1
|
Ruff EO, Lester SE. Leaving seafood on the table: Pilot pathways a missed opportunity for U.S. mariculture. MARINE POLICY 2024; 167:106282. [DOI: 10.1016/j.marpol.2024.106282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Reducing socio-ecological conflict using social influence modelling. Sci Rep 2022; 12:22002. [PMID: 36539554 PMCID: PMC9768146 DOI: 10.1038/s41598-022-26570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Polarisation of opinions across communities can lead to social conflict, reputational damage and the disruption of operations and markets. Social influence models have been widely used to better understand processes driving conflict from a theoretical perspective. Using aquaculture as a case study, we demonstrate how such models can be extended to accurately hindcast the transition from population consensus to high conflict, including observed catastrophic tipping points. We then use the model to quantitatively evaluate strategies aimed at reducing aquaculture conflict. We found that persuasive advocacy was ineffective and often counterproductive, whereas meaningful engagement, collaborative learning and improving scientific literacy targeted broadly across the population was effective in moderating opinions and reducing conflict. When such messaging was targeted too narrowly or too infrequently, it tended to be negated by ongoing exchange of misinformation within the population. Both the modelling approach and lessons on effective communication strategies are relevant to a broad range of environmental conflicts.
Collapse
|
3
|
Sugumaran A, Pandiyan R, Kandasamy P, Antoniraj MG, Navabshan I, Sakthivel B, Dharmaraj S, Chinnaiyan SK, Ashokkumar V, Ngamcharussrivichai C. Marine biome-derived secondary metabolites, a class of promising antineoplastic agents: A systematic review on their classification, mechanism of action and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155445. [PMID: 35490806 DOI: 10.1016/j.scitotenv.2022.155445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most deadly diseases on the planet. Over the past decades, numerous antineoplastic compounds have been discovered from natural resources such as medicinal plants and marine species as part of multiple drug discovery initiatives. Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have been identified as a rich source for novel cytotoxic compounds of different chemical forms. Despite the availability of enormous chemically enhanced new resources, the anticancer potential of marine flora and fauna has received little attention. Interestingly, numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs obtained from marine sources stimulated apoptotic signal transduction pathways in cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the sources of different cytotoxic secondary metabolites obtained from marine bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a comprehensive overview of the utilisation of numerous marine-derived cytotoxic compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). Finally, it also discusses the future prospects of marine-derived drug developments and their constraints.
Collapse
Affiliation(s)
- Abimanyu Sugumaran
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Rajesh Pandiyan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai 600073, India
| | - Palanivel Kandasamy
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension, Inselspital, University of Bern, Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mariya Gover Antoniraj
- Department of Clinical Biochemistry & Pharmacology, Faculty of Health Science, Ben-Gurion University of Negev, Israel
| | - Irfan Navabshan
- Crescent School of Pharmacy, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, India
| | | | - Selvakumar Dharmaraj
- Department of Marine Biotechnology, Academy of Maritime Education and Training [AMET] (Deemed to be University), Chennai 603112, Tamil Nadu, India
| | - Santhosh Kumar Chinnaiyan
- Department of Pharmaceutics, Srikrupa Institute of Pharmaceutical Sciences, Velikatta, Kondapak, Siddipet, Telangana State 502277, India.
| | - Veeramuthu Ashokkumar
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India; Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand.
| | - Chawalit Ngamcharussrivichai
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Pathum Wan, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Cai J, Leung P. Unlocking the potential of aquatic foods in global food security and nutrition: A missing piece under the lens of seafood liking index. GLOBAL FOOD SECURITY 2022. [DOI: 10.1016/j.gfs.2022.100641] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Krause G, Le Vay L, Buck BH, Costa-Pierce BA, Dewhurst T, Heasman KG, Nevejan N, Nielsen P, Nielsen KN, Park K, Schupp MF, Thomas JB, Troell M, Webb J, Wrange AL, Ziegler F, Strand Å. Prospects of Low Trophic Marine Aquaculture Contributing to Food Security in a Net Zero-Carbon World. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.875509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To limit compromising the integrity of the planet, a shift is needed towards food production with low environmental impacts and low carbon footprint. How to put such transformative change towards sustainable food production whilst ensuring food security into practice remains a challenge and will require transdisciplinary approaches. Combining expertise from natural- and social sciences as well as industry perspectives, an alternative vision for the future in the marine realm is proposed. This vision includes moving towards aquaculture mainly of low trophic marine (LTM) species. Such shift may enable a blue transformation that can support a sustainable blue economy. It includes a whole new perspective and proactive development of policy-making which considers, among others, the context-specific nature of allocation of marine space and societal acceptance of new developments, over and above the decarbonization of food production, vis á vis reducing regulatory barriers for the industry for LTM whilst acknowledging the complexities of upscaling and outscaling. This needs to be supported by transdisciplinary research co-produced with consumers and wider public, as a blue transformation towards accelerating LTM aquaculture opportunities in a net zero-carbon world can only occur by considering the demands of society.
Collapse
|
6
|
Pounds A, Kaminski AM, Budhathoki M, Gudbrandsen O, Kok B, Horn S, Malcorps W, Mamun AA, McGoohan A, Newton R, Ozretich R, Little DC. More Than Fish-Framing Aquatic Animals within Sustainable Food Systems. Foods 2022; 11:1413. [PMID: 35626983 PMCID: PMC9141230 DOI: 10.3390/foods11101413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Aquatic animals are diverse in terms of species, but also in terms of production systems, the people involved, and the benefits achieved. In this concept piece, we draw on literature to outline how the diversity of aquatic animals, their production, and their consumption all influence their impact within the food system. Built on evidence from an array of reductionist and non-reductionist literature, we suggest that food systems researchers and policymakers adapt current methods and theoretical frameworks to appropriately contextualise aquatic animals in broader food systems. We do this through combining current understandings of food systems theory, value chain, livelihoods, nutritional outcomes, and planetary boundaries thinking. We make several claims around understanding the role of aquatic animals in terms of nutritional output and environmental impacts. We suggest a need to consider: (1) the diversity of species and production methods; (2) variable definitions of an "edible yield"; (3) circular economy principles and the impacts of co-products, and effects beyond nutrient provision; (4) role of aquatic animals in the overall diet; (5) contextual effects of preservation, preparation, cooking, and consumer choices; (6) globalised nature of aquatic animal trade across the value chain; and (7) that aquatic animals are produced from a continuum, rather than a dichotomy, of aquaculture or fisheries. We conclude by proposing a new framework that involves cohesive interdisciplinary discussions around aquatic animal foods and their role in the broader food system.
Collapse
Affiliation(s)
- Alexandra Pounds
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Alexander M. Kaminski
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Mausam Budhathoki
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Oddrun Gudbrandsen
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway;
| | - Björn Kok
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Stephanie Horn
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Wesley Malcorps
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Abdullah-Al Mamun
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Amy McGoohan
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Richard Newton
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - Reed Ozretich
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| | - David C. Little
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (A.M.K.); (M.B.); (B.K.); (S.H.); (W.M.); (A.M.); (R.N.); (R.O.); (D.C.L.)
| |
Collapse
|
7
|
Froehlich HE, Gentry RR, Lester SE, Rennick M, Lemoine HR, Tapia-Lewin S, Gardner L. Piecing together the data of the U.S. marine aquaculture puzzle. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114623. [PMID: 35121466 DOI: 10.1016/j.jenvman.2022.114623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Aquaculture recently became the main source of global seafood production and many countries, including the United States, see potential in marine aquaculture to sustainably fill growing demand. The U.S. supports the majority of its seafood consumption through imports, and therefore identifying bottlenecks to domestic aquaculture growth is a priority at the federal and state level. Yet, one critical aspect that appears not yet addressed is the quality and accessibility of marine aquaculture data. In this study we conducted the first multi-state synthesis and comparison of the most comprehensive suite of species, volume, and value information on U.S. marine aquaculture over time, across the 23 marine coastal states. Using publicly available data sources from the U.S. Department of Agriculture (USDA), state-level solicited data that we aggregated, and data from the National Oceanic and Atmospheric Administration (NOAA), we found strong evidence that marine aquaculture has played an increasingly important role in marine coastal states, but also uncovered numerous data gaps and discrepancies between and within these sources. In particular, we found a dearth of volumetric data and millions in missing value (USD$). We found U.S. marine aquaculture is likely much more diverse, abundant and valuable than is currently reported, but the main sources of error in any given state remain unclear. We recommend U.S. state governments adopt a standardized, digital and annual data collection program, such as the NOAA Fisheries Information Networks. Better strategic aquaculture planning, management, and research depend on accurate data, and existing digital data infrastructures provide strong opportunities for improvement.
Collapse
Affiliation(s)
- Halley E Froehlich
- Environmental Studies, University of California, Santa Barbara, CA, 93106, USA; Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Rebecca R Gentry
- Department of Geography, Florida State University, Tallahassee, FL, 32306, USA
| | - Sarah E Lester
- Department of Geography, Florida State University, Tallahassee, FL, 32306, USA
| | - Mae Rennick
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Hayley R Lemoine
- Department of Geography, Florida State University, Tallahassee, FL, 32306, USA
| | - Sebastian Tapia-Lewin
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA
| | - Luke Gardner
- California Sea Grant, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92037, USA; Moss Landing Marine Laboratories, San Jose State University, San Jose, CA, 95039, USA
| |
Collapse
|
8
|
Global Seafood Trade: Insights in Sustainability Messaging and Claims of the Major Producing and Consuming Regions. SUSTAINABILITY 2021. [DOI: 10.3390/su132111720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seafood supply chains are complex, not least in the diverse origins of capture fisheries and through aquaculture production being increasingly shared across nations. The business-to-business (B2B) seafood trade is supported by seafood shows that facilitate networking and act as fora for signaling of perceptions and values. In the Global North, sustainability related certifications and messaging have emerged as an important driver to channel the demands of consumers, institutions, and lead firms. This study investigates which logos, certifications, and claims were presented at the exhibitor booths within five seafood trade shows in China, Europe, and USA. The results indicate a difference in the way seafood is advertised. Messaging at the Chinese shows had less of an emphasis on sustainability compared to that in Europe and the USA, but placed a greater emphasis on food safety and quality than on environmental concerns. These findings suggest cultural differences in the way seafood production and consumption is communicated through B2B messaging. Traders often act as choice editors for final consumers. Therefore, it is essential to convey production processes and sustainability issues between traders and the market. An understanding of culture, messaging strategies, and interpretation could support better communication of product characteristics such as sustainability between producers, traders, and consumers.
Collapse
|
9
|
Helgadóttir G, Renssen H, Olk TR, Oredalen TJ, Haraldsdóttir L, Skúlason S, Thorarensen HÞ. Wild and Farmed Arctic Charr as a Tourism Product in an Era of Climate Change. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.654117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The topic investigated is the social-ecological system of Arctic charr (Salvelinus alpinus) fishing and aquaculture as a tourism product in an era of climate change. Arctic charr is a resilient salmonid species that was traditionally an important part of the sustenance economy in Arctic and Subarctic communities as a source of fresh food throughout the year. Arctic charr populations have declined in recent years, in part due to climate change. These changes in the freshwater ecosystems in turn affect the cultural and economic traditions of freshwater fishing and consumption. This development has consequences for the tourism industry as hunting, fishing and consuming local and traditional food is important in branding tourism destinations. Fisheries are no longer the source of this important ingredient in the Nordic culinary tradition, instead aquaculture production supplies nearly all the Arctic charr consumed. In this paper, we pool the resources of an interdisciplinary team of scholars researching climate change, freshwater ecology, aquaculture and tourism. We integrate knowledge from these fields to discuss likely future scenarios for Arctic charr, their implications for transdisciplinary social ecosystem approaches to sustainable production, marketing and management, particularly how this relates to the growing industry of tourism in the Nordic Arctic and Subarctic region. We pose the questions whether Arctic Charr will be on the menu in 20 years and if so, where will it come from, and what consequences does that have for local food in tourism of the region? Our discussion starts with climate change and the question of how warm it is likely to get in the Nordic Arctic, particularly focusing on Iceland and Norway. To address the implications of the warming of lakes and rivers of the global north for Arctic charr we move on to a discussion of physiological and ecological factors that are important for the distribution of the species. We present the state of the art of Arctic charr aquaculture before articulating the importance of the species for marketing of local and regional food, particularly in the tourism market. Finally, we discuss the need for further elaboration of future scenarios for the interaction of the Arctic charr ecosystem and the economic trade in the species and draw conclusions about sustainable future development.
Collapse
|
10
|
Ridlon AD, Wasson K, Waters T, Adams J, Donatuto J, Fleener G, Froehlich H, Govender R, Kornbluth A, Lorda J, Peabody B, Pinchot IV G, Rumrill SS, Tobin E, Zabin CJ, Zacherl D, Grosholz ED. Conservation aquaculture as a tool for imperiled marine species: Evaluation of opportunities and risks for Olympia oysters, Ostrea lurida. PLoS One 2021; 16:e0252810. [PMID: 34153054 PMCID: PMC8216563 DOI: 10.1371/journal.pone.0252810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/21/2021] [Indexed: 11/24/2022] Open
Abstract
Conservation aquaculture is becoming an important tool to support the recovery of declining marine species and meet human needs. However, this tool comes with risks as well as rewards, which must be assessed to guide aquaculture activities and recovery efforts. Olympia oysters (Ostrea lurida) provide key ecosystem functions and services along the west coast of North America, but populations have declined to the point of local extinction in some estuaries. Here, we present a species-level, range-wide approach to strategically planning the use of aquaculture to promote recovery of Olympia oysters. We identified 12 benefits of culturing Olympia oysters, including identifying climate-resilient phenotypes that add diversity to growers’ portfolios. We also identified 11 key risks, including potential negative ecological and genetic consequences associated with the transfer of hatchery-raised oysters into wild populations. Informed by these trade-offs, we identified ten priority estuaries where aquaculture is most likely to benefit Olympia oyster recovery. The two highest scoring estuaries have isolated populations with extreme recruitment limitation—issues that can be addressed via aquaculture if hatchery capacity is expanded in priority areas. By integrating social criteria, we evaluated which project types would likely meet the goals of local stakeholders in each estuary. Community restoration was most broadly suited to the priority areas, with limited commercial aquaculture and no current community harvest of the species, although this is a future stakeholder goal. The framework we developed to evaluate aquaculture as a tool to support species recovery is transferable to other systems and species globally; we provide a guide to prioritizing local knowledge and developing recommendations for implementation by using transparent criteria. Our collaborative process engaging diverse stakeholders including managers, scientists, Indigenous Tribal representatives, and shellfish growers can be used elsewhere to seek win-win opportunities to expand conservation aquaculture where benefits are maximized for both people and imperiled species.
Collapse
Affiliation(s)
- April D. Ridlon
- Science for Nature and People Partnership and National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| | - Kerstin Wasson
- Elkhorn Slough National Estuarine Research Reserve, Watsonvile, California, United States of America
- Ecology and Evolutionary Biology University of California—Santa Cruz, Santa Cruz, California, United States of America
| | - Tiffany Waters
- Global Aquaculture, The Nature Conservancy, Arlington, Virginia, United States of America
| | - John Adams
- Sound Fresh Clams and Oysters, Shelton, Washington, United States of America
| | - Jamie Donatuto
- Community Environmental Health Program, Swinomish Indian Tribal Community, LaConner, Washington, United States of America
| | - Gary Fleener
- Research and Development, Hog Island Oyster Co., Marshall, California, United States of America
| | - Halley Froehlich
- Ecology, Evolution & Marine Biology and Environmental Studies, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Rhona Govender
- Species at Risk Program, Fisheries and Oceans Canada, British Columbia, Canada
| | - Aaron Kornbluth
- Officer, The Pew Charitable Trusts, Washington D.C., United States of America
| | - Julio Lorda
- Facultad de Ciencias, Universidad Autónoma de Baja California, Mexicali, Mexico
- Tijuana River National Estuarine Research Reserve, Imperial Beach, California, United States of America
| | - Betsy Peabody
- Puget Sound Restoration Fund, Bainbridge Island, Washington, United States of America
| | | | - Steven S. Rumrill
- Marine Resources Program, Oregon Department of Fish and Wildlife, Newport, Oregon, United States of America
| | - Elizabeth Tobin
- Natural Resources Department, Jamestown S’Klallam Tribe, Sequim, Washington, United States of America
| | - Chela J. Zabin
- Marine Invasions Research, Smithsonian Environmental Research Center, Belvedere Tiburon, California, United States of America
| | - Danielle Zacherl
- Department of Biological Science, California State University Fullerton, Fullerton, California, United States of America
| | - Edwin D. Grosholz
- Department of Environmental Science and Policy, University of California—Davis, Davis, California, United States of America
| |
Collapse
|
11
|
Belton B, Little DC, Zhang W, Edwards P, Skladany M, Thilsted SH. Farming fish in the sea will not nourish the world. Nat Commun 2020; 11:5804. [PMID: 33199697 PMCID: PMC7669870 DOI: 10.1038/s41467-020-19679-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022] Open
Abstract
Recent literature on marine fish farming brands it as potentially compatible with sustainable resource use, conservation, and human nutrition goals, and aligns with the emerging policy discourse of ‘blue growth’. We advance a two-pronged critique. First, contemporary narratives tend to overstate marine finfish aquaculture’s potential to deliver food security and environmental sustainability. Second, they often align with efforts to enclose maritime space that could facilitate its allocation to extractive industries and conservation interests and exclude fishers. Policies and investments that seek to increase the availability and accessibility of affordable and sustainable farmed aquatic foods should focus on freshwater aquaculture. Marine aquaculture is widely proposed as compatible with ocean sustainability, biodiversity conservation, and human nutrition goals. In this Perspective, Belton and colleagues dispute the empirical validity of such claims and contend that the potential of marine aquaculture has been much exaggerated.
Collapse
Affiliation(s)
- Ben Belton
- Department of Agricultural, Food and Resource Economics, Michigan State University, East Lansing, MI, USA. .,WorldFish, Bayan Lepas, Pulau Pinang, Malaysia.
| | - David C Little
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, UK
| | - Wenbo Zhang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Peter Edwards
- School of Environment, Resources and Development, Asian Institute of Technology, Khlong Luang, Pathum Thani, Thailand
| | - Michael Skladany
- Department of Criminology, Anthropology, and Sociology, Cleveland State University, Cleveland, OH, USA
| | | |
Collapse
|
12
|
|
13
|
Nogueira WV, de Oliveira FK, Garcia SDO, Sibaja KVM, Tesser MB, Garda Buffon J. Sources, quantification techniques, associated hazards, and control measures of mycotoxin contamination of aquafeed. Crit Rev Microbiol 2020; 46:26-37. [PMID: 32065532 DOI: 10.1080/1040841x.2020.1716681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
With the productive intensification of fish farming, the partial or total replacement of fishmeal by ingredients of plant origin became a reality within the feed industry, with the aim of reducing costs. However, this practice increased the impact of mycotoxin contamination. Studies have shown that mycotoxins can induce various disorders in fish, such as cellular and organic alterations, as well as impair functional and morphological development, and, in more severe cases, mortality. Thus, studies have been conducted to evaluate and develop strategies to prevent the formation of mycotoxins, as well as to induce their elimination, inactivation or reduction of their availability in feed.
Collapse
Affiliation(s)
- Wesclen Vilar Nogueira
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Francine Kerstner de Oliveira
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Sabrina de Oliveira Garcia
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Karen Vanessa Marimón Sibaja
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Marcelo Borges Tesser
- Aquatic Organism Nutrition Laboratory, Institute of Oceanography, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| | - Jaqueline Garda Buffon
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Sheehan EV, Bridger D, Nancollas SJ, Pittman SJ. PelagiCam: a novel underwater imaging system with computer vision for semi-automated monitoring of mobile marine fauna at offshore structures. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 192:11. [PMID: 31807930 DOI: 10.1007/s10661-019-7980-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Engineered structures in the open ocean are becoming more frequent with the expansion of the marine renewable energy industry and offshore marine aquaculture. Floating engineered structures function as artificial patch reefs providing novel and relatively stable habitat structure not otherwise available in the pelagic water column. The enhanced physical structure can increase local biodiversity and benefit fisheries yet can also facilitate the spread of invasive species. Clear evidence of any ecological consequences will inform the design and placement of structures to either minimise negative impacts or enhance ecosystem restoration. The development of rapid, cost-effective and reliable remote underwater monitoring methods is crucial to supporting evidence-based decision-making by planning authorities and developers when assessing environmental risks and benefits of offshore structures. A novel, un-baited midwater video system, PelagiCam, with motion-detection software (MotionMeerkat) for semi-automated monitoring of mobile marine fauna, was developed and tested on the UK's largest offshore rope-cultured mussel farm in Lyme Bay, southwest England. PelagiCam recorded Atlantic horse mackerel (Trachurus trachurus), garfish (Belone belone) and two species of jellyfish (Chrysaora hysoscella and Rhizostoma pulmo) in open water close to the floating farm structure. The software successfully distinguished video frames where fishes were present versus absent. The PelagiCam system provides a cost-effective remote monitoring tool to streamline biological data acquisition in impact assessments of offshore floating structures. With the rise of sophisticated artificial intelligence for object recognition, the integration of computer vision techniques should receive more attention in marine ecology and has great potential to revolutionise marine biological monitoring.
Collapse
Affiliation(s)
- Emma V Sheehan
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
| | - Danielle Bridger
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
| | - Sarah J Nancollas
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
- Department of Animal Science, University of California, Davis, CA, 95616, USA
| | - Simon J Pittman
- School of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
15
|
Weber CT, Syed S. Interdisciplinary optimism? Sentiment analysis of Twitter data. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190473. [PMID: 31417745 PMCID: PMC6689644 DOI: 10.1098/rsos.190473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Interdisciplinary research has faced many challenges, including institutional, cultural and practical ones, while it has also been reported as a 'career risk' and even 'career suicide' for researchers pursuing such an education and approach. Yet, the propagation of challenges and risks can easily lead to a feeling of anxiety and disempowerment in researchers, which we think is counterproductive to improving interdisciplinarity in practice. Therefore, in the search of 'bright spots', which are examples of cases in which people have had positive experiences with interdisciplinarity, this study assesses the perceptions of researchers on interdisciplinarity on the social media platform Twitter. The results of this study show researchers' many positive experiences and successes of interdisciplinarity, and, as such, document examples of bright spots. These bright spots can give reason for optimistic thinking, which can potentially have many benefits for researchers' well-being, creativity and innovation, and may also inspire and empower researchers to strive for and pursue interdisciplinarity in the future.
Collapse
Affiliation(s)
- Charlotte Teresa Weber
- Norwegian College of Fishery Science, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Shaheen Syed
- Department of Information and Computing Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Abstract
Aquaculture has been responsible for an impressive growth in the global supply of seafood. As of 2016, more than half of all global seafood production comes from aquaculture. To meet future global seafood demands, there is need and opportunity to expand marine aquaculture production in ways that are both socially and ecologically sustainable. This requires integrating biophysical, social, and engineering sciences. Such interdisciplinary research is difficult due to the complexity and multi-scale aspects of marine aquaculture and inherent challenges researchers face working across disciplines. To this end, we developed a framework based on Elinor Ostrom’s social–ecological system framework (SESF) to guide interdisciplinary research on marine aquaculture. We first present the framework and the social–ecological system variables relevant to research on marine aquaculture and then illustrate one application of this framework to interdisciplinary research underway in Maine, the largest producer of marine aquaculture products in the United States. We use the framework to compare oyster aquaculture in two study regions, with a focus on factors influencing the social and biophysical carrying capacity. We conclude that the flexibility provided by the SESF is well suited to inform interdisciplinary research on marine aquaculture, especially comparative, cross-case analysis.
Collapse
|
17
|
Alleway HK, Gillies CL, Bishop MJ, Gentry RR, Theuerkauf SJ, Jones R. The Ecosystem Services of Marine Aquaculture: Valuing Benefits to People and Nature. Bioscience 2018. [DOI: 10.1093/biosci/biy137] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Heidi K Alleway
- South Australian Government and the University of Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
18
|
SUBSTANTIATION OF HOT SMOKING PARAMETERS BASED ON SENSORY RESEARCHES IN HOT FISH MARINADES TECHNOLOGY IN THE JELLY POURING. EUREKA: LIFE SCIENCES 2017. [DOI: 10.21303/2504-5695.2017.00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Modern technologies of food products provide creation of healthy, tasty and safe products, characterized by high organoleptic properties, balance by main food factors and structural-mechanical parameters of a product.
The main technological process in the technology of fish marinades and a jelly pouring is the hot smoking. Technological parameters of the hot smoking have been scientifically grounded on the base of the statistical processing of data of sensory studies. Organoleptic assessment of semi-products after the thermal processing was carried out by 5-point system corresponding to the elaborated scale. The quantitative assessment of organoleptic parameters of the quality of experimental samples was determined by the totality of all assessment points, taking into account chosen weight coefficients depending on the importance degree of a given parameter at forming consumer qualities of a product. The generalizing quality parameter was calculated as a sum of assessments of organoleptic parameters – taste, consistence and appearance. Individual assessments of separated quality parameters of products (in points) were put in degustation lists and statistically processed by the averaging method.
The smoking process realization, according to scientifically grounded parameters allows to produce the new type of tasty, healthy and presentable culinary products of a perspective object of Ukrainian aquaculture – silver carp of a prolonged storage term.
Collapse
|
19
|
Gentry RR, Froehlich HE, Grimm D, Kareiva P, Parke M, Rust M, Gaines SD, Halpern BS. Mapping the global potential for marine aquaculture. Nat Ecol Evol 2017; 1:1317-1324. [DOI: 10.1038/s41559-017-0257-9] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/20/2017] [Indexed: 11/09/2022]
|