1
|
Sha T, Wang Z, Li J, Wu Y, Qiang J, Yang Z, Hu Y, Zheng K, Zhang S, Sun H, Whittaker AK, Yang B, Sun H, Lin Q, Shi C. One arrow two eagles: Multifunctional nano-system for macrophage reprogramming and osteoclastogenesis inhibition against inflammatory osteolysis. Mater Today Bio 2024; 29:101285. [PMID: 39435372 PMCID: PMC11492609 DOI: 10.1016/j.mtbio.2024.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Inflammatory osteolysis poses a significant worldwide threat to public health. However, current monotherapies, which target either the prevention of the inflammatory response or the attenuation of osteoclast (OC) formation, have limited efficacy due to the complexity of the bone immune system being overlooked. Herein, by means of modifying salmon calcitonin (sCT), a multifunctional nano-system (AuNDs-sCT) was designed to synergistically inhibit OC differentiation and reverse the inflammatory microenvironment against inflammatory osteolysis. On the one hand, AuNDs-sCT effectively restrained OC differentiation by binding to the calcitonin receptors on the surface of OC precursors, resulting in the down-regulation of OC-specific genes and proteins. The targeted capacity of AuNDs-sCT provided a more durable and precise therapeutic effect. On the other hand, AuNDs-sCT exhibited antioxidant and anti-inflammatory effects, which regulated the polarization "switch" from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype in macrophages by the inhibition of NF-κB p65 phosphorylation, thereby effectively reversed the local inflammatory microenvironment. Additionally, AuNDs-sCT served as a promising fluorescent probe, enabling real-time visualization of the therapeutic process. This capability is expected to optimize drug administration and evaluate therapeutic effects. In summary, by inhibiting OC differentiation and reprogramming macrophages, AuNDs-sCT successfully realized drug repurposing and achieved the "one arrow two eagles" therapeutic strategy, which offers a synergistic and effective treatment option for the clinical management of inflammatory osteolysis.
Collapse
Affiliation(s)
- Tong Sha
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jinwei Li
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Yahong Wu
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Jinbiao Qiang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Zhenming Yang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Yue Hu
- School and Hospital of Stomatology, China Medical University, Shenyang, PR China
| | - Kaijuan Zheng
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Shuyu Zhang
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Haizhu Sun
- Key Laboratory of Sustained and Advanced Functional Materials, College of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, 130021, PR China
| |
Collapse
|
2
|
Aguayo-Morales H, Sierra-Rivera CA, Claudio-Rizo JA, Cobos-Puc LE. Horsetail (Equisetum hyemale) Extract Accelerates Wound Healing in Diabetic Rats by Modulating IL-10 and MCP-1 Release and Collagen Synthesis. Pharmaceuticals (Basel) 2023; 16:ph16040514. [PMID: 37111271 PMCID: PMC10141616 DOI: 10.3390/ph16040514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Traditionally, Equisetum hyemale has been used for wound healing. However, its mechanism of action remains to be elucidated. For this purpose, a 40% ethanolic extract of E. hyemale was prepared. Phytochemical screening revealed the presence of minerals, sterols, phenolic acids, flavonols, a lignan, and a phenylpropenoid. The extract reduced the viability of RAW 264.7 cells and skin fibroblasts at all times evaluated. On the third day of treatment, this reduction was 30–40% and 15–40%, respectively. In contrast, the extract increased the proliferation of skin fibroblasts only after 48 h. In addition, the extract increased IL-10 release and inhibited MCP-1 release. However, the extract did not affect both TGF-β1 and TNF-α released by RAW 264.7 cells. The higher release of IL-10 could be related to the up-/downregulation of inflammatory pathways mediated by the extract components associated with their bioactivity. The extract inhibited the growth of Staphylococcus aureus and Escherichia coli. Topical application of the extract accelerated wound healing in diabetic rats by increasing fibroblast collagen synthesis. These results suggest that E. hyemale extract has great potential for use in the treatment of wounds thanks to its phytochemical composition that modulates cytokine secretion, collagen synthesis, and bacterial growth.
Collapse
Affiliation(s)
- Hilda Aguayo-Morales
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Crystel A. Sierra-Rivera
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Jesús A. Claudio-Rizo
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Luis E. Cobos-Puc
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| |
Collapse
|
3
|
Anti-Gastritis and Anti-Lung Injury Effects of Pine Tree Ethanol Extract Targeting Both NF-κB and AP-1 Pathways. Molecules 2021; 26:molecules26206275. [PMID: 34684856 PMCID: PMC8538959 DOI: 10.3390/molecules26206275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
An ethanol extract (Pd-EE) of Pinus densiflora Siebold and Zucc was derived from the branches of pine trees. According to the Donguibogam, pine resin has the effects of lowering the fever, reducing pain, and killing worms. The purpose of this study is to investigate whether Pd-EE has anti-inflammatory effects. During in vitro trials, NO production, as well as changes in the mRNA levels of inflammation-related genes and the phosphorylation levels of related proteins, were confirmed in RAW264.7 cells activated with lipopolysaccharide depending on the presence or absence of Pd-EE treatment. The activities of transcription factors were checked in HEK293T cells transfected with adapter molecules in the inflammatory pathway. The anti-inflammatory efficacy of Pd-EE was also estimated in vivo with acute gastritis and acute lung injury models. LC-MS analysis was conducted to identify the components of Pd-EE. This extract reduced the production of NO and the mRNA expression levels of iNOS, COX-2, and IL-6 in RAW264.7 cells. In addition, protein expression levels of p50 and p65 and phosphorylation levels of FRA1 were decreased. In the luciferase assay, the activities of NF-κB and AP-1 were lowered. In acute gastritis and acute lung injury models, Pd-EE suppressed inflammation, resulting in alleviated damage.
Collapse
|
4
|
Expression of NaV-1.7, TNF-α and HSP-70 in experimental flare-up post-extirpated dental pulp tissue through a neuroimmunological approach. Saudi Dent J 2020; 32:206-212. [PMID: 32405224 PMCID: PMC7211902 DOI: 10.1016/j.sdentj.2019.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Background Dental caries continue to represent a major problem which, if left untreated, will cause irreversible pulpitis. Root canal treatment constitutes one potential treatment intended to preserve teeth afflicted with irreversible pulpitis. During root canal treatment, pain or swelling, referred to as flare-ups, can occur at any point in the process. Aim To analyze the molecular aspect of the phenomenon of flare-up in vital dental pulp tissue following mechanical and bacterial trauma (extirpation and lipopolysaccharide [LPS] induction respectively) through a neurological approach, based on the expression of NaV-1.7 in neuron cells, and HSP-70, TNF-α in macrophage cells. Method This laboratory experimental study was conducted using 15 Spraque Dawley rats as subjects which were divided into three groups of five subjects: a control group, a pulp tissue extirpation group and an LPS induction followed by extirpation of pulp tissue group. Test samples were collected from the apical field of the mandibular incisor and subsequently examined using immunohistochemical methods. Results There were significant differences in NaV1.7, HSP70 and TNFα expression between the treatment groups. While a marked increase in the expression of HSP70 occurred, both Nav1.7, and TNFα expression decreased significantly. Conclusion Extirpating the dental pulp tissue will induce a more pronounced flare-up response from the molecules of the pulp tissue in vital teeth than those in inflamed vital pulp tissue.
Collapse
|
5
|
Adam GO, Kim GB, Lee SJ, Lee H, Kang HS, Kim SJ. Red Ginseng Reduces Inflammatory Response via Suppression MAPK/P38 Signaling and p65 Nuclear Proteins Translocation in Rats and Raw 264.7 Macrophage. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1589-1609. [PMID: 31645122 DOI: 10.1142/s0192415x19500812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lipopolysaccharides (LPS) cause systemic inflammatory responses, which are characterized by high mortality and multiple signs, including metabolic disturbances, respiratory acidosis, hypotension, and vital organs disorder. Cytokines secretion and oxidative stress are the main features of the disease. Diagnosis and treatment of systemic inflammation (SI) remain a challenge. Korean Red Ginseng (RG) is one of medicinal herbs that showed a potent anti-oxidant effect. We aimed to study the protective effects of RG on systemic inflammatory response in rats and RAW 264.7 macrophage cells induced by LPS. The rats were treated with water and alcohol extracts of RG for four weeks to prevent the inflammatory response. The result showed that LPS toxin increased morbidity and mortality, and induced liver, kidney, and lung injuries manifested by deteriorated biomarkers. Hypotension, hypomagnesemia, acidosis, and oxidative stress were observed in septic rats. However, RG extracts attenuated liver, kidney, and lung enzymes and metabolites in treated groups via its anti-inflammatory and anti-oxidant properties. Furthermore, RG improved magnesium and blood pressure in the treated groups. RAW 264.7 macrophage cells exposed to LPS disturbance in translocation of p65 and MAPK/p38. Nevertheless, RG-pretreated cells did not significantly alter. In conclusion, RG reduced the rates of mortality and morbidity of treated rats - liver, kidney, and lung injuries were protected in the treated groups through the potentiation of anti-oxidant defense. RG was able to conserve mitochondrial function, inhibiting the activation of MAPK/p38 signaling and suppressing NF-κB p65 cytoplasm-nucleus transport. Further studies are needed to examine the effects on chronic conditions in animal models and human.
Collapse
Affiliation(s)
- Gareeballah Osman Adam
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 79 Gobong-ro, Iksan-si, Jeollabuk-do 54596, Republic of Korea.,Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, P.O. Box No. 204, Hilat Kuku, Khartoum, Sudan
| | - Gi-Beum Kim
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 79 Gobong-ro, Iksan-si, Jeollabuk-do 54596, Republic of Korea
| | - Sei-Jin Lee
- Korea Basic Science Institute Jeonju Center, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Heeryung Lee
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 79 Gobong-ro, Iksan-si, Jeollabuk-do 54596, Republic of Korea.,Hansarang Animal Clinic, 27 Seongbuk-ro, Seoul 02880, Republic of Korea
| | - Hyung-Sub Kang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 79 Gobong-ro, Iksan-si, Jeollabuk-do 54596, Republic of Korea
| | - Shang-Jin Kim
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Chonbuk National University, Iksan Campus, 79 Gobong-ro, Iksan-si, Jeollabuk-do 54596, Republic of Korea
| |
Collapse
|
6
|
Chiu CF, Lai GY, Chen CH, Chiu CC, Hung SW, Chang CF. 6,7-Dihydroxy-2-(4'-hydroxyphenyl)naphthalene induces HCT116 cell apoptosis through activation of endoplasmic reticulum stress and the extrinsic apoptotic pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1609-1621. [PMID: 31190740 PMCID: PMC6512798 DOI: 10.2147/dddt.s193914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Colorectal cancer is the third leading cause of cancer-related deaths worldwide, and therefore, the development of novel drugs for its prevention and therapy are urgently required. This study aimed to determine the molecular mechanism of 6,7-dihydroxy-2-(4′-hydroxyphenyl) naphthalene (PNAP-6)-induced cytotoxicity in human colorectal cancer (HCT116) cells. Methods The effects of 2-phenylnaphthalene derivatives on HCT116 cell growth and viability were assessed by MTT assays. The mechanisms involved in the regulation of the extrinsic apoptosis and endoplasmic reticulum (ER) stress pathways by PNAP-6 were analyzed by annexin-V/propidium iodide flow cytometric analysis, Hoechst 33342 fluorescent staining, and Western blotting. Results PNAP-6 was shown to have an IC50 value 15.20 μM. It induced G2/M phase arrest in HCT116 cells, associated with a marked decrease in cyclin B and CDK1 protein expression and increased caspase activation, PARP cleavage, chromatin condensation, and sub-G1 apoptosis. Moreover, we found that the apoptotic effects of PNAP-6 proceeded through extrinsic apoptosis and ER stress pathways, by increasing the expression of Fas protein and ER stress markers, including PERK, ATF4, CHOP, p-IRE1α, and XBP-1s. Conclusion These results suggest that 2-phenylnaphthalene derivatives, such as PNAP-6, have potential as new treatments for colorectal cancer.
Collapse
Affiliation(s)
- Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Guan-Ying Lai
- Master Program for Pharmaceutical Manufacture, China Medical University, Taichung 40402, Taiwan
| | - Chung-Hwan Chen
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan.,Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Chao Chiu
- Division of Animal Industry, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan, Hsinchu 300, Taiwan
| | - Shao-Wen Hung
- Division of Animal Industry, Animal Technology Laboratories, Agricultural Technology Research Institute, Xiangshan, Hsinchu 300, Taiwan.,Nursing Department, Yuanpei University, Xiangshan, Hsinchu 300, Taiwan
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan,
| |
Collapse
|
7
|
Harikrishnan H, Jantan I, Haque MA, Kumolosasi E. Phyllanthin fromPhyllanthus amarusinhibits LPS-induced proinflammatory responses in U937 macrophages via downregulation of NF-κB/MAPK/PI3K-Akt signaling pathways. Phytother Res 2018; 32:2510-2519. [DOI: 10.1002/ptr.6190] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Hemavathy Harikrishnan
- Drug and Herbal Research Center, Faculty of Pharmacy; Universiti Kebangsaan Malaysia; Kuala Lumpur Malaysia
| | - Ibrahim Jantan
- School of Pharmacy; Taylor's University, Lakeside Campus; Subang Jaya Malaysia
| | - Md. Areeful Haque
- Drug and Herbal Research Center, Faculty of Pharmacy; Universiti Kebangsaan Malaysia; Kuala Lumpur Malaysia
| | - Endang Kumolosasi
- Drug and Herbal Research Center, Faculty of Pharmacy; Universiti Kebangsaan Malaysia; Kuala Lumpur Malaysia
| |
Collapse
|
8
|
Kang MC, Ham YM, Heo SJ, Yoon SA, Cho SH, Kwon SH, Jeong MS, Jeon YJ, Sanjeewa K, Yoon WJ, Kim KN. Anti-inflammation effects of 8-oxo-9-octadecenoic acid isolated from Undaria peterseniana in lipopolysaccharide-stimulated macrophage cells. EXCLI JOURNAL 2018; 17:775-783. [PMID: 30190667 PMCID: PMC6123615 DOI: 10.17179/excli2018-1422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/28/2018] [Indexed: 01/08/2023]
Abstract
The aim of this study was to investigate the anti-inflammatory activity of 8-oxo-9-octadecenoic acid (OOA) isolated from Undaria peterseniana by examining its ability to inhibit the lipopolysaccharide (LPS)-induced production of inflammatory mediators in RAW 264.7 macrophage cells. We found that OOA significantly suppressed the LPS-induced production of nitric oxide (NO) and inflammatory cytokines. OOA downregulated the LPS-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 proteins. With respect to proinflammatory signaling pathways, OOA inhibited LPS-induced mitogen-activated protein kinase signaling by inhibiting the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). Moreover, OOA inhibited LPS-induced nuclear factor (NF)-κB signaling by reducing the phosphorylation of IκB-α and p50 proteins. These results indicate that OOA significantly reduces proinflammatory signaling, which results in reduced expression of cytokines and proinflammatory mediators. Taken together, these results suggest that OOA has potent anti-inflammatory effects and could be considered an effective anti-inflammatory agent.
Collapse
Affiliation(s)
- Min-Cheol Kang
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Young-Min Ham
- Jeju Biodiversity Research Institute (JBRI), Jeju Technopark (JTP), Jeju 699-943, Republic of Korea
| | - Soo-Jin Heo
- Jeju International Marine Science Center for Research & Education, Korea Institute of Ocean Science & Technology (KIOST), Jeju 63349, Republic of Korea
| | - Seon-A Yoon
- Jeju Biodiversity Research Institute (JBRI), Jeju Technopark (JTP), Jeju 699-943, Republic of Korea
| | - Su-Hyeon Cho
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 200-701, Republic of Korea
| | - Seung-Hae Kwon
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 200-701, Republic of Korea
| | - Myeong Seon Jeong
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 200-701, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Kka Sanjeewa
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Weon-Jong Yoon
- Jeju Biodiversity Research Institute (JBRI), Jeju Technopark (JTP), Jeju 699-943, Republic of Korea
| | - Kil-Nam Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon 200-701, Republic of Korea
| |
Collapse
|
9
|
Huang CH, Chang LC, Hu S, Hsiao CY, Wu SJ. Spilanthol inhibits TNF‑α‑induced ICAM‑1 expression and pro‑inflammatory responses by inducing heme oxygenase‑1 expression and suppressing pJNK in HaCaT keratinocytes. Mol Med Rep 2018; 18:2987-2994. [PMID: 30015902 DOI: 10.3892/mmr.2018.9245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/31/2018] [Indexed: 11/06/2022] Open
Abstract
Spilanthol has been reported to possess antioxidant, anti‑inflammatory, antimicrobial and antinociceptive properties. At present, the literature has reported the beneficial role of spilanthol on tumor necrosis factor‑α (TNF‑α)‑stimulated HaCaT cells. The present study investigated the effects of spilanthol on the expression of TNF‑α‑induced intercellular adhesion molecule 1 (ICAM‑1) and cyclooxygenase (COX)‑2 in the human keratinocyte cell line HaCaT. Cells were pretreated with various concentrations of spilanthol (10‑150 µM) followed by TNF‑α to induce inflammation. Pretreatment with spilanthol decreased TNF‑α‑induced COX‑2 expression by western blotting and suppressed the expression of pro‑inflammatory mediators, including interleukin (IL)‑6, IL‑8 and monocyte chemotactic protein 1 using ELISA. Spilanthol also decreased the expression of TNF‑α‑induced ICAM‑1 protein and mRNA assay by western blotting and RT‑qPCR, respectively, in addition to the monocyte adhesiveness of HaCaT cells. Furthermore, spilanthol significantly suppressed the phosphorylation of c‑Jun N‑terminal kinase (JNK), while pretreatment with spilanthol enhanced heme oxygenase (HO)‑1 protein expression by western blotting. These results demonstrated that spilanthol may exert its anti‑inflammatory activity by suppressing the TNF‑α‑induced expression of ICAM‑1, COX‑2 and pro‑inflammatory mediators by enhancing that of HO‑1, and inhibiting the activation of the phosphorylated JNK signaling pathway. It is hypothesized that spilanthol may be a natural anti‑inflammatory drug to attenuate skin inflammatory disease.
Collapse
Affiliation(s)
- Chun-Hsun Huang
- Department of Cosmetic Science, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan R.O.C
| | - Li-Chun Chang
- Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan R.O.C
| | - Sindy Hu
- Department of Cosmetic Science, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan R.O.C
| | - Chien-Yu Hsiao
- Department of Dermatology, Aesthetic Medical Center, Chang Gung Memorial Hospital, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan R.O.C
| | - Shu-Ju Wu
- Department of Dermatology, Aesthetic Medical Center, Chang Gung Memorial Hospital, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan R.O.C
| |
Collapse
|
10
|
Daas SI, Rizeq BR, Nasrallah GK. Adipose tissue dysfunction in cancer cachexia. J Cell Physiol 2018; 234:13-22. [PMID: 30078199 DOI: 10.1002/jcp.26811] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
Cancer cachexia is a complex disorder that is driven by inflammation and metabolic imbalances, resulting in extreme weight loss. Adipose tissue, a main player in cancer cachexia, is an essential metabolic and secretory organ consisting of both white adipose tissue (WAT) and brown adipose tissue. Its secretory products, including adipokines and cytokines, affect a wide variety of central and peripheral organs, such as the skeletal muscle, brain, pancreas, and liver. Therefore, a combination of metabolic alterations, and systemic inflammation dysregulation of both anti-inflammatory and proinflammatory modulators contribute toward adipose tissue wasting in cancer cachexia. Growing evidence suggests that, during cancer cachexia, WAT undergoes a browning process, resulting in increased lipid mobilization and energy expenditure. In this review, we have summarized the characteristics of cancer cachexia and WAT browning. Furthermore, this review describes how adipose tissue becomes inflamed in cancer, shedding light on the combinatorial action of multiple secreted macromolecules, cytokines, hormones, and tumor mediators on adipose tissue dysfunction. We also highlight the inflammatory responses, energy utilization defects, and molecular mechanisms underlying the WAT dysfunction and browning in cancer cachexia. Further, the actual mechanisms behind the loss of adipose tissue are unknown, but have been attributed to increased adipocyte lipolysis, systemic inflammation, and apoptosis or reduced lipogenesis. The understanding of adipose tissue dysfunction in cancer cachexia will hopefully promote the development of new therapeutic approaches to prevent or treat this wasting syndrome.
Collapse
Affiliation(s)
- Sahar I Daas
- Department of Biomedical and Biological Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Reseach Branch, Sidra Medicine, Doha, Qatar
| | - Balsam R Rizeq
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|