1
|
Hiron A, Melet M, Guerry C, Dubois I, Rong V, Gilot P. Characterization of galactose catabolic pathways in Streptococcus agalactiae and identification of a major galactose: phosphotransferase importer. J Bacteriol 2024; 206:e0015524. [PMID: 39297619 PMCID: PMC11500514 DOI: 10.1128/jb.00155-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
We identified and characterized genomic regions of Streptococcus agalactiae that are involved in the Leloir and the tagatose-6-phosphate pathways for D-galactose catabolism. The accumulation of mutations in genes coding the Leloir pathway and the absence of these genes in a significant proportion of the strains suggest that this pathway may no longer be necessary for S. agalactiae and is heading toward extinction. In contrast, a genomic region containing genes coding for intermediates of the tagatose-6-phosphate pathway, a Gat family PTS transporter, and a DeoR/GlpR family regulator is present in the vast majority of strains. By deleting genes that code for intermediates of each of these two pathways in three selected strains, we demonstrated that the tagatose-6-phosphate pathway is their sole route for galactose catabolism. Furthermore, we showed that the Gat family PTS transporter acts as the primary importer of galactose in S. agalactiae. Finally, we proved that the DeoR/GlpR family regulator is a repressor of the tagatose-6-phosphate pathway and that galactose triggers the induction of this biochemical mechanism.IMPORTANCES. agalactiae, a significant pathogen for both humans and animals, encounters galactose and galactosylated components within its various ecological niches. We highlighted the capability of this bacterium to metabolize D-galactose and showed the role of the tagatose-6-phosphate pathway and of a PTS importer in this biochemical process. Since S. agalactiae relies on carbohydrate fermentation for energy production, its ability to uptake and metabolize D-galactose could enhance its persistence and its competitiveness within the microbiome.
Collapse
Affiliation(s)
- Aurelia Hiron
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Morgane Melet
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Capucine Guerry
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Ilona Dubois
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Vanessa Rong
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Philippe Gilot
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| |
Collapse
|
2
|
Goh KGK, Desai D, Thapa R, Prince D, Acharya D, Sullivan MJ, Ulett GC. An opportunistic pathogen under stress: how Group B Streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive. FEMS Microbiol Rev 2024; 48:fuae009. [PMID: 38678005 PMCID: PMC11098048 DOI: 10.1093/femsre/fuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia, and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarizes knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.
Collapse
Affiliation(s)
- Kelvin G K Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Ruby Thapa
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Darren Prince
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
3
|
Bourrel AS, Picart A, Fernandez JC, Hays C, Mignon V, Saubaméa B, Poyart C, Fouet A, Tazi A, Guignot J. Specific interaction between Group B Streptococcus CC17 hypervirulent clone and phagocytes. Infect Immun 2024; 92:e0006224. [PMID: 38514466 PMCID: PMC11003227 DOI: 10.1128/iai.00062-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Streptococcus agalactiae also named Group B Streptococcus (GBS) is the most significant pathogen causing invasive infections, such as bacteremia and meningitis, in neonates. Worldwide epidemiological studies have shown that a particular clonal complex (CC) of capsular serotype III, the CC17, is strongly associated with meningitis in neonates and is therefore, designated as the hypervirulent clone. Macrophages are a permissive niche for intracellular bacteria of all GBS clones. In this study, we deciphered the specific interaction of GBS CC17 strains with macrophages. Our study revealed that CC17 strains are phagocytosed at a higher rate than GBS non-CC17 strains by human monocytes and macrophages both in cellular models and in primary cells. CC17-enhanced phagocytosis is due to an initial enhanced-attachment step to macrophages mediated by the CC17-specific surface protein HvgA and the PI-2b pilus (Spb1). We showed that two different inhibitors of scavenger receptors (fucoidan and poly(I)) specifically inhibited CC17 adhesion and phagocytosis while not affecting those of non-CC17 strains. Once phagocytosed, both CC17 and non-CC17 strains remained in a LAMP-1 positive vacuole that ultimately fuses with lysosomes where they can survive at similar rates. Finally, both strains displayed a basal egress which occurs independently from actin and microtubule networks. Our findings provide new insights into the interplay between the hypervirulent GBS CC17 and major players of the host's innate immune response. This enhanced adhesion, leading to increased phagocytosis, could reflect a peculiar capacity of the CC17 lineage to subvert the host immune defenses, establish a niche for persistence or disseminate.
Collapse
Affiliation(s)
- Anne-Sophie Bourrel
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Amandine Picart
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | | | - Constantin Hays
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Virginie Mignon
- Plateforme PICMO, US25 INSERM, UAR3612 CNRS, Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Bruno Saubaméa
- Plateforme PICMO, US25 INSERM, UAR3612 CNRS, Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Claire Poyart
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
- Centre National de Référence des Streptocoques, Paris, France
| | - Agnès Fouet
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Asmaa Tazi
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
- Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
- Centre National de Référence des Streptocoques, Paris, France
| | - Julie Guignot
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| |
Collapse
|
4
|
Alzayer M, Alkhulaifi MM, Alyami A, Aldosary M, Alageel A, Garaween G, Shibl A, Al-Hamad AM, Doumith M. Molecular typing and antimicrobial resistance of group B Streptococcus clinical isolates in Saudi Arabia. J Glob Antimicrob Resist 2023; 35:244-251. [PMID: 37844802 DOI: 10.1016/j.jgar.2023.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVES Group B Streptococcus (GBS) has emerged as an important cause of severe infections in adults. However, limited data are available regarding the epidemiology of GBS in Saudi Arabia. METHODS Isolates were collected over a period of eight months from colonized (n = 104) and infected adults (n = 95). Serotypes and virulence determinants were detected by polymerase chain reactions (PCRs). Genetic relatedness was assessed using Multiple Locus Variable Number Tandem Repeat Analysis (MLVA). Antimicrobial susceptibilities were determined by disk diffusion. RESULTS Serotypes III and V (25% each) were the most prevalent, followed by serotypes II (16.18%), Ia (13.24%), VI (9.31%), and Ib (8.82%), while five isolates remained non-typeable (2.45%). Hypervirulent serotype III/CC17 clone (n = 21) accounted for 41.18% of the serotype III isolates. Most isolates (53.92%) harboured pilus island (PI) 1 and 2a types, while PI-2b was predominantly detected in the hypervirulent clone. Isolates were variably resistant to tetracycline (76.47%), erythromycin (36.76%), clindamycin (25.49%), and levofloxacin (6.37%), but remained susceptible to penicillin. Macrolide resistant isolates exhibited constitutive (55.42%) and inducible macrolide-lincosamide-streptogramin B resistance phenotypes (33.74%), while a few had L (9.64%) or M (1.2%) phenotypes. MLVA patterns of dominant serotypes III and V revealed 40 different types divided into 12 clusters and 28 singletons. Interestingly, macrolide resistance was significantly associated with two major MLVA types. CONCLUSIONS GBS isolates belonged predominantly to serotypes III and V, but there were no clear associations between serotypes and patient groups. The studied isolates exhibited high levels of resistance to erythromycin and clindamycin that need further surveillance.
Collapse
Affiliation(s)
- Maha Alzayer
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Alyami
- Pathology and Clinical Laboratory, Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammed Aldosary
- Pathology and Clinical Laboratory, Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulaziz Alageel
- Pathology and Clinical Laboratory, Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ghada Garaween
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Atef Shibl
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Arif M Al-Hamad
- Division of Clinical Microbiology, Pathology and Laboratory Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Michel Doumith
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Verma S, Kumari M, Pathak A, Yadav V, Johri AK, Yadav P. Antibiotic resistance, biofilm formation, and virulence genes of Streptococcus agalactiae serotypes of Indian origin. BMC Microbiol 2023; 23:176. [PMID: 37407919 DOI: 10.1186/s12866-023-02877-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/03/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) is a causative agent of various infections in newborns, immunocompromised (especially diabetic) non-pregnant adults, and pregnant women. Antibiotic resistance profiling can provide insights into the use of antibiotic prophylaxis against potential GBS infections. Virulence factors are responsible for host-bacteria interactions, pathogenesis, and biofilm development strategies. The aim of this study was to determine the biofilm formation capacity, presence of virulence genes, and antibiotic susceptibility patterns of clinical GBS isolates. RESULTS The resistance rate was highest for penicillin (27%; n = 8 strains) among all the tested antibiotics, which indicates the emergence of penicillin resistance among GBS strains. The susceptibility rate was highest for ofloxacin (93%; n = 28), followed by azithromycin (90%; n = 27). Most GBS strains (70%; n = 21) were strong biofilm producers and the rest (30%; n = 9) were moderate biofilm producers. The most common virulence genes were cylE (97%), pavA (97%), cfb (93%), and lmb (90%). There was a negative association between having a strong biofilm formation phenotype and penicillin susceptibility, according to Spearman's rank correlation analysis. CONCLUSION About a third of GBS strains exhibited penicillin resistance and there was a negative association between having a strong biofilm formation phenotype and penicillin susceptibility. Further, both the strong and moderate biofilm producers carried most of the virulence genes tested for, and the strong biofilm formation phenotype was not associated with the presence of any virulence genes.
Collapse
Affiliation(s)
- Shalini Verma
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Monika Kumari
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India
| | - Anurag Pathak
- Department of Statistics, Central University of Haryana, Mahendergarh, Haryana, India
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Puja Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India.
| |
Collapse
|
6
|
Burcham LR, Bath JR, Werlang CA, Lyon LM, Liu N, Evans C, Ribbeck K, Doran KS. Role of MUC5B during Group B Streptococcal Vaginal Colonization. mBio 2022; 13:e0003922. [PMID: 35323039 PMCID: PMC9040740 DOI: 10.1128/mbio.00039-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022] Open
Abstract
The female reproductive tract (FRT) is a complex environment, rich in mucin glycoproteins that form a dense network on the surface of the underlying epithelia. Group B Streptococcus (GBS) asymptomatically colonizes 25-30% of healthy women, but during pregnancy can cause ascending infection in utero or be transmitted to the newborn during birth to cause invasive disease. Though the cervicovaginal mucosa is a natural site for GBS colonization, the specific interactions between GBS and mucins remain unknown. Here we demonstrate for the first time that MUC5B interacts directly with GBS and promotes barrier function by inhibiting both bacterial attachment to human epithelial cells and ascension from the vagina to the uterus in a murine model of GBS colonization. RNA sequencing analysis of GBS exposed to MUC5B identified 128 differentially expressed GBS genes, including upregulation of the pilus island-2b (PI-2b) locus. We subsequently show that PI-2b is important for GBS attachment to reproductive cells, binding to immobilized mucins, and vaginal colonization in vivo. Our results suggest that while MUC5B plays an important role in host defense, GBS upregulates pili in response to mucins to help promote persistence within the vaginal tract, illustrating the dynamic interplay between pathogen and host. IMPORTANCE Mucin glycoproteins are a major component that contributes to the complexity of the female reproductive tract (FRT). Group B Streptococcus (GBS) is present in the FRT of 25-30% of healthy women, but during pregnancy can ascend to the uterus to cause preterm birth and fetal infection in utero. Here we show that a prominent mucin found in the FRT, MUC5B, promotes host defense by inhibiting GBS interaction with epithelial cells found in the FRT and ascension from the vagina to the uterus in vivo. In response to MUC5B, GBS induces the expression of surface expressed pili, which in turn contributes to GBS persistence within the vaginal lumen. These observations highlight the importance and complexity of GBS-mucin interactions that warrant further investigation.
Collapse
Affiliation(s)
- Lindsey R. Burcham
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jade R. Bath
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Caroline A. Werlang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Laurie M. Lyon
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Naoko Liu
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christopher Evans
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
7
|
Maeda T, Fukushima Y, Yoshida H, Goto M, Fujita T, Tsuyuki Y, Takahashi T. Biofilm production ability and associated characteristics of Streptococcus agalactiae isolates from companion animals and humans. J Infect Chemother 2021; 27:1571-1577. [PMID: 34217606 DOI: 10.1016/j.jiac.2021.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We evaluated biofilm production ability (BPA) of Streptococcus agalactiae isolates from companion animals/humans and clarified the relationship between BPA populations and other microbiological features. METHODS Companion animal-/human-origin isolates were collected with host information. We measured BPA using crystal violet staining, via virulence-associated gene profiling (hylB-pavA-pilB-spb1-srtC1-brpA), capsular genotyping, multilocus sequence typing, and antimicrobial resistance (AMR) phenotyping/genotyping. Significant difference in BPA of isolates from different hosts was assessed. We analyzed the association between BPA populations and the virulence genotypes, capsular genotypes, sequence types/clonal complexes, and AMR phenotypes/genotypes. Inhibitory effect of berberine on BPA was evaluated. RESULTS Five, twenty-six, and twenty-six isolates belonged to strong, moderate, and weak biofilm producers, whereas seventeen showed no biofilm production. We defined strong, moderate, or weak biofilm producers as the producer group (n = 57) to conduct a comparative analysis between the producer and non-producer populations. There was a significant correlation between the producer population and vaginal specimen. We found significant associations between the producer group and presence (57.9%) of pilB and between the non-producer population and presence (70.6%) of spb1. There was no association between the producer group and capsular genotypes, sequence types/clonal complexes, and AMR phenotypes/genotypes (except for a significant correlation between the producer group and AMR to minocycline). We confirmed inhibitory effect of berberine at sub-minimum inhibitory concentrations (MICs) against the type strain on BPA. CONCLUSION Our observations suggest that S. agalactiae harboring pilB is more capable of producing biofilms, with berberine inhibitory effect at sub-MICs on BPA.
Collapse
Affiliation(s)
- Takahiro Maeda
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yasuto Fukushima
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Haruno Yoshida
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Mieko Goto
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomohiro Fujita
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Department of Clinical Laboratory, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama, 364-8501, Japan
| | - Yuzo Tsuyuki
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Division of Clinical Laboratory, Sanritsu Zelkova Veterinary Laboratory, 3-5-5 Ogibashi, Koto-ku, Tokyo, 135-0011, Japan
| | - Takashi Takahashi
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
8
|
De Gaetano GV, Lentini G, Galbo R, Coppolino F, Famà A, Teti G, Beninati C. Invasion and trafficking of hypervirulent group B streptococci in polarized enterocytes. PLoS One 2021; 16:e0253242. [PMID: 34129624 PMCID: PMC8205152 DOI: 10.1371/journal.pone.0253242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022] Open
Abstract
Streptococcus agalactiae (group B streptococcus or GBS) is a commensal bacterium that can frequently behave as a pathogen, particularly in the neonatal period and in the elderly. The gut is a primary site of GBS colonization and a potential port of entry during neonatal infections caused by hypervirulent clonal complex 17 (CC17) strains. Here we studied the interactions between the prototypical CC17 BM110 strain and polarized enterocytes using the Caco-2 cell line. GBS could adhere to and invade these cells through their apical or basolateral surfaces. Basolateral invasion was considerably more efficient than apical invasion and predominated under conditions resulting in weakening of cell-to-cell junctions. Bacterial internalization occurred by a mechanism involving caveolae- and lipid raft-dependent endocytosis and actin re-organization, but not clathrin-dependent endocytosis. In the first steps of Caco-2 invasion, GBS colocalized with the early endocytic marker EEA-1, to later reside in acidic vacuoles. Taken together, these data suggest that CC17 GBS selectively adheres to the lateral surface of enterocytes from which it enters through caveolar lipid rafts using a classical, actin-dependent endocytic pathway. These data may be useful to develop alternative preventive strategies aimed at blocking GBS invasion of the intestinal barrier.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical Sciences, University of Messina, Messina, Italy
| | | | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
- Scylla Biotech Srl, Messina, Italy
- * E-mail:
| |
Collapse
|
9
|
Yoshida H, Goto M, Takahiro M, Fukushima Y, Fujita T, Tsuyuki Y, Takahashi T. Intracellular invasion ability of Streptococcus agalactiae among non-invasive isolates from human adults and companion animals in Japan. J Infect Chemother 2021; 27:999-1004. [PMID: 33663930 DOI: 10.1016/j.jiac.2021.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study evaluated the cell invasion ability (CIA) of Streptococcus agalactiae isolates from humans and companion animals and clarified the relationship between CIA populations and their microbiological features. METHODS Human-origin and companion animal-origin isolates were collected along with host information. We measured CIA using human-lineage colon cancer epithelium (Caco-2) and keratinocyte (HaCaT) cell lines, via virulence-associated gene profiling (bca-rib-bac-lmb-cylE-hylB-pavA-pilB-spb1-srtC1-brpA), capsular genotyping, multilocus sequence typing, and antimicrobial resistance (AMR) phenotyping/genotyping. Significant differences in data regarding CIA into epithelium and keratinocytes and those of isolates from different hosts were assessed. We analyzed the association of CIA populations with the virulence genotypes, capsular genotypes, sequence types/clonal complexes, and AMR phenotypes/genotypes. RESULTS A comparative analysis was performed between human (n = 15) and canine (n = 17) non-invasive isolates. There was a difference in CIA data between Caco-2 and HaCaT cells using human and animal isolates. For percent invasion ability into Caco-2 cells, we designated values ≥ 0.1 as high-frequency CIA and values < 0.1 as low-frequency CIA. Fourteen isolates harbored high-frequency and 18 isolates harbored low-frequency strains. There was no association between the high-frequency population and the virulence genotypes, capsular genotypes, sequence types/clonal complexes, and AMR phenotypes/genotypes. CONCLUSION This is the first report assessing the invasion ability of S. agalactiae into HaCaT and Caco-2 cells. Our observations suggest that S. agalactiae is more capable of entering Caco-2 rather than HaCaT.
Collapse
Affiliation(s)
- Haruno Yoshida
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Mieko Goto
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Maeda Takahiro
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yasuto Fukushima
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tomohiro Fujita
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Department of Clinical Laboratory, Kitasato University Medical Center, 6-100 Arai, Kitamoto, Saitama, 364-8501, Japan
| | - Yuzo Tsuyuki
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Division of Clinical Laboratory, Sanritsu Zelkova Veterinary Laboratory, 3-5-5 Ogibashi, Koto-ku, Tokyo, 135-0011, Japan
| | - Takashi Takahashi
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
10
|
Maeda T, Takayama Y, Fujita T, Taniyama D, Tsuyuki Y, Shibayama A, Goto M, Yoshida H, Takahashi T. Comparison between Invasive and Non-Invasive Streptococcus agalactiae Isolates from Human Adults, Based on Virulence Gene Profiles, Capsular Genotypes, Sequence Types, and Antimicrobial Resistance Patterns. Jpn J Infect Dis 2020; 74:316-324. [PMID: 33390429 DOI: 10.7883/yoken.jjid.2020.761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study assessed whether invasive group B Streptococcus (GBS) isolates were similar to non-invasive isolates from adult patients. Invasive and non-invasive GBS isolates were collected from three hospitals and two laboratory centers between January 2015 and October 2019. The isolates were identified by 16S rRNA amplicon sequencing and amplification of the GBS-specific dltS gene. The virulence gene profiles, capsular genotypes, sequence types (STs)/clonal complexes (CCs), and antimicrobial resistance (AMR) phenotypes/genotypes were determined for the 72 invasive and 50 non-invasive isolates that were comparatively analyzed. We observed a significantly decreased rate of rib detection in the invasive isolates compared to that in the non-invasive isolates (77.8% vs. 92.0%, P < 0.05). Additionally, we found significant differences in the prevalence of CC1 (23.6% vs. 46.0%, P < 0.05) and CC26 (12.5% vs. 2.0%, P < 0.05) between invasive and non-invasive populations. However, there were no significant differences in the comparative data of the virulence gene profiles, capsular genotypes, other STs/CCs, and AMR phenotypes/genotypes between the two populations. These findings suggest that both invasive and non-invasive isolates share similar features in terms of virulence gene profile, capsular genotype, ST/CC, and AMR genotype/phenotype (except for the rates of rib detection and CC1/CC26 prevalence).
Collapse
Affiliation(s)
- Takahiro Maeda
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Japan
| | - Yoshiko Takayama
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Japan.,Division of Clinical Laboratory, Byotai-Seiri Laboratory, Japan
| | - Tomohiro Fujita
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Japan.,Department of Clinical Laboratory, Kitasato University Medical Center, Japan
| | - Daisuke Taniyama
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Japan.,Department of General Internal Medicine, Tokyo Saiseikai Central Hospital, Japan
| | - Yuzo Tsuyuki
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Japan.,Division of Clinical Laboratory, Sanritsu Laboratory, Japan
| | - Akiyoshi Shibayama
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Japan.,Department of Clinical Laboratory, Mishuku Hospital, Federation of National Public Service Personnel Mutual Aid Associations, Japan
| | - Mieko Goto
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Japan
| | - Haruno Yoshida
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Japan
| | - Takashi Takahashi
- Laboratory of Infectious Diseases, Graduate School of Infection Control Sciences & Ōmura Satoshi Memorial Institute, Kitasato University, Japan
| |
Collapse
|
11
|
Pan-GWAS of Streptococcus agalactiae Highlights Lineage-Specific Genes Associated with Virulence and Niche Adaptation. mBio 2020; 11:mBio.00728-20. [PMID: 32518186 PMCID: PMC7373188 DOI: 10.1128/mbio.00728-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
GBS is a leading cause of mortality in newborn babies in high- and low-income countries worldwide. Different strains of GBS are characterized by different degrees of virulence, where some are harmlessly carried by humans or animals and others are much more likely to cause disease.
The genome sequences of almost 2,000 GBS samples isolated from both animals and humans in high- and low- income countries were analyzed using a pan-genome-wide association study approach. This allowed us to identify 279 genes which are associated with different lineages of GBS, characterized by a different virulence and preferred host. Additionally, we propose that the GBS now carried in humans may have first evolved in animals before expanding clonally once adapted to the human host.
These findings are essential to help understand what is causing GBS disease and how the bacteria have evolved and are transmitted. Streptococcus agalactiae (group B streptococcus; GBS) is a colonizer of the gastrointestinal and urogenital tracts, and an opportunistic pathogen of infants and adults. The worldwide population of GBS is characterized by clonal complexes (CCs) with different invasive potentials. CC17, for example, is a hypervirulent lineage commonly associated with neonatal sepsis and meningitis, while CC1 is less invasive in neonates and more commonly causes invasive disease in adults with comorbidities. The genetic basis of GBS virulence and the extent to which different CCs have adapted to different host environments remain uncertain. We have therefore applied a pan-genome-wide association study (GWAS) approach to 1,988 GBS strains isolated from different hosts and countries. Our analysis identified 279 CC-specific genes associated with virulence, disease, metabolism, and regulation of cellular mechanisms that may explain the differential virulence potential of particular CCs. In CC17 and CC23, for example, we have identified genes encoding pilus, quorum-sensing proteins, and proteins for the uptake of ions and micronutrients which are absent in less invasive lineages. Moreover, in CC17, carriage and disease strains were distinguished by the allelic variants of 21 of these CC-specific genes. Together our data highlight the lineage-specific basis of GBS niche adaptation and virulence. The genome sequences of almost 2,000 GBS samples isolated from both animals and humans in high- and low- income countries were analyzed using a pan-genome-wide association study approach. This allowed us to identify 279 genes which are associated with different lineages of GBS, characterized by a different virulence and preferred host. Additionally, we propose that the GBS now carried in humans may have first evolved in animals before expanding clonally once adapted to the human host. These findings are essential to help understand what is causing GBS disease and how the bacteria have evolved and are transmitted.
Collapse
|
12
|
Lannes-Costa PS, Baraúna RA, Ramos JN, Veras JFC, Conceição MVR, Vieira VV, de Mattos-Guaraldi AL, Ramos RTJ, Doran KS, Silva A, Nagao PE. Comparative genomic analysis and identification of pathogenicity islands of hypervirulent ST-17 Streptococcus agalactiae Brazilian strain. INFECTION GENETICS AND EVOLUTION 2020; 80:104195. [DOI: 10.1016/j.meegid.2020.104195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 11/29/2022]
|
13
|
Antibiotic Resistance and Molecular Epidemiological Characteristics of Streptococcus agalactiae Isolated from Pregnant Women in Guangzhou, South China. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2020; 2020:1368942. [PMID: 32399123 PMCID: PMC7210523 DOI: 10.1155/2020/1368942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/16/2020] [Accepted: 03/07/2020] [Indexed: 11/17/2022]
Abstract
Streptococcus agalactiae colonization in pregnant women can cause postpartum intrauterine infections and life-threatening neonatal infections. To formulate strategies for the prevention and treatment of S. agalactiae infections, we performed a comprehensive analysis of antibiotic resistance and a molecular-based epidemiological investigation of S. agalactiae in this study. Seventy-two S. agalactiae strains, collected from pregnant women, were subjected to antibiotic susceptibility tests; then, the screened erythromycin and clindamycin nonsusceptible isolates were used for macrolides and clindamycin resistance genes detection, respectively. Detection of resistance genes, serotyping, and determination of virulence genes were performed by polymerase chain reaction. The clonal relationships among the colonized strains were evaluated by multilocus sequence typing. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) mass peak analysis was performed to discriminate the specific sequence types (STs). In our study, 69.4% and 47.2% of the strains were nonsusceptible to erythromycin and clindamycin, respectively; the multidrug resistance rate was 66.7%. All erythromycin nonsusceptible strains harbored resistance genes, whereas only 52.9% of the clindamycin nonsusceptible strains possessed the linB gene. Erythromycin resistance was mainly mediated by the ermB or mefA/E genes. Four serotypes were identified, and the most common serotype was serotype III (52.8%), followed by Ib (22.2%), Ia (18.0%), and II (4.2%). All the strains were divided into 18 STs that were assigned to nine clonal complexes. Most of the major STs were distributed into specific serotypes, including ST19/serotype III, ST17/serotype III, ST485/serotype Ia, ST862/serotype III, and ST651/serotype III. Analysis of virulence genes yielded seven clusters, of which bca-cfb-scpB-lmb (61.6%) was the predominant virulence gene cluster. Among all ST strains distributed in this region, only the ST17 strains had a mass peak at 7620 Da. The outcomes of this study are beneficial for the epidemiological comparison of colonized S. agalactiae in different regions and may be helpful for developing the strategies for the prevention of S. agalactiae infection in Guangzhou. Furthermore, our results show that MALDI-TOF MS can be used for the rapid identification of the ST17 strains.
Collapse
|
14
|
Puopolo KM, Lynfield R, Cummings JJ, Hand I, Adams-Chapman I, Poindexter B, Stewart DL, Aucott SW, Goldsmith JP, Mowitz M, Watterberg K, Maldonado YA, Zaoutis TE, Banerjee R, Barnett ED, Campbell JD, Gerber JS, Kourtis AP, Munoz FM, Nolt D, Nyquist AC, O’Leary ST, Sawyer MH, Steinbach WJ, Zangwill K. Management of Infants at Risk for Group B Streptococcal Disease. Pediatrics 2019; 144:peds.2019-1881. [PMID: 31285392 DOI: 10.1542/peds.2019-1881] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Group B streptococcal (GBS) infection remains the most common cause of neonatal early-onset sepsis and a significant cause of late-onset sepsis among young infants. Administration of intrapartum antibiotic prophylaxis is the only currently available effective strategy for the prevention of perinatal GBS early-onset disease, and there is no effective approach for the prevention of late-onset disease. The American Academy of Pediatrics joins with the American College of Obstetricians and Gynecologists to reaffirm the use of universal antenatal microbiologic-based testing for the detection of maternal GBS colonization to facilitate appropriate administration of intrapartum antibiotic prophylaxis. The purpose of this clinical report is to provide neonatal clinicians with updated information regarding the epidemiology of GBS disease as well current recommendations for the evaluation of newborn infants at risk for GBS disease and for treatment of those with confirmed GBS infection. This clinical report is endorsed by the American College of Obstetricians and Gynecologists (ACOG), July 2019, and should be construed as ACOG clinical guidance.
Collapse
Affiliation(s)
- Karen M. Puopolo
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Ruth Lynfield
- Minnesota Department of Health, St Paul, Minnesota; and
| | - James J. Cummings
- Departments of Pediatrics and Bioethics, Alden March Bioethics Institute, Albany Medical College, Albany, New York
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Armistead B, Oler E, Adams Waldorf K, Rajagopal L. The Double Life of Group B Streptococcus: Asymptomatic Colonizer and Potent Pathogen. J Mol Biol 2019; 431:2914-2931. [PMID: 30711542 DOI: 10.1016/j.jmb.2019.01.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
Group B streptococcus (GBS) is a β-hemolytic gram-positive bacterium that colonizes the lower genital tract of approximately 18% of women globally as an asymptomatic member of the gastrointestinal and/or vaginal flora. If established in other host niches, however, GBS is highly pathogenic. During pregnancy, ascending GBS infection from the vagina to the intrauterine space is associated with preterm birth, stillbirth, and fetal injury. In addition, vertical transmission of GBS during or after birth results in life-threatening neonatal infections, including pneumonia, sepsis, and meningitis. Although the mechanisms by which GBS traffics from the lower genital tract to vulnerable host niches are not well understood, recent advances have revealed that many of the same bacterial factors that promote asymptomatic vaginal carriage also facilitate dissemination and virulence. Furthermore, highly pathogenic GBS strains have acquired unique factors that enhance survival in invasive niches. Several host factors also exist that either subdue GBS upon vaginal colonization or alternatively permit invasive infection. This review summarizes the GBS and host factors involved in GBS's state as both an asymptomatic colonizer and an invasive pathogen. Gaining a better understanding of these mechanisms is key to overcoming the challenges associated with vaccine development and identification of novel strategies to mitigate GBS virulence.
Collapse
Affiliation(s)
- Blair Armistead
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle 98101, WA, USA
| | - Elizabeth Oler
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle 98195, WA, USA
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle 98195, WA, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle 98109, WA, USA; Sahlgrenska Academy, Gothenburg University, Gothenburg 413 90, Sweden
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle 98101, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle 98195, WA, USA.
| |
Collapse
|
16
|
Causal role of group B Streptococcus-induced acute chorioamnionitis in intrauterine growth retardation and cerebral palsy-like impairments. J Dev Orig Health Dis 2019; 10:595-602. [PMID: 30626456 DOI: 10.1017/s2040174418001083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chorioamnionitis and intrauterine growth retardation (IUGR) are risk factors for cerebral palsy (CP). Common bacteria isolated in chorioamnionitis include group B Streptococcus (GBS) serotypes Ia and III. Little is known about the impact of placental inflammation induced by different bacteria, including different GBS strains. We aimed to test the impact of chorioamnionitis induced by two common GBS serotypes (GBSIa and GBSIII) on growth and neuromotor outcomes in the progeny. Dams were exposed at the end of gestation to either saline, inactivated GBSIa or GBSIII. Inactivated GBS bacteria invaded placentas and triggered a chorioamnionitis featured by massive polymorphonuclear cell infiltrations. Offspring exposed to GBSIII - but not to GBSIa - developed IUGR, persisting beyond adolescent age. Male rats in utero exposed to GBSIII traveled a lower distance in the Open Field test, which was correlating with their level of IUGR. GBSIII-exposed rats presented decreased startle responses to acoustic stimuli beyond adolescent age. GBS-exposed rats displayed a dysmyelinated white matter in the corpus callosum adjacent to thinner primary motor cortices. A decreased density of microglial cells was detected in the mature corpus callosum of GBSIII-exposed males - but not females - which was correlating positively with the primary motor cortex thickness. Altogether, our results demonstrate a causal link between pathogen-induced acute chorioamnionitis and (1) IUGR, (2) serotype- and sex-specific neuromotor impairments and (3) abnormal development of primary motor cortices, dysmyelinated white matter and decreased density of microglial cells.
Collapse
|
17
|
Insights into Streptococcus agalactiae PI-2b pilus biosynthesis and role in adherence to host cells. Microbes Infect 2018; 21:99-103. [PMID: 30419351 DOI: 10.1016/j.micinf.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 11/24/2022]
Abstract
The core PI-2b pilus present in "hypervirulent" ST-17 Streptococcus agalactiae strains consists of three pilin subunits (Spb1, Ap1 and Ap2) assembled by sortase SrtC1 and cell-wall anchored by Srt2. Spb1 was shown to be the major pilin and Ap2 the anchor pilin. Ap1 is a putative adhesin. Two additional genes, orf and lep, are part of this operon. The contribution of Lep and Ap1 to the biogenesis of the PI-2b pilus was investigated. Concerning the role of PI-2b, we found that higher PI-2b expression resulted in higher adherence to human brain endothelial cells and higher phagocytosis by human THP1 macrophages.
Collapse
|
18
|
Stable Expression of Modified Green Fluorescent Protein in Group B Streptococci To Enable Visualization in Experimental Systems. Appl Environ Microbiol 2018; 84:AEM.01262-18. [PMID: 30006391 DOI: 10.1128/aem.01262-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022] Open
Abstract
Group B streptococcus (GBS) is a Gram-positive bacterium associated with various diseases in humans and animals. Many studies have examined GBS physiology, virulence, and microbe-host interactions using diverse imaging approaches, including fluorescence microscopy. Strategies to label and visualize GBS using fluorescence biomarkers have been limited to antibody-based methods or nonspecific stains that bind DNA or protein; an effective plasmid-based system to label GBS with a fluorescence biomarker would represent a useful visualization tool. In this study, we developed and validated a green fluorescent protein (GFP)-variant-expressing plasmid, pGU2664, which can be applied as a marker to visualize GBS in experimental studies. The synthetic constitutively active CP25 promoter drives strong and stable expression of the GFPmut3 biomarker in GBS strains carrying pGU2664. GBS maintains GFPmut3 activity at different phases of growth. The application of fluorescence polarization enables easy discrimination of GBS GFPmut3 activity from the autofluorescence of culture media commonly used to grow GBS. Differential interference contrast microscopy, in combination with epifluorescence microscopy to detect GFPmut3 in GBS, enabled visualization of bacterial attachment to live human epithelial cells in real time. Plasmid pGU2664 was also used to visualize phenotypic differences in the adherence of wild-type GBS and an isogenic gene-deficient mutant strain lacking CovR (the control of virulence regulator) in adhesion assays. The system for GFPmut3 expression in GBS described in this study provides a new tool for the visualization of this organism in diverse research applications. We discuss the advantages and consider the limitations of this fluorescent biomarker system developed for GBS.IMPORTANCE Group B streptococcus (GBS) is a bacterium associated with various diseases in humans and animals. This study describes the development of a strategy to label and visualize GBS using a fluorescence biomarker, termed GFPmut3. We show that this biomarker can be successfully applied to track the growth of bacteria in liquid medium, and it enables the detailed visualization of GBS in the context of live human cells in real-time microscopic analysis. The system for GFPmut3 expression in GBS described in this study provides a new tool for the visualization of this organism in diverse research applications.
Collapse
|
19
|
Kolter J, Henneke P. Codevelopment of Microbiota and Innate Immunity and the Risk for Group B Streptococcal Disease. Front Immunol 2017; 8:1497. [PMID: 29209311 PMCID: PMC5701622 DOI: 10.3389/fimmu.2017.01497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of neonatal late-onset sepsis (LOD), which manifests between the third day and the third month of life, remains poorly understood. Group B Streptococcus (GBS) is the most important cause of LOD in infants without underlying diseases or prematurity and the third most frequent cause of meningitis in the Western world. On the other hand, GBS is a common intestinal colonizer in infants. Accordingly, despite its adaption to the human lower gastrointestinal tract, GBS has retained its potential virulence and its transition from a commensal to a dangerous pathogen is unpredictable in the individual. Several cellular innate immune mechanisms, in particular Toll-like receptors, the inflammasome and the cGAS pathway, are engaged by GBS effectors like nucleic acids. These are likely to impact on the GBS-specific host resistance. Given the long evolution of streptococci as a normal constituent of the human microbiota, the emergence of GBS as the dominant neonatal sepsis cause just about 50 years ago is remarkable. It appears that intensive usage of tetracycline starting in the 1940s has been a selection advantage for the currently dominant GBS clones with superior adhesive and invasive properties. The historical replacement of Group A by Group B streptococci as a leading neonatal pathogen and the higher frequency of other β-hemolytic streptococci in areas with low GBS prevalence suggests the existence of a confined streptococcal niche, where locally competing streptococcal species are subject to environmental and immunological selection pressure. Thus, it seems pivotal to resolve neonatal innate immunity at mucous surfaces and its impact on microbiome composition and quality, i.e., genetic heterogeneity and metabolism, at the microanatomical level. Then, designer pro- and prebiotics, such as attenuated strains of GBS, and oligonucleotide priming of mucosal immunity may unfold their potential and facilitate adaptation of potentially hazardous streptococci as part of a beneficial local microbiome, which is stabilized by mucocutaneous innate immunity.
Collapse
Affiliation(s)
- Julia Kolter
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Shabayek S, Spellerberg B. Acid Stress Response Mechanisms of Group B Streptococci. Front Cell Infect Microbiol 2017; 7:395. [PMID: 28936424 PMCID: PMC5594096 DOI: 10.3389/fcimb.2017.00395] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
Group B streptococcus (GBS) is a leading cause of neonatal mortality and morbidity in the United States and Europe. It is part of the vaginal microbiota in up to 30% of pregnant women and can be passed on to the newborn through perinatal transmission. GBS has the ability to survive in multiple different host niches. The pathophysiology of this bacterium reveals an outstanding ability to withstand varying pH fluctuations of the surrounding environments inside the human host. GBS host pathogen interations include colonization of the acidic vaginal mucosa, invasion of the neutral human blood or amniotic fluid, breaching of the blood brain barrier as well as survival within the acidic phagolysosomal compartment of macrophages. However, investigations on GBS responses to acid stress are limited. Technologies, such as whole genome sequencing, genome-wide transcription and proteome mapping facilitate large scale identification of genes and proteins. Mechanisms enabling GBS to cope with acid stress have mainly been studied through these techniques and are summarized in the current review
Collapse
Affiliation(s)
- Sarah Shabayek
- Institute of Medical Microbiology and Hygiene, University of UlmUlm, Germany.,Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal UniversityIsmailia, Egypt
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University of UlmUlm, Germany
| |
Collapse
|