1
|
Choi J, DiMaio D. Noncanonical Rab9a action supports retromer-mediated endosomal exit of human papillomavirus during virus entry. PLoS Pathog 2023; 19:e1011648. [PMID: 37703297 PMCID: PMC10519607 DOI: 10.1371/journal.ppat.1011648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/25/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Rab GTPases play key roles in controlling intracellular vesicular transport. GTP-bound Rab proteins support vesicle trafficking. Here, we report that, unlike cellular protein cargos, retromer-mediated delivery of human papillomaviruses (HPV) into the retrograde transport pathway during virus entry is inhibited by Rab9a in its GTP-bound form. Knockdown of Rab9a inhibits HPV entry by modulating the HPV-retromer interaction and impairing retromer-mediated endosome-to-Golgi transport of the incoming virus, resulting in the accumulation of HPV in the endosome. Rab9a is in proximity to HPV as early as 3.5 h post-infection, prior to the Rab7-HPV interaction, and HPV displays increased association with retromer in Rab9a knockdown cells, even in the presence of dominant negative Rab7. Thus, Rab9a can regulate HPV-retromer association independently of Rab7. Surprisingly, excess GTP-Rab9a impairs HPV entry, whereas excess GDP-Rab9a reduces association between L2 and Rab9a and stimulates entry. These findings reveal that HPV and cellular proteins utilize the Rab9a host trafficking machinery in distinct ways during intracellular trafficking.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Yale Cancer Center, New Haven, Connecticut, United States of America
| |
Collapse
|
2
|
Choi J, DiMaio D. Noncanonical Rab9a action supports endosomal exit of human papillomavirus during virus entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538937. [PMID: 37205481 PMCID: PMC10187250 DOI: 10.1101/2023.05.01.538937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rab GTPases play key roles in controlling intracellular vesicular transport. GTP-bound Rab proteins support vesicle trafficking. Here, we report that, unlike cellular protein cargos, the delivery of human papillomaviruses (HPV) into the retrograde transport pathway during virus entry is inhibited by Rab9a in its GTP-bound form. Knockdown of Rab9a hampers HPV entry by regulating the HPV-retromer interaction and impairing retromer-mediated endosome-to-Golgi transport of the incoming virus, resulting in the accumulation of HPV in the endosome. Rab9a is in proximity to HPV as early as 3.5 h post-infection, prior to the Rab7-HPV interaction. HPV displays increased association with retromer in Rab9a knockdown cells, even in the presence of dominant negative Rab7. Thus, Rab9a can regulate HPV-retromer association independently of Rab7. Surprisingly, excess GTP-Rab9a impairs HPV entry, whereas excess GDP-Rab9a stimulates entry. These findings reveal that HPV employs a trafficking mechanism distinct from that used by cellular proteins.
Collapse
|
3
|
Moolsuwan K, Permpoon T, Sae-Lee C, Uiprasertkul M, Boonyaratanakornkit V, Yenchitsomanus PT, Poungvarin N, Atchaneeyasakul LO. Dopachrome tautomerase is a retinoblastoma-specific gene, and its proximal promoter is preferentially active in human retinoblastoma cells. Mol Vis 2022; 28:192-202. [PMID: 36274817 PMCID: PMC9491246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/05/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Retinoblastoma (RB) is a malignant childhood intraocular tumor. Current treatment options for RB have undesirable side effects. A comprehensive understanding of gene expression in human RB is essential for the development of safe and effective new therapies. Methods We reviewed published microarray and RNA sequencing studies in which gene expression profiles were compared between human RB and normal retina tissues. We investigated the expression of genes of interest using quantitative reverse transcription PCR. We examined the activities of cloned promoter DNA fragments with luciferase assay. Results Dopachrome tautomerase (DCT) was among the most overexpressed genes in RB in published studies. We found that DCT was highly expressed in six of 13 samples microdissected from Thai RB tissues. Expression of DCT was absent or barely detected in retina tissues, various human ocular cells, and major organs. We also demonstrated that the -657 to +411 DCT promoter fragment efficiently directs RB cell-specific transcription of the luciferase reporter gene in cell lines. Conclusions The present work highlights that DCT is one of the most RB-specific genes. The regulatory elements required for this cell-specific gene expression are likely located within its proximal promoter.
Collapse
Affiliation(s)
- Kanya Moolsuwan
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tiravut Permpoon
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanachai Sae-Lee
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mongkol Uiprasertkul
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Pa-thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Naravat Poungvarin
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - La-ongsri Atchaneeyasakul
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Morante AV, Baboolal DD, Simon X, Pan ECY, Meneses PI. Human Papillomavirus Minor Capsid Protein L2 Mediates Intracellular Trafficking into and Passage beyond the Endoplasmic Reticulum. Microbiol Spectr 2022; 10:e0150522. [PMID: 35608352 PMCID: PMC9241893 DOI: 10.1128/spectrum.01505-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPVs) consist of two capsid proteins: major capsid protein L1 and minor capsid protein L2. The L2 protein has been shown to be involved in intracellular trafficking events that lead to the deposition of the viral DNA into the nucleus. In this study, we investigate the role of HPV16 L2 residues 43-DQILQ-47 during intracellular trafficking in human keratinocytes. We demonstrate that the highly conserved amino acids aspartic acid, isoleucine, and leucine are involved with the intracellular trafficking of the virus. Amino acid substitution of the isoleucine and leucine residues with alanine residues results in a significant decrease in infectivity of the pseudovirions without any changes to the binding or internalization of the virus. The pseudovirions containing these substitutions exhibit an altered trafficking pattern and do not deposit the viral pseudogenome into the nucleus. Instead, these mutated pseudovirions display a lack of interaction with syntaxin 18, an ER SNARE protein, are unable to progress past the endoplasmic reticulum (ER) and are redirected to the lysosomes. The results of this study help to elucidate the role and potential involvement of the 43-DQILQ-47 sequence during intracellular trafficking, specifically during trafficking beyond the ER. IMPORTANCE High-risk types of human papillomaviruses (HPVs), such as HPV16, are highly associated with cervical, anogenital, and oropharyngeal cancers. The minor capsid protein L2 is essential for the intracellular trafficking of the viral DNA to the nucleus. This study investigates the role of amino acid residues 43-DQILQ-47 of the HPV16 L2 protein in the intracellular trafficking of the virus. Understanding how the virus traffics through the cell is a key factor in the development of additional preventative antiviral therapies. This study illustrates, through modification of the 43-DQILQ-47 sequence in pseudovirions, the importance of the 43-DQILQ-47 sequence in the trafficking of the virus beyond the endoplasmic reticulum.
Collapse
Affiliation(s)
- Anthony V. Morante
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | | | - Xavier Simon
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | | | | |
Collapse
|
5
|
Crite M, DiMaio D. Human Papillomavirus L2 Capsid Protein Stabilizes γ-Secretase during Viral Infection. Viruses 2022; 14:804. [PMID: 35458534 PMCID: PMC9027364 DOI: 10.3390/v14040804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Intracellular trafficking of human papillomavirus (HPV) during virus entry requires γ-secretase, a cellular protease consisting of a complex of four cellular transmembrane (TM) proteins. γ-secretase typically cleaves substrate proteins but it plays a non-canonical role during HPV entry. γ-secretase binds to the HPV minor capsid protein L2 and facilitates its insertion into the endosomal membrane. After insertion, L2 protrudes into the cytoplasm, which allows HPV to bind other cellular factors required for proper virus trafficking into the retrograde transport pathway. Here, we further characterize the interaction between γ-secretase and HPV L2. We show that γ-secretase is required for cytoplasmic protrusion of L2 and that L2 associates strongly with the PS1 catalytic subunit of γ-secretase and stabilizes the γ-secretase complex. Mutational studies revealed that a putative TM domain in HPV16 L2 cannot be replaced by a foreign TM domain, that infectivity of HPV TM mutants is tightly correlated with γ-secretase binding and stabilization, and that the L2 TM domain is required for protrusion of the L2 protein into the cytoplasm. These results provide new insight into the interaction between γ-secretase and L2 and highlight the importance of the native HPV L2 TM domain for proper virus trafficking during entry.
Collapse
Affiliation(s)
- Mac Crite
- Department of Microbial Pathogenesis, Yale University, New Haven, CT 06511, USA;
| | - Daniel DiMaio
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
6
|
Yang K, Yang J, Zhou D, Zhu M, Du X, Zhou J, Liu S, Cheng Z. Interaction of p10/p27 with macrophage migration inhibitory factor promotes avian leukosis virus subgroup J infection. Vet Microbiol 2022; 267:109389. [DOI: 10.1016/j.vetmic.2022.109389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
|
7
|
Recent Advances in Our Understanding of the Infectious Entry Pathway of Human Papillomavirus Type 16. Microorganisms 2021; 9:microorganisms9102076. [PMID: 34683397 PMCID: PMC8540256 DOI: 10.3390/microorganisms9102076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Papillomaviruses are a diverse viral species, but several types such as HPV16 are given special attention due to their contribution towards the pathogenesis of several major cancers. In this review, we will summarize how the knowledge of HPV16 entry has expanded since the last comprehensive HPV16 entry review our lab published in 2017.
Collapse
|
8
|
Xie J, Zhang P, Crite M, Lindsay CV, DiMaio D. Retromer stabilizes transient membrane insertion of L2 capsid protein during retrograde entry of human papillomavirus. SCIENCE ADVANCES 2021; 7:eabh4276. [PMID: 34193420 PMCID: PMC11057781 DOI: 10.1126/sciadv.abh4276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Retromer, a cellular protein trafficking complex, sorts human papillomaviruses (HPVs) into the retrograde pathway for transport of HPV to the nucleus during virus entry. Here, we conducted a protein modulation screen to isolate four artificial transmembrane proteins called traptamers that inhibit different steps of HPV entry. By analyzing cells expressing pairs of traptamers, we ordered the trafficking steps during entry into a coherent pathway. One traptamer stimulates ubiquitination of the L2 capsid protein or associated proteins and diverts incoming virus to the lysosome, whereas the others act downstream by preventing sequential passage of the virus through retrograde compartments. Complex genetic interactions between traptamers revealed that a cell-penetrating peptide (CPP) on L2 mediates transient insertion of L2 into the endosome membrane, which is stabilized by retromer-L2 binding. These results define the retrograde entry route taken by HPV and show that retromer can play a role in CPP-mediated membrane insertion.
Collapse
Affiliation(s)
- Jian Xie
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005 USA
| | - Pengwei Zhang
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005 USA
| | - Mac Crite
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06519 USA
| | - Christina V Lindsay
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005 USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005 USA.
- Department of Therapeutic Radiology, Yale School of Medicine, PO Box 208040, New Haven, CT 06520-8040 USA
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, PO Box 208024, New Haven, CT 06520-8024 USA
- Yale Cancer Center, PO Box 208028, New Haven, CT 06520-8028 USA
| |
Collapse
|
9
|
Xie J, Zhang P, Crite M, DiMaio D. Papillomaviruses Go Retro. Pathogens 2020; 9:E267. [PMID: 32272661 PMCID: PMC7238053 DOI: 10.3390/pathogens9040267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Human papillomaviruses are important pathogens responsible for approximately 5% of cancer as well as other important human diseases, but many aspects of the papillomavirus life cycle are poorly understood. To undergo genome replication, HPV DNA must traffic from the cell surface to the nucleus. Recent findings have revolutionized our understanding of HPV entry, showing that it requires numerous cellular proteins and proceeds via a series of intracellular membrane-bound vesicles that comprise the retrograde transport pathway. This paper reviews the evidence supporting this unique entry mechanism with a focus on the crucial step by which the incoming virus particle is transferred from the endosome into the retrograde pathway. This new understanding provides novel insights into basic cellular biology and suggests novel rational approaches to inhibit HPV infection.
Collapse
Affiliation(s)
- Jian Xie
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA; (J.X.); (P.Z.)
| | - Pengwei Zhang
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA; (J.X.); (P.Z.)
| | - Mac Crite
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA;
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, P.O. Box 208005, New Haven, CT 06520-8005, USA; (J.X.); (P.Z.)
- Department of Therapeutic Radiology, Yale School of Medicine, P.O. Box 208040, New Haven, CT 06520-8040, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, P.O. Box 208024, New Haven, CT 06520-8024, USA
- Yale Cancer Center, P.O. Box 208028, New Haven, CT 06520-8028, USA
| |
Collapse
|
10
|
An Evolutionary Perspective of Dopachrome Tautomerase Enzymes in Metazoans. Genes (Basel) 2019; 10:genes10070495. [PMID: 31261784 PMCID: PMC6678240 DOI: 10.3390/genes10070495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022] Open
Abstract
Melanin plays a pivotal role in the cellular processes of several metazoans. The final step of the enzymically-regulated melanin biogenesis is the conversion of dopachrome into dihydroxyindoles, a reaction catalyzed by a class of enzymes called dopachrome tautomerases. We traced dopachrome tautomerase (DCT) and dopachrome converting enzyme (DCE) genes throughout metazoans and we could show that only one class is present in most of the phyla. While DCTs are typically found in deuterostomes, DCEs are present in several protostome phyla, including arthropods and mollusks. The respective DCEs belong to the yellow gene family, previously reported to be taxonomically restricted to insects, bacteria and fungi. Mining genomic and transcriptomic data of metazoans, we updated the distribution of DCE/yellow genes, demonstrating their presence and active expression in most of the lophotrochozoan phyla as well as in copepods (Crustacea). We have traced one intronless DCE/yellow gene through most of the analyzed lophotrochozoan genomes and we could show that it was subjected to genomic diversification in some species, while it is conserved in other species. DCE/yellow was expressed in most phyla, although it showed tissue specific expression patterns. In the parasitic copepod Mytilicola intestinalis DCE/yellow even belonged to the 100 most expressed genes. Both tissue specificity and high expression suggests that diverse functions of this gene family also evolved in other phyla apart from insects.
Collapse
|
11
|
Papillomaviruses and Endocytic Trafficking. Int J Mol Sci 2018; 19:ijms19092619. [PMID: 30181457 PMCID: PMC6163501 DOI: 10.3390/ijms19092619] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022] Open
Abstract
Endocytic trafficking plays a major role in transport of incoming human papillomavirus (HPVs) from plasma membrane to the trans Golgi network (TGN) and ultimately into the nucleus. During this infectious entry, several cellular sorting factors are recruited by the viral capsid protein L2, which plays a critical role in ensuring successful transport of the L2/viral DNA complex to the nucleus. Later in the infection cycle, two viral oncoproteins, E5 and E6, have also been shown to modulate different aspects of endocytic transport pathways. In this review, we highlight how HPV makes use of and perturbs normal endocytic transport pathways, firstly to achieve infectious virus entry, secondly to produce productive infection and the completion of the viral life cycle and, finally, on rare occasions, to bring about the development of malignancy.
Collapse
|
12
|
Dardente H, Lomet D. Photoperiod and thyroid hormone regulate expression of l-dopachrome tautomerase (Dct), a melanocyte stem-cell marker, in tanycytes of the ovine hypothalamus. J Neuroendocrinol 2018; 30:e12640. [PMID: 30129070 DOI: 10.1111/jne.12640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/16/2018] [Indexed: 12/16/2022]
Abstract
The pars tuberalis (PT) of the pituitary is central to the control of seasonal breeding. In mammals, the PT translates the photoperiodic message carried by melatonin into an endocrine thyroid-stimulating hormone output, which controls local thyroid hormone (TH) signalling in tanycytes of the neighbouring hypothalamus. In the present study, we identify l-dopachrome tautomerase (Dct) as a novel marker of ovine tanycytes and show that Dct displays marked seasonal variations in expression, with higher levels during spring and summer. This seasonal profile is photoperiod-dependent because an acute exposure to long days induces Dct expression. In addition, we find that TH also modulates Dct expression. DCT functions as an enzyme in the melanin synthesis pathway within skin melanocytes, whereas expression in other tissues is comparatively low. We demonstrate that both Tyr and Tyrp1, which are enzymes that intervene upstream and downstream of Dct in the melanin synthesis pathway, respectively, are expressed at very low levels in the ovine hypothalamus. This suggests that Dct in tanycytes may not be involved in melanin synthesis. We speculate that DCT function is linked to its protective role towards oxidative stress and/or its function in the control of neural progenitor cell proliferation.
Collapse
Affiliation(s)
- Hugues Dardente
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Didier Lomet
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| |
Collapse
|
13
|
Human Papillomavirus Major Capsid Protein L1 Remains Associated with the Incoming Viral Genome throughout the Entry Process. J Virol 2017; 91:JVI.00537-17. [PMID: 28566382 DOI: 10.1128/jvi.00537-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/24/2017] [Indexed: 12/30/2022] Open
Abstract
During infectious entry, acidification within the endosome triggers uncoating of the human papillomavirus (HPV) capsid, whereupon host cyclophilins facilitate the release of most of the major capsid protein, L1, from the minor capsid protein L2 and the viral genome. The L2/DNA complex traffics to the trans-Golgi network (TGN). After the onset of mitosis, HPV-harboring transport vesicles bud from the TGN, followed by association with mitotic chromosomes. During this time, the HPV genome remains in a vesicular compartment until the nucleus has completely reformed. Recent data suggest that while most of L1 protein dissociates and is degraded in the endosome, some L1 protein remains associated with the viral genome. The L1 protein has DNA binding activity, and the L2 protein has multiple domains capable of interacting with L1 capsomeres. In this study, we report that some L1 protein traffics with L2 and viral genome to the nucleus. The accompanying L1 protein is mostly full length and retains conformation-dependent epitopes, which are recognized by neutralizing antibodies. Since more than one L1 molecule contributes to these epitopes and requires assembly into capsomeres, we propose that L1 protein is present in the form of pentamers. Furthermore, we provide evidence that the L1 protein interacts directly with viral DNA within the capsid. Based on our findings, we propose that the L1 protein, likely arranged as capsomeres, stabilizes the viral genome within the subviral complex during intracellular trafficking.IMPORTANCE After internalization, the nonenveloped human papillomavirus virion uncoats in the endosome, whereupon conformational changes result in a dissociation of a subset of the major capsid protein L1 from the minor capsid protein L2, which remains in complex with the viral DNA. Recent data suggest that some L1 protein may accompany the viral genome beyond the endosomal compartment. We demonstrate that conformationally intact L1 protein, likely still arranged as capsomeres, remains associated with the incoming viral genome throughout mitosis and transiently resides in the nucleus until after the viral DNA is released from the transport vesicle.
Collapse
|