1
|
Gloria A, D'Amelio L, Contri A. Dextran is an effective alternative to egg yolk and glycerol in feline epididymal sperm cryopreservation. Theriogenology 2025; 237:156-165. [PMID: 40024018 DOI: 10.1016/j.theriogenology.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
The cryopreservation of epididymal spermatozoa is essential for conserving genetic material from endangered species of high-genetic value males suddenly die. The most effective extenders for cryopreservation contain glycerol and egg yolk as cryoprotective components, but variability in composition, contamination risks, and potential toxicity, make the need to find more effective and safe alternatives crucial. This study evaluated the effectiveness of dextran as a substitute for egg yolk and glycerol in feline epididymal sperm cryopreservation. Spermatozoa collected from 24 domestic tomcats after routine orchiectomy were pooled in 8 samples. Seven TRIS-based extenders were tested on these pools, containing dextran (10,000 or 40,000 MW) with varying glycerol concentrations (0 %, 2.5 %, or 5 %), compared to a conventional TRIS extender (20 % egg yolk, 5 % glycerol). Pre- and post-cryopreservation assessments included sperm kinetics (CASA), flow cytometric sperm integrity and function, and hyaluronan-binding ability. Dextran 10,000 MW extenders resulted in similar (in glycerol-free formulation) or improved (with glycerol) sperm quality compared to the control, with higher post-thaw total and progressive motility and cell function (P < 0.05). Dextran 40,000 MW did not result in a similar improvement. Dextran 10,000 MW is a promising alternative to egg yolk in feline sperm cryopreservation, reducing reliance on animal-derived components and glycerol. These findings support the development of safer, more standardised cryopreservation protocols, with potential applications in endangered felid conservation. Further studies are needed to refine dextran-based extenders for broader use.
Collapse
Affiliation(s)
- Alessia Gloria
- Department of Veterinary Medicine, University of Teramo, Località Piano D'Accio, 64100, Teramo, Italy.
| | - Luisa D'Amelio
- Department of Veterinary Medicine, University of Teramo, Località Piano D'Accio, 64100, Teramo, Italy.
| | - Alberto Contri
- Department of Veterinary Medicine, University of Teramo, Località Piano D'Accio, 64100, Teramo, Italy.
| |
Collapse
|
2
|
Murray A, Congdon TR, Tomás RMF, Kilbride P, Gibson MI. Red Blood Cell Cryopreservation with Minimal Post-Thaw Lysis Enabled by a Synergistic Combination of a Cryoprotecting Polyampholyte with DMSO/Trehalose. Biomacromolecules 2022; 23:467-477. [PMID: 34097399 PMCID: PMC7612374 DOI: 10.1021/acs.biomac.1c00599] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/24/2021] [Indexed: 12/16/2022]
Abstract
From trauma wards to chemotherapy, red blood cells are essential in modern medicine. Current methods to bank red blood cells typically use glycerol (40 wt %) as a cryoprotective agent. Although highly effective, the deglycerolization process, post-thaw, is time-consuming and results in some loss of red blood cells during the washing procedures. Here, we demonstrate that a polyampholyte, a macromolecular cryoprotectant, synergistically enhances ovine red blood cell cryopreservation in a mixed cryoprotectant system. Screening of DMSO and trehalose mixtures identified optimized conditions, where cytotoxicity was minimized but cryoprotective benefit maximized. Supplementation with polyampholyte allowed 97% post-thaw recovery (3% hemolysis), even under extremely challenging slow-freezing and -thawing conditions. Post-thaw washing of the cryoprotectants was tolerated by the cells, which is crucial for any application, and the optimized mixture could be applied directly to cells, causing no hemolysis after 1 h of exposure. The procedure was also scaled to use blood bags, showing utility on a scale relevant for application. Flow cytometry and adenosine triphosphate assays confirmed the integrity of the blood cells post-thaw. Microscopy confirmed intact red blood cells were recovered but with some shrinkage, suggesting that optimization of post-thaw washing could further improve this method. These results show that macromolecular cryoprotectants can provide synergistic benefit, alongside small molecule cryoprotectants, for the storage of essential cell types, as well as potential practical benefits in terms of processing/handling.
Collapse
Affiliation(s)
- Alex Murray
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Thomas R. Congdon
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Ruben M. F. Tomás
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| | - Peter Kilbride
- Asymptote, Cytiva, Chivers Way, Cambridge CB24 9BZ, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
3
|
Pogozhykh D, Eicke D, Gryshkov O, Wolkers WF, Schulze K, Guzmán CA, Blasczyk R, Figueiredo C. Towards Reduction or Substitution of Cytotoxic DMSO in Biobanking of Functional Bioengineered Megakaryocytes. Int J Mol Sci 2020; 21:ijms21207654. [PMID: 33081128 PMCID: PMC7589913 DOI: 10.3390/ijms21207654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022] Open
Abstract
Donor platelet transfusion is currently the only efficient treatment of life-threatening thrombocytopenia, but it is highly challenged by immunological, quality, and contamination issues, as well as short shelf life of the donor material. Ex vivo produced megakaryocytes and platelets represent a promising alternative strategy to the conventional platelet transfusion. However, practical implementation of such strategy demands availability of reliable biobanking techniques, which would permit eliminating continuous cell culture maintenance, ensure time for quality testing, enable stock management and logistics, as well as availability in a ready-to-use manner. At the same time, protocols applying DMSO-based cryopreservation media were associated with increased risks of adverse long-term side effects after patient use. Here, we show the possibility to develop cryopreservation techniques for iPSC-derived megakaryocytes under defined xeno-free conditions with significant reduction or complete elimination of DMSO. Comprehensive phenotypic and functional in vitro characterization of megakaryocytes has been performed before and after cryopreservation. Megakaryocytes cryopreserved DMSO-free, or using low DMSO concentrations, showed the capability to produce platelets in vivo after transfusion in a mouse model. These findings propose biobanking approaches essential for development of megakaryocyte-based replacement and regenerative therapies.
Collapse
Affiliation(s)
- Denys Pogozhykh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (D.E.); (R.B.)
- Correspondence: (D.P.); (C.F.)
| | - Dorothee Eicke
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (D.E.); (R.B.)
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz Universität Hannover, 30823 Garbsen, Germany;
| | - Willem F. Wolkers
- Unit for Reproductive Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (K.S.); (C.A.G.)
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (K.S.); (C.A.G.)
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (D.E.); (R.B.)
| | - Constança Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (D.E.); (R.B.)
- Correspondence: (D.P.); (C.F.)
| |
Collapse
|
4
|
Hon M, Thomovsky EJ, Brooks AC, Johnson PA. Cryopreservation of feline red blood cells in liquid nitrogen using glycerol and hydroxyethyl starch. J Feline Med Surg 2020; 22:366-375. [PMID: 31232153 PMCID: PMC10814660 DOI: 10.1177/1098612x19850932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The objective of this study was to evaluate the techniques and short-term effects of cryopreservation of feline red blood cells (RBCs) in liquid nitrogen using glycerol or hydroxyethyl starch (HES) as a cryoprotectant. METHODS Feline RBCs were manually mixed with either 20% glycerol or 12.5% HES and frozen for 24 h in liquid nitrogen. The samples were thawed and glycerolized samples were manually washed. Success of the freeze/thaw process was determined by recovery rate of RBCs and evaluation of morphological changes using scanning electron microscopy (SEM). A unit of canine packed RBCs was also subjected to the same methodology to evaluate the cryopreservation handling technique. RESULTS Feline RBCs preserved with 20% glycerol had a high recovery rate (94.23 ± 1.25%) immediately after thawing. However, the majority of the cells were lost during the washing process, with a final packed cell volume of <1%. A recovery rate was unable to be assessed for samples preserved with HES owing to the high viscosity of the mixture. SEM revealed significant morphological changes after glycerol was added to the feline RBCs. Although these morphological changes were partially reversed after thawing, the majority of the RBCs were lost during the washing process. Minimal morphological changes were noted in the HES sample. Similar results were noted with the canine RBCs. CONCLUSIONS AND RELEVANCE The described manual technique for cryopreservation using glycerol was not able to successfully preserve feline or canine RBCs. In the present study, it was difficult to make conclusions about the efficacy of HES. Further studies evaluating HES as a cryoprotectant are warranted.
Collapse
Affiliation(s)
- Marcelle Hon
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Elizabeth J Thomovsky
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Aimee C Brooks
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Paula A Johnson
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| |
Collapse
|
5
|
Awan M, Buriak I, Fleck R, Fuller B, Goltsev A, Kerby J, Lowdell M, Mericka P, Petrenko A, Petrenko Y, Rogulska O, Stolzing A, Stacey GN. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen Med 2020; 15:1463-1491. [PMID: 32342730 DOI: 10.2217/rme-2019-0145] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is the cryoprotectant of choice for most animal cell systems since the early history of cryopreservation. It has been used for decades in many thousands of cell transplants. These treatments would not have taken place without suitable sources of DMSO that enabled stable and safe storage of bone marrow and blood cells until needed for transfusion. Nevertheless, its effects on cell biology and apparent toxicity in patients have been an ongoing topic of debate, driving the search for less cytotoxic cryoprotectants. This review seeks to place the toxicity of DMSO in context of its effectiveness. It will also consider means of reducing its toxic effects, the alternatives to its use and their readiness for active use in clinical settings.
Collapse
Affiliation(s)
- Maooz Awan
- Institute for Liver & Digestive Health, UCL Division of Medicine, Royal Free Hospital, UCL, London, NW3 2PF, UK
| | - Iryna Buriak
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Roland Fleck
- Centre for Ultrastructural Imaging, Kings College London, London, SE1 1UL, UK
| | - Barry Fuller
- Department of Surgical Biotechnology, UCL Division of Surgery, Royal Free Hospital, UCL, London, NW3 2QG, UK
| | - Anatoliy Goltsev
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Julie Kerby
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Mark Lowdell
- Centre for Cell, Gene & Tissue Therapy, Royal Free London NHS FT & UCL, London, NW3 2PF, UK
| | - Pavel Mericka
- Tissue Bank, University Hospital Hradec Kralové, Czech Republic
| | - Alexander Petrenko
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Yuri Petrenko
- Department of Biomaterials & Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olena Rogulska
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Alexandra Stolzing
- University of Loughborough, Centre for Biological Engineering, Loughborough University, Holywell Park, Loughborough, UK
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Hertfordshire, SG8 8HZ
- Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, 25–2 Beishuan West, Haidan District, 100190 Beijing, China
- Institute of Stem Cells & Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|