabolism in the presence of defective ATP7B protein function. Further investigations on their role by Next Generation Sequencing or Whole Exome Analysis might have a profound impact on patients' management and in particular on therapy.
Collapse
Affiliation(s)
- Annamaria Sapuppo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Piero Pavone
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Gaetano Bertino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Agata Fiumara
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Balashova MS, Tuluzanovskaya IG, Glotov OS, Glotov AS, Barbitoff YA, Fedyakov MA, Alaverdian DA, Ivashchenko TE, Romanova OV, Sarana AM, Scherbak SG, Baranov VS, Filimonov MI, Skalny AV, Zhuchenko NA, Ignatova TM, Asanov AY. The spectrum of pathogenic variants of the ATP7B gene in Wilson disease in the Russian Federation. J Trace Elem Med Biol 2020; 59:126420. [PMID: 31708252 DOI: 10.1016/j.jtemb.2019.126420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Wilson's disease (WD) is a rare inherited disorder caused by mutations in the ATP7B gene resulting in copper accumulation in different organs. However, data on ATP7B mutation spectrum in Russia and worldwide are insufficient and contradictory. The objective of the present study was estimation of the frequency of ATP7B gene mutations in the Russian population of WD patients. MATERIALS AND METHODS 75 WDpatients were examined by next-generation sequencing (NGS). A targeted panel NimbleGen SeqCap EZ Choice: 151012_HG38_CysFib_EZ_HX3 (ROCHE)was designed for analysis of ATP7B gene and possible modifier genes. Retrospective assessment of a diagnostic WD score (Leipzig, 2001) was also performed. RESULTS 31 mutations in ATP7B gene were detected. Two most frequent mutations were c.3207C > A (51,85% of alleles) and c.3190 G > A (8,64% of alleles). Single rare mutations were detected in 29% of cases. In 96% cases mutations of both copies of the ATP7B were revealed. We also observed 3 novel potentially pathogenic variants which were not previously described (c.1870-8A > G, c.3655A > T (p.Ile1219Phe), c.3036dupC (p.Lys1013fs). For 25% of patients at the time of the manifestation the diagnosis WD could not be established using the earlier proposed diagnostic score. There was a remarkable delay in diagnosis for the majority of patients. Only 33% of patients WD was diagnosed in three months after the first symptoms, 29%patients - in 3-12 months, 30% - in 1-10 years, in 8% - more than 10 years. Generally, clinical appearance of WD may be rather variable at manifestation and genetic profiling at this step is the only way to confirm the presence of WD.
Collapse
Affiliation(s)
- Mariya S Balashova
- Sechenov First Moscow State Medical University, Moscow, Russia; Center of Genetics and Reproductive Medicine «Genetico», Moscow, Russia.
| | | | - Oleg S Glotov
- D.O.Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia; St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | - Andrey S Glotov
- D.O.Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia; St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | - Yury A Barbitoff
- Saint Petersburg State University, St. Petersburg, Russia; Bioinformatics Institute, St. Petersburg, Russia
| | - Mikhail A Fedyakov
- St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | - Diana A Alaverdian
- St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia
| | - Tatiana E Ivashchenko
- D.O.Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia
| | - Olga V Romanova
- D.O.Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia; St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia
| | - Andrey M Sarana
- St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | - Sergey G Scherbak
- St.Petersburg State Health Care Establishment the City Hospital №40, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | - Vladislav S Baranov
- D.O.Ott Research Institute of Obstetrics, Gynecology and Reproductology, St. Petersburg, Russia; Saint Petersburg State University, St. Petersburg, Russia
| | | | - Anatoly V Skalny
- Sechenov First Moscow State Medical University, Moscow, Russia; Taipei Medical University, Taipei, Taiwan
| | | | - Tatiana M Ignatova
- Center of Endosurgery and Lithotripsy (CELT), Moscow, Russia; Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Aliy Y Asanov
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
12
|
Liu WL, Li F, Liu L, Chen W, He ZX, Gu H, Ai R. A novel gross deletion and breakpoint junction sequence analysis of ATP7B in a Chinese family with Wilson disease using next‑generation sequencing and Sanger sequencing. Mol Med Rep 2019; 21:517-523. [PMID: 31746411 PMCID: PMC6896306 DOI: 10.3892/mmr.2019.10830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/15/2019] [Indexed: 11/15/2022] Open
Abstract
Wilson disease (WD) is a rare autosomal recessive genetic disorder that causes abnormal copper metabolism, resulting in pathological accumulation of copper in the liver, brain and other organs. Mutations in the ATPase copper transporter 7B (ATP7B) gene, which encodes a membrane P-type adenosine triphosphatase, have been identified as being responsible for WD. The present study analyzed clinical data and collected DNA samples from a pediatric patient with WD and her healthy parents. Mutation screening for ATP7B was performed using direct sequencing, multiplex ligation-dependent probe amplification(MLPA), next-generation sequencing (NGS) and Sanger sequencing of the breakpoint junction sequence. The patient (age, 2.7 years) presented with early-onset hepatic disease. The present study identified compound heterozygous mutations of ATP7B, including a heterozygous mutation (p.Arg1,041Trp) and a novel heterozygous gross deletion of a 57,771 bp fragment (chr13: 52490972-52548742) (GRCh37) from partial exon2- exon21 to external ATP7B sequence (15.833bp) in the patient. Analysis of the family members of the patient showed that the missense mutation and the gross deletion mutation were inherited from her mother and father, respectively. Microhomology and inverted repeat sequences, which may mediate the deletion mutation, were identified through sequence analysis on both sides of the breakpoints of this deletion. The present study provided additional information on the genotypic spectrum of the ATP7B gene, particularly with regard to early onset hepatic disease, as observed in the present patient with WD. The identification of the precise breakpoint junction sequence warrants further investigation of DNA break and recombination mechanisms. In detecting precise deletions, the NGS associated with Sanger sequencing of breakpoint junction sequence have been found to have more advantages than MLPA.
Collapse
Affiliation(s)
- Wei-Liang Liu
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Fang Li
- Department of Ophthalmology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lu Liu
- Department of Ophthalmology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Wei Chen
- Department of Ophthalmology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zhi-Xu He
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hao Gu
- Department of Ophthalmology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Rong Ai
- Department of Pediatrics, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
13
|
Araújo CET, Oliveira CMC, Barbosa JD, Oliveira-Filho JP, Resende LAL, Badial PR, Araujo-Junior JP, McCue ME, Borges AS. A large intragenic deletion in the CLCN1 gene causes Hereditary Myotonia in pigs. Sci Rep 2019; 9:15632. [PMID: 31666547 PMCID: PMC6821760 DOI: 10.1038/s41598-019-51286-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations in the CLCN1 gene are the primary cause of non-dystrophic Hereditary Myotonia in several animal species. However, there are no reports of Hereditary Myotonia in pigs to date. Therefore, the objective of the present study was to characterize the clinical and molecular findings of Hereditary Myotonia in an inbred pedigree. The clinical, electromyographic, histopathological, and molecular findings were evaluated. Clinically affected pigs presented non-dystrophic recessive Hereditary Myotonia. Nucleotide sequence analysis of the entire coding region of the CLCN1 gene revealed the absence of the exons 15 and 16 in myotonic animals. Analysis of the genomic region flanking the deletion unveiled a large intragenic deletion of 4,165 nucleotides. Interestingly, non-related, non-myotonic pigs expressed transcriptional levels of an alternate transcript (i.e., X2) that was identical to the deleted X1 transcript of myotonic pigs. All myotonic pigs and their progenitors were homozygous recessive and heterozygous, respectively, for the 4,165-nucleotide deletion. This is the first study reporting Hereditary Myotonia in pigs and characterizing its clinical and molecular findings. Moreover, to the best of our knowledge, Hereditary Myotonia has never been associated with a genomic deletion in the CLCN1 gene in any other species.
Collapse
Affiliation(s)
- C E T Araújo
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil
| | - C M C Oliveira
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Campus Castanhal, PA, Brazil
| | - J D Barbosa
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Campus Castanhal, PA, Brazil
| | - J P Oliveira-Filho
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil
| | - L A L Resende
- São Paulo State University (UNESP), Medical School, Botucatu, Brazil
| | - P R Badial
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS, USA
| | - J P Araujo-Junior
- São Paulo State University (UNESP), Institute of Bioscience, Botucatu, Brazil
| | - M E McCue
- College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, 55108, USA
| | - A S Borges
- São Paulo State University (UNESP), School of Veterinary Medicine and Animal Science, Botucatu, São Paulo, Brazil.
| |
Collapse
|
14
|
Ferenci P, Stremmel W, Członkowska A, Szalay F, Viveiros A, Stättermayer AF, Bruha R, Houwen R, Pop TL, Stauber R, Gschwantler M, Pfeiffenberger J, Yurdaydin C, Aigner E, Steindl-Munda P, Dienes HP, Zoller H, Weiss KH. Age and Sex but Not ATP7B Genotype Effectively Influence the Clinical Phenotype of Wilson Disease. Hepatology 2019; 69:1464-1476. [PMID: 30232804 DOI: 10.1002/hep.30280] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/12/2018] [Indexed: 02/05/2023]
Abstract
Wilson disease (WD) is an inherited disorder of hepatic copper metabolism with considerable variation in clinical presentations, the most common ones being liver disease and neuropsychiatric disturbances. This study investigated the clinical presentation in relation to mutations in a large cohort of patients with WD. A total of 1,357 patients (702 children, 655 adults; 1,172 index patients, 185 siblings, all with a Leipzig score ≥4, male/female: 679/678) were studied. The age and the symptoms at presentation were used as key phenotypic markers. Index patients were clinically classified as having either hepatic (n = 711) or neurologic disease (n = 461). Seven hundred fifteen (52.7%) patients had a liver biopsy at diagnosis. DNA was sequenced by the Genetic Analyzers ABI Prism 310 (Perkin Elmer) or 3500 (Applied Biosystems). Three hundred ninety-four different mutation combinations were detected. The most frequent mutation was H1069Q (c.3207C>A; allele frequency: 46.9%), followed by P767P-fs (c.2304dupC; 2.85%), P1134P-fs (c.3402delC; 2.8%), and R969Q (c.2755C>T; 2.18%). There was no correlation between mutations and individual clinical manifestation. There was a gender effect in index patients: Hepatic presentation was more common in females (male/female: 328/383) and neurologic presentation in males (259/202; P < 0.001). At diagnosis, 39.5% of children/adolescents (≤18 years) and 58% of adults already had cirrhosis. The presence of cirrhosis did not correlate with the genotype. Conclusion: These findings refine and extend our understanding of the natural history and individual spectrum/manifestations of WD. Initially, there is asymptomatic hepatic involvement, which may progress and become symptomatic. Neurologic symptoms present many years later.
Collapse
Affiliation(s)
- Peter Ferenci
- Department of Internal Medicine III, Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, Medical University of Heidelberg, Heidelberg, Germany
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, and Department of Pharmacology, Medical University of Warsaw, Poland
| | - Ferenc Szalay
- First Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - André Viveiros
- First Department of Internal Medicine, Medical University Innsbruck, Austria
| | | | - Radan Bruha
- Fourth Medical Department, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Roderick Houwen
- Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands
| | - Tudor Lucian Pop
- Second Pediatric Clinic, University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, Romania
| | - Rudolf Stauber
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Jan Pfeiffenberger
- Department of Internal Medicine IV, Medical University of Heidelberg, Heidelberg, Germany
| | - Cihan Yurdaydin
- Department of Gastroenterology and Hepatology, Ankara University Medical School, Ankara, Turkey
| | - Elmar Aigner
- Department of Internal Medicine I, Paracelsus Medical University, Salzburg, Austria
| | - Petra Steindl-Munda
- Department of Internal Medicine III, Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Hans-Peter Dienes
- Department of Clinical Pathology, Medical University of Vienna, Austria
| | - Heinz Zoller
- First Department of Internal Medicine, Medical University Innsbruck, Austria
| | - Karl Heinz Weiss
- Department of Internal Medicine IV, Medical University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
15
|
Hu C, Zhao L, Duan J, Li L. Strategies to improve the efficiency of mesenchymal stem cell transplantation for reversal of liver fibrosis. J Cell Mol Med 2019; 23:1657-1670. [PMID: 30635966 PMCID: PMC6378173 DOI: 10.1111/jcmm.14115] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
End‐stage liver fibrosis frequently progresses to portal vein thrombosis, formation of oesophageal varices, hepatic encephalopathy, ascites, hepatocellular carcinoma and liver failure. Mesenchymal stem cells (MSCs), when transplanted in vivo, migrate into fibrogenic livers and then differentiate into hepatocyte‐like cells or fuse with hepatocytes to protect liver function. Moreover, they can produce various growth factors and cytokines with anti‐inflammatory effects to reverse the fibrotic state of the liver. In addition, only a small number of MSCs migrate to the injured tissue after cell transplantation; consequently, multiple studies have investigated effective strategies to improve the survival rate and activity of MSCs for the treatment of liver fibrosis. In this review, we intend to arrange and analyse the current evidence related to MSC transplantation in liver fibrosis, to summarize the detailed mechanisms of MSC transplantation for the reversal of liver fibrosis and to discuss new strategies for this treatment. Finally, and most importantly, we will identify the current problems with MSC‐based therapies to repair liver fibrosis that must be addressed in order to develop safer and more effective routes for MSC transplantation. In this way, it will soon be possible to significantly improve the therapeutic effects of MSC transplantation for liver regeneration, as well as enhance the quality of life and prolong the survival time of patients with liver fibrosis.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lingfei Zhao
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, Zhejiang, PR China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Jinfeng Duan
- The Key Laboratory of Mental Disorder Management of Zhejiang Province, Department of Psychiatry, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
16
|
Chen YC, Yu H, Wang RM, Xie JJ, Ni W, Zhang Y, Dong Y, Wu ZY. Contribution of intragenic deletions to mutation spectrum in Chinese patients with Wilson's disease and possible mechanism underlying ATP7B gross deletions. Parkinsonism Relat Disord 2019; 62:128-133. [PMID: 30655162 DOI: 10.1016/j.parkreldis.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism due to ATP7B pathogenic mutations. Disease manifestations can be prevented if early diagnosis and effective treatment are given. Direct sequencing is routinely used to confirm WD diagnosis, but cannot identify gross rearrangements. METHODS Sanger sequencing of ATP7B was performed in 142 newly recruited WD index patients. The clinical effects of identified variants were classified according to American College of Medical Genetics and Genomics (ACMG) standards and guidelines. Multiplex ligation-dependent probe amplification (MLPA) was performed in 168 WD cases with clinical WD unexplained by Sanger sequencing, selected from our total case series of 774 WD patients. After identifying gross rearrangements within ATP7B, the breakpoints were determined by long-range PCR and direct sequencing. RESULTS In the 142 WD patients, we identified 71 sequence alterations in ATP7B, of which 15 were novel; 14 of these were classified as 'pathogenic' or 'likely pathogenic', including 2 intronic variants affecting splice sites. In 6 of 168 WD patients, MLPA identified four heterozygous gross ATP7B deletions. One was a whole gene deletion, and three were intragenic deletions which were mapped to breakpoint locations, revealing non-homologous end joining. CONCLUSION Intragenic deletions are responsible for WD and non-homologous end joining could be the pathogenesis, therefore the detection of intragenic deletions should be included in comprehensive genetic testing for WD.
Collapse
Affiliation(s)
- Yu-Chao Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hao Yu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Rou-Min Wang
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan-Juan Xie
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang Ni
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Zhang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
17
|
Chen HI, Jagadeesh KA, Birgmeier J, Wenger AM, Guturu H, Schelley S, Bernstein JA, Bejerano G. An MTF1 binding site disrupted by a homozygous variant in the promoter of ATP7B likely causes Wilson Disease. Eur J Hum Genet 2018; 26:1810-1818. [PMID: 30087448 PMCID: PMC6244090 DOI: 10.1038/s41431-018-0221-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/09/2018] [Accepted: 06/26/2018] [Indexed: 12/16/2022] Open
Abstract
Approximately 2% of the human genome accounts for protein-coding genes, yet most known Mendelian disease-causing variants lie in exons or splice sites. Individuals who symptomatically present with monogenic disorders but do not possess function-altering variants in the protein-coding regions of causative genes may harbor variants in the surrounding gene regulatory domains. We present such a case: a male of Afghani descent was clinically diagnosed with Wilson Disease-a disorder of systemic copper buildup-but was found to have no function-altering coding variants in ATP7B (ENST00000242839.4), the typically causative gene. Our analysis revealed the homozygous variant chr13:g.52,586,149T>C (NC_000013.10, hg19) 676 bp into the ATP7B promoter, which disrupts a metal regulatory transcription factor 1 (MTF1) binding site and diminishes expression of ATP7B in response to copper intake, likely resulting in Wilson Disease. Our approach to identify the causative variant can be generalized to systematically discover function-altering non-coding variants underlying disease and motivates evaluation of gene regulatory variants.
Collapse
Affiliation(s)
- Heidi I Chen
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karthik A Jagadeesh
- Department of Computer Science, Stanford University School of Engineering, Stanford, CA, USA
| | - Johannes Birgmeier
- Department of Computer Science, Stanford University School of Engineering, Stanford, CA, USA
| | - Aaron M Wenger
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Harendra Guturu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Susan Schelley
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Gill Bejerano
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Computer Science, Stanford University School of Engineering, Stanford, CA, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
18
|
Potential Role of Brain-Derived Neurotrophic Factor and Dopamine Receptor D2 Gene Variants as Modifiers for the Susceptibility and Clinical Course of Wilson's Disease. Neuromolecular Med 2018; 20:401-408. [PMID: 29992511 DOI: 10.1007/s12017-018-8501-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/07/2018] [Indexed: 01/10/2023]
Abstract
Wilson's disease (WD), an inborn error of copper metabolism caused by mutations in the ATPase copper transporting beta (ATP7B) gene, manifests variable age of onset and different degrees of hepatic and neurological disturbances. This complex phenotypical outcome of a classical monogenic disease can possibly be explained by modifier loci regulating the clinical course of the disease. The brain-derived neurotropic factor (BDNF), critical for the survival, morphogenesis, and plasticity of the neurons, and the dopamine receptor D2 (DRD2), one of the most abundant dopamine receptors in the brain, have been highlighted in the pathophysiology of various neuropsychiatric diseases. This study aims to identify the potential association between BDNF and DRD2 gene polymorphisms and WD and its clinical characteristics. A total of 164 WD patients and 270 controls from India were included in this study. Two BDNF polymorphisms [p.Val66Met (c.G196A) and c.C270T] and the DRD2 Taq1A (A2/A1 or C/T) polymorphism were examined for their association with WD and some of its clinical attributes, using polymerase chain reaction, restriction fragment length digestion, and bidirectional sequencing. The C allele and CC genotype of BDNF C270T were significantly overrepresented among controls compared to WD patients. In addition, a significantly higher proportion of the allele coding for Val and the corresponding homozygous genotype of BDNF Val66Met polymorphism was found among WD patients with age of onset later than 10 years. Furthermore, the A1A1 genotype of DRD2 Taq1A polymorphism was significantly more common among WD patients with rigidity. Our data suggest that both BDNF and DRD2 may act as potential modifiers of WD phenotype in the Indian context.
Collapse
|
19
|
Liu G, Ma D, Cheng J, Zhang J, Luo C, Sun Y, Hu P, Wang Y, Jiang T, Xu Z. Identification and characterization of a novel 43-bp deletion mutation of the ATP7B gene in a Chinese patient with Wilson's disease: a case report. BMC MEDICAL GENETICS 2018; 19:61. [PMID: 29649982 PMCID: PMC5898064 DOI: 10.1186/s12881-018-0567-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/21/2018] [Indexed: 01/15/2023]
Abstract
Background Wilson’s disease (WD) is an autosomal recessive disorder characterized by copper accumulation. ATP7B gene mutations lead to ATP7B protein dysfunction, which in turn causes Wilson’s disease. Case presentation We describe a male case of Wilson’s disease diagnosed at 10 years after routine biochemical test that showed low serum ceruloplasmin levels and Kayser–Fleischer rings in both corneas. Analysis of the ATP7B gene revealed compound heterozygous mutations in the proband, including the reported c.3517G > A mutation and a novel c.532_574del mutation. The c.532_574del mutation covered a 43-bp region in exon 2, and resulted in a frameshift mutation (p.Leu178PhefsX10). By base sequence analysis, two microhomologies (TCTCA) were observed on both deletion breakpoints in the ATP7B gene. Meanwhile, the presence of some sequence motifs associated with DNA breakage near the deletion region promoted DNA strand break. Conclusions By comparison, a replication-based mechanism named fork stalling and template switching/ microhomology-mediated break-induced replication (FoSTeS/MMBIR) was used to explain the formation of this novel deletion mutation. Electronic supplementary material The online version of this article (10.1186/s12881-018-0567-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gang Liu
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No.123, Tianfeixiang, Mochou Road, Nanjing, 210004, Jiangsu Province, China
| | - Dingyuan Ma
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No.123, Tianfeixiang, Mochou Road, Nanjing, 210004, Jiangsu Province, China
| | - Jian Cheng
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No.123, Tianfeixiang, Mochou Road, Nanjing, 210004, Jiangsu Province, China
| | - Jingjing Zhang
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No.123, Tianfeixiang, Mochou Road, Nanjing, 210004, Jiangsu Province, China
| | - Chunyu Luo
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No.123, Tianfeixiang, Mochou Road, Nanjing, 210004, Jiangsu Province, China
| | - Yun Sun
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No.123, Tianfeixiang, Mochou Road, Nanjing, 210004, Jiangsu Province, China
| | - Ping Hu
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No.123, Tianfeixiang, Mochou Road, Nanjing, 210004, Jiangsu Province, China
| | - Yuguo Wang
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No.123, Tianfeixiang, Mochou Road, Nanjing, 210004, Jiangsu Province, China
| | - Tao Jiang
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No.123, Tianfeixiang, Mochou Road, Nanjing, 210004, Jiangsu Province, China.
| | - Zhengfeng Xu
- State key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, No.123, Tianfeixiang, Mochou Road, Nanjing, 210004, Jiangsu Province, China.
| |
Collapse
|