1
|
Han S, Li S, Li L, Li S. Genetic characterization of four bacteriophages of Salmonella enterica derived from different geographic regions in China via genomic comparison. Res Vet Sci 2025; 189:105608. [PMID: 40199046 DOI: 10.1016/j.rvsc.2025.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/27/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025]
Abstract
Based on the AT content > GC content in four Salmonella enterica lytic bacteriophage genomes, information entropy analysis revealed that overall nucleotide usage bias is shaped in the gene population. This genetic feature directly contributes to synonymous codons tending toward the A/T end rather than the C/G end. Furthermore, the interplay between the nucleotide composition constraint from the bacteriophage itself and the natural selection caused by outside environments forces our bacteriophages into similar evolutionary trends in terms of overall codon usage patterns. We identified the nucleotide composition constraint which plays an important role in shaping synonymous codon usage patterns including the keto skew at the first codon position, the pyrimidine skew at the second position and the AT skew at the third position. Although the four bacteriophages were isolated from different geographical regions in China, they display similar evolutionary trends in terms of genomic organization and synonymous codon usage, which are strongly influenced by the nucleotide composition constraint of the bacteriophage. The findings of the present study reveal important details of the evolutionary and host-pathogen interactions of Salmonella enterica, which will benefit the efficient utilization of phages for therapeutic and other applications.
Collapse
Affiliation(s)
- Shengyi Han
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China
| | - Shuping Li
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China
| | - Lingxia Li
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China; College of Agriculture and Animal Husbandry, Xining 810016, China.
| | - Shengqing Li
- Qinghai University, Xining 810016, China; College of Animal Science and Veterinary Science, Xining 810016, China.
| |
Collapse
|
2
|
Goloshchapov OV, Shchukina OB, Kusakin AV, Tsai VV, Kalinin RS, Eismont YA, Glotov OS, Chukhlovin AB. Next-Generation Sequencing-Based Monitoring of Intestinal Bacteria and Bacteriophages Following Fecal Microbiota Transplantation in Inflammatory Bowel Diseases. Pathogens 2023; 12:1438. [PMID: 38133321 PMCID: PMC10745900 DOI: 10.3390/pathogens12121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Inflammatory bowel diseases (IBD) and acute graft-versus-host disease (GVHD) are associated with persistent intestinal dysfunction preceded by gut bacterial dysbiosis. There are limited data on intestinal bacteriophages in these conditions. The aim of the present work was to detect associations between dominant intestinal bacteria by means of 16S rRNA gene sequencing, and some clinically significant viruses detected with a customized primer panel for NGS-based study. The clinical group included patients with Crohn's disease (IBD, n = 9), or GVHD (n = 6) subjected to fecal microbiota transplantation (FMT) from healthy donors. The stool specimens were taken initially, and 5 times post-FMT until day 120. Using NGS approach, we have found a higher abundance of Proteobacterota phylum in GVHD, especially, at later terms post-FMT. Moreover, we found an early increase of Klebsiella and E. coli/Shigella abundance in GVHD, along with decreased relative content of Faecalibacterium. Upon evaluation of intestinal phageome, the relative amount of Caudoviricetes class was higher in GVHD. A significant correlation was found between Proteobacteria and Caudoviricetes, thus suggesting their association during the post-FMT period. Moreover, the relative amounts of five Caudoviricetes phage species showed distinct correlations with Klebsiella and Enterococcus ratios at different terms of FMT. In conclusion, parallel use of 16S rRNA gene sequencing and targeted NGS viral panel is a feasible and useful option for tracing specific viral strains in fecal microbiota. The developed array of viral primers may be extended to detect other phages infecting the clinically relevant bacteria.
Collapse
Affiliation(s)
- Oleg V. Goloshchapov
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, 197022 St. Petersburg, Russia; (O.B.S.); (A.B.C.)
| | - Oksana B. Shchukina
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, 197022 St. Petersburg, Russia; (O.B.S.); (A.B.C.)
| | - Aleksey V. Kusakin
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia; (A.V.K.); (R.S.K.); (Y.A.E.); (O.S.G.)
| | | | - Roman S. Kalinin
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia; (A.V.K.); (R.S.K.); (Y.A.E.); (O.S.G.)
- Serbalab Laboratory, 199106 St. Petersburg, Russia;
| | - Yury A. Eismont
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia; (A.V.K.); (R.S.K.); (Y.A.E.); (O.S.G.)
- Serbalab Laboratory, 199106 St. Petersburg, Russia;
| | - Oleg S. Glotov
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia; (A.V.K.); (R.S.K.); (Y.A.E.); (O.S.G.)
| | - Alexei B. Chukhlovin
- R.M. Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, 197022 St. Petersburg, Russia; (O.B.S.); (A.B.C.)
| |
Collapse
|
3
|
Choi J, Chang Y. Complete Genome Sequence of Bacteriophage EO1, Which Infects Both Escherichia coli O157:H7 and Shigella. Microbiol Resour Announc 2023:e0017723. [PMID: 37184395 DOI: 10.1128/mra.00177-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The lytic bacteriophage EO1 has been newly isolated. This phage infects Escherichia coli O157:H7 and has a broad antibacterial spectrum, including against Shigella. The complete genome sequence of phage EO1 was determined; its full length is 166,941 bp, and it has a G+C content of 35.46%.
Collapse
Affiliation(s)
- Jieun Choi
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, Republic of Korea
| | - Yoonjee Chang
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
4
|
De Sousa Violante M, Michel V, Romero K, Bonifait L, Baugé L, Perrin-Guyomard A, Feurer C, Radomski N, Mallet L, Mistou MY, Cadel-Six S. Tell me if you prefer bovine or poultry sectors and I'll tell you who you are: Characterization of Salmonella enterica subsp. enterica serovar Mbandaka in France. Front Microbiol 2023; 14:1130891. [PMID: 37089562 PMCID: PMC10116068 DOI: 10.3389/fmicb.2023.1130891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction In north-western France, Salmonella enterica susp. enterica serovar Mbandaka (S. Mbandaka) is most frequently isolated from bovine and dairy samples. While this serovar most often results in asymptomatic carriage, for a number of years it has caused episodes of abortions, which have serious economic consequences for the sector. Interestingly, this serovar is also isolated from Gallus gallus in the same geographic zone. Despite its prevalence in bovines in north-western France, S. Mbandaka has not been broadly studied at the genomic level, and its prevalence and host adaptation are still not fully understood. Methods In this study, we analyzed the genomic diversity of 304 strains of S. Mbandaka isolated from the bovine and poultry sectors in this area over a period of 5 years. A phylogenetic analysis was carried out and two approaches were followed to identify conserved genes and mutations related to host associations. The first approach targeted the genes compiled in the MEGARESv2, Resfinder, VFDB and SPI databases. Plasmid and phage contents were also investigated. The second approach refers to an in-house algorithm developed for this study that computes sensitivity, specificity, and accuracy of accessory genes and core variants according to predefined genomes groups. Results and discussion All the analyzed strains belong to the multi-locus sequence type profile ST413, and the phylogenomic analysis revealed main clustering by host (bovine and poultry), emphasizing the circulation of 12 different major clones, of which seven circulate in poultry and five in the bovine sector in France and a likely food production chain adaptation of these clones. All strains present resistance determinants including heavy metals and biocides that could explain the ability of this serovar to survive and persist in the environment, within herds, and in food processing plants. To explore the wild animal contribution to the spread of this serovar in north-western France, we retrieved S. Mbandaka genomes isolated from wild birds from EnteroBase and included them in the phylogenomic analysis together with our collection. Lastly, screening of accessory genes and major variants allowed us to identify conserved specific mutations characteristic of each major cluster. These mutations could be used to design useful probes for food safety surveillance.
Collapse
Affiliation(s)
| | | | - Karol Romero
- Salmonella and Listeria Unit (SEL), ANSES, Laboratory for Food Safety, Maisons-Alfort, France
| | - Laetitia Bonifait
- Hygiene and Quality of Poultry and Pork Products Unit, ANSES, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Louise Baugé
- Hygiene and Quality of Poultry and Pork Products Unit, ANSES, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Agnès Perrin-Guyomard
- ANSES, Fougères Laboratory, National Reference Laboratory for Antimicrobial Resistance, Fougères, France
| | | | - Nicolas Radomski
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale” (IZSAM), National Reference Centre (NRC) for Whole Genome Sequencing of Microbial Pathogens: Data-Base and Bioinformatics Analysis (GENPAT), Teramo, Italy
| | - Ludovic Mallet
- Institut Universitaire du Cancer de Toulouse–Oncopole, Toulouse, France
| | | | - Sabrina Cadel-Six
- Salmonella and Listeria Unit (SEL), ANSES, Laboratory for Food Safety, Maisons-Alfort, France
- *Correspondence: Sabrina Cadel-Six,
| |
Collapse
|
5
|
Lee W, Kim E, Zin H, Sung S, Woo J, Lee MJ, Yang SM, Kim SH, Kim SH, Kim HY. Genomic characteristics and comparative genomics analysis of Salmonella enterica subsp. enterica serovar Thompson isolated from an outbreak in South Korea. Sci Rep 2022; 12:20553. [PMID: 36446807 PMCID: PMC9708683 DOI: 10.1038/s41598-022-22168-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Salmonella infections represent an important public health problem. In 2018, a multistate outbreak of S. enterica subsp. enterica serovar Thompson infection associated with contaminated chocolate cakes in schools was reported in South Korea. In this study, we sequenced the 37 S. Thompson strains isolated from chocolate cakes, egg whites, preserves, and cookware associated with the outbreak. In addition, we analyze the genomic sequences of 61 S. Thompson strains (37 chocolate cake-related outbreak strains, 4 strains isolated from outbreaks in South Korea and 20 strains available in the National Center for Biotechnology Information) to assess the genomic characteristics of outbreak-related strains by comparative genomics and phylogenetic analysis. The results showed that identically classified clusters divided strains into two clusters, sub-clusters A & I (with strains from 2018 in South Korea) and sub-clusters B & II (with strains from 2014 to 2015 in South Korea). S. Thompson isolated from South Korea were accurately distinguished from publicly-available strains. Unlike other S. Thompson genomes, those of chocolate cake outbreak-related strains had three Salmonella phages (SEN8, vB SosS Oslo, and SI7) integrated into their chromosome. Comparative genomics revealed several genes responsible for the specific genomic features of chocolate cake outbreak-related strains and three bacteriophages that may contribute to the pathogenicity of other S. Thompson strains.
Collapse
Affiliation(s)
- Woojung Lee
- grid.420293.e0000 0000 8818 9039Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159 Korea ,grid.289247.20000 0001 2171 7818Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Korea
| | - Eiseul Kim
- grid.289247.20000 0001 2171 7818Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Korea
| | - Hyunwoo Zin
- grid.420293.e0000 0000 8818 9039Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159 Korea
| | - Soohyun Sung
- grid.420293.e0000 0000 8818 9039Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159 Korea
| | - Jungha Woo
- grid.420293.e0000 0000 8818 9039Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159 Korea
| | - Min Jung Lee
- grid.420293.e0000 0000 8818 9039Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159 Korea
| | - Seung-Min Yang
- grid.289247.20000 0001 2171 7818Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Korea
| | - Seung Hwan Kim
- grid.420293.e0000 0000 8818 9039Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159 Korea
| | - Soon Han Kim
- grid.420293.e0000 0000 8818 9039Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159 Korea
| | - Hae-Yeong Kim
- grid.289247.20000 0001 2171 7818Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104 Korea
| |
Collapse
|
6
|
Bruneaux M, Ashrafi R, Kronholm I, Laanto E, Örmälä‐Tiznado A, Galarza JA, Zihan C, Kubendran Sumathi M, Ketola T. The effect of a temperature-sensitive prophage on the evolution of virulence in an opportunistic bacterial pathogen. Mol Ecol 2022; 31:5402-5418. [PMID: 35917247 PMCID: PMC9826266 DOI: 10.1111/mec.16638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Viruses are key actors of ecosystems and have major impacts on global biogeochemical cycles. Prophages deserve particular attention as they are ubiquitous in bacterial genomes and can enter a lytic cycle when triggered by environmental conditions. We explored how temperature affects the interactions between prophages and other biological levels using an opportunistic pathogen, the bacterium Serratia marcescens, which harbours several prophages and that had undergone an evolution experiment under several temperature regimes. We found that the release of one of the prophages was temperature-sensitive and malleable to evolutionary changes. We further discovered that the virulence of the bacterium in an insect model also evolved and was positively correlated with phage release rates. We determined through analysis of genetic and epigenetic data that changes in the bacterial outer cell wall structure possibly explain this phenomenon. We hypothezise that the temperature-dependent phage release rate acted as a selection pressure on S. marcescens and that it resulted in modified bacterial virulence in the insect host. Our study system illustrates how viruses can mediate the influence of abiotic environmental changes to other biological levels and thus be involved in ecosystem feedback loops.
Collapse
Affiliation(s)
- Matthieu Bruneaux
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Roghaieh Ashrafi
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Ilkka Kronholm
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Elina Laanto
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland,Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | | | - Juan A. Galarza
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Chen Zihan
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland,Shenzhen Research InstituteThe Chinese University of Hong KongShenzhenChina
| | - Mruthyunjay Kubendran Sumathi
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland,Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Tarmo Ketola
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
7
|
Manageiro V, Salgueiro V, Rosado T, Bandarra NM, Ferreira E, Smith T, Dias E, Caniça M. Genomic Analysis of a mcr-9.1-Harbouring IncHI2-ST1 Plasmid from Enterobacter ludwigii Isolated in Fish Farming. Antibiotics (Basel) 2022; 11:antibiotics11091232. [PMID: 36140011 PMCID: PMC9495039 DOI: 10.3390/antibiotics11091232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
This study analyzed the resistome, virulome and mobilome of an MCR-9-producing Enterobacter sp. identified in a muscle sample of seabream (Sparus aurata), collected in a land tank from multitrophic fish farming production. Average Nucleotide Identity analysis identified INSAq77 at the species level as an Enterobacter ludwigii INSAq77 strain that was resistant to chloramphenicol, florfenicol and fosfomycin and was susceptible to all other antibiotics tested. In silico antimicrobial resistance analyses revealed genes conferring in silico resistance to β-lactams (blaACT-88), chloramphenicol (catA4-type), fosfomycin (fosA2-type) and colistin (mcr-9.1), as well as several efflux pumps (e.g., oqxAB-type and mar operon). Further bioinformatics analysis revealed five plasmid replicon types, including the IncHI2/HI2A, which are linked to the worldwide dissemination of the mcr-9 gene in different antibiotic resistance reservoirs. The conserved nickel/copper operon rcnR-rcnA-pcoE-ISSgsp1-pcoS-IS903-mcr-9-wbuC was present, which may play a key role in copper tolerance under anaerobic growth and nickel homeostasis. These results highlight that antibiotic resistance in aquaculture are spreading through food, the environment and humans, which places this research in a One Health context. In fact, colistin is used as a last resort for the treatment of serious infections in clinical settings, thus mcr genes may represent a serious threat to human health.
Collapse
Affiliation(s)
- Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Tânia Rosado
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute for the Sea and Atmosphere, IPMA, 1749-077 Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Terry Smith
- Molecular Diagnostics Research Group, School of Biological and Chemical Sciences, National University of Ireland, H91 DK59 Galway, Ireland
- Centre for One Health, Ryan Institute, National University of Ireland, H91 TK33 Galway, Ireland
| | - Elsa Dias
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
8
|
Phenotypic characterization and genome analysis of a novel Salmonella Typhimurium phage having unique tail fiber genes. Sci Rep 2022; 12:5732. [PMID: 35388062 PMCID: PMC8986868 DOI: 10.1038/s41598-022-09733-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is a foodborne pathogen causing occasional outbreaks of enteric infections in humans. Salmonella has one of the largest pools of temperate phages in its genome that possess evolutionary significance for pathogen. In this study, we characterized a novel temperate phage Salmonella phage BIS20 (BIS20) with unique tail fiber genes. It belongs to the subfamily Peduovirinae genus Eganvirus and infects Salmonella Typhimurium strain (SE-BS17; Acc. NO MZ503545) of poultry origin. Phage BIS20 was viable only at biological pH and temperature ranges (pH7 and 37 °C). Despite being temperate BIS20 significantly slowed down the growth of host strain for 24 h as compared to control (P < 0.009). Phage BIS20 features 29,477-base pair (bp) linear DNA genome with 53% GC content and encodes for 37 putative ORFs. These ORFs have mosaic arrangement as indicated by its ORF similarity to various phages and prophages in NCBI. Genome analysis indicates its similarity to Salmonella enterica serovar Senftenberg prophage (SEStP) sequence (Nucleotide similarity 87.7%) and Escherichia virus 186 (~ 82.4% nucleotide similarity). Capsid genes were conserved however those associated with tail fiber formation and assembly were unique to all members of genus Eganvirus. We found strong evidence of recombination hotspot in tail fiber gene. Our study identifies BIS20 as a new species of genus Eganvirus temperate phages as its maximum nucleotide similarity is 82.4% with any phage in NCBI. Our findings may contribute to understanding of origin of new temperate phages.
Collapse
|
9
|
Isolation and characterization of phage (ETP-1) specific to multidrug resistant pathogenic Edwardsiella tarda and its in vivo biocontrol efficacy in zebrafish (Danio rerio). Biologicals 2019; 63:14-23. [PMID: 31889622 DOI: 10.1016/j.biologicals.2019.12.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/04/2019] [Accepted: 12/20/2019] [Indexed: 02/02/2023] Open
Abstract
Edwardsiella tarda phage (ETP-1) was isolated from marine fish farm water to characterize its effect against pathogenic multidrug-resistant E. tarda. According to transmission electron microscopy results, ETP-1 is classified as a member of the family Podoviridae. ETP-1 showed MOI dependent E. tarda growth inhibition, a latent period of 60 min, and burst size of 100 PFU per infected cells. In host range tests, five out of eight E. tarda strains were sensitive to ETP-1 which had efficiency of plating index in the range 1-1.28. ETP-1 was stable over a broad range of pH and temperature. The size of the ETP-1 genome was predicted to be approximately 40 kb. Zebrafish exposed to ETP-1 showed no adverse gene responses to the inflammatory mediator cytokines, il1-β, tnf-α, il-6, and il-10, the chemokine, cxcl-8a, and reactive oxygen species, sod-1. When zebrafish were bath exposed to ETP-1 for 12 days and simultaneously challenged with E. tarda (1.08 × 105 CFU fish-1), the survival rate was higher in phage exposed fish (68%) compared to that of the control (18%) until 4 days post challenge. Our results suggest that ETP-1 can be used as a potential bio-therapeutic candidate to control multi-drug resistant E. tarda infection in aquaculture.
Collapse
|
10
|
Fong K, Tremblay DM, Delaquis P, Goodridge L, Levesque RC, Moineau S, Suttle CA, Wang S. Diversity and Host Specificity Revealed by Biological Characterization and Whole Genome Sequencing of Bacteriophages Infecting Salmonella enterica. Viruses 2019; 11:v11090854. [PMID: 31540091 PMCID: PMC6783827 DOI: 10.3390/v11090854] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Phages infecting members of the opportunistic human pathogen, Salmonella enterica, are widespread in natural environments and offer a potential source of agents that could be used for controlling populations of this bacterium; yet, relatively little is known about these phages. Here we describe the isolation and characterization of 45 phages of Salmonella enterica from disparate geographic locations within British Columbia, Canada. Host-range profiling revealed host-specific patterns of susceptibility and resistance, with several phages identified that have a broad-host range (i.e., able to lyse >40% of bacterial hosts tested). One phage in particular, SE13, is able to lyse 51 out of the 61 Salmonella strains tested. Comparative genomic analyses also revealed an abundance of sequence diversity in the sequenced phages. Alignment of the genomes grouped the phages into 12 clusters with three singletons. Phages within certain clusters exhibited extraordinarily high genome homology (>98% nucleotide identity), yet between clusters, genomes exhibited a span of diversity (<50% nucleotide identity). Alignment of the major capsid protein also supported the clustering pattern observed with alignment of the whole genomes. We further observed associations between genomic relatedness and the site of isolation, as well as genetic elements related to DNA metabolism and host virulence. Our data support the knowledge framework for phage diversity and phage-host interactions that are required for developing phage-based applications for various sectors, including biocontrol, detection and typing.
Collapse
Affiliation(s)
- Karen Fong
- Food, Nutrition and Health, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Denise M Tremblay
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
| | - Pascal Delaquis
- Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada.
| | - Lawrence Goodridge
- Food Science Department, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada.
| | - Sylvain Moineau
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC G1V 0A6, Canada.
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, QC G1V 0A6, Canada.
| | - Curtis A Suttle
- Departments of Earth, Ocean and Atmospheric Sciences, Microbiology and Immunology, and Botany, and the Institute for Oceans and Fisheries, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Siyun Wang
- Food, Nutrition and Health, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
11
|
Ashari KS, Roslan NS, Omar AR, Bejo MH, Ideris A, Mat Isa N. Genome sequencing and analysis of Salmonella enterica subsp. enterica serovar Stanley UPM 517: Insights on its virulence-associated elements and their potentials as vaccine candidates. PeerJ 2019; 7:e6948. [PMID: 31293824 PMCID: PMC6601603 DOI: 10.7717/peerj.6948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/05/2019] [Indexed: 12/12/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Stanley (S. Stanley) is a pathogen that contaminates food, and is related to Salmonella outbreaks in a variety of hosts such as humans and farm animals through products like dairy items and vegetables. Despite the fact that several vaccines of Salmonella strains had been constructed, none of them were developed according to serovar Stanley up to this day. This study presents results of genome sequencing and analysis on our S. Stanley UPM 517 strain taken from fecal swabs of 21-day-old healthy commercial chickens in Perak, Malaysia and used Salmonella enterica subsp. enterica serovar Typhimurium LT2 (S. Typhimurium LT2) as a reference to be compared with. First, sequencing and assembling of the Salmonella Stanley UPM 517 genome into a contiguous form were done. The work was then continued with scaffolding and gap filling. Annotation and alignment of the draft genome was performed with S. Typhimurium LT2. The other elements of virulence estimated in this study included Salmonella pathogenicity islands, resistance genes, prophages, virulence factors, plasmid regions, restriction-modification sites and the CRISPR-Cas system. The S. Stanley UPM 517 draft genome had a length of 4,736,817 bp with 4,730 coding sequence and 58 RNAs. It was discovered via genomic analysis on this strain that there were antimicrobial resistance properties toward a wide variety of antibiotics. Tcf and ste, the two fimbrial virulence clusters related with human and broiler intestinal colonizations which were not found in S. Typhimurium LT2, were atypically discovered in the S. Stanley UPM 517 genome. These clusters are involved in the intestinal colonization of human and broilers, respectively. There were seven Salmonella pathogenicity islands (SPIs) within the draft genome, which contained the virulence factors associated with Salmonella infection (except SPI-14). Five intact prophage regions, mostly comprising of the protein encoding Gifsy-1, Fels-1, RE-2010 and SEN34 prophages, were also encoded in the draft genome. Also identified were Type I–III restriction-modification sites and the CRISPR-Cas system of the Type I–E subtype. As this strain exhibited resistance toward numerous antibiotics, we distinguished several genes that had the potential for removal in the construction of a possible vaccine candidate to restrain and lessen the pervasiveness of salmonellosis and to function as an alternative to antibiotics.
Collapse
Affiliation(s)
- Khalidah Syahirah Ashari
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Hair Bejo
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Aini Ideris
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Lamas A, Miranda JM, Regal P, Vázquez B, Franco CM, Cepeda A. A comprehensive review of non-enterica subspecies of Salmonella enterica. Microbiol Res 2018; 206:60-73. [DOI: 10.1016/j.micres.2017.09.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 12/11/2022]
|
13
|
Bosák J, Mikalová L, Čejková D, Šmarda J, Šmajs D. Complete Genome Sequence of Bacteriophage SEN8, a Temperate Phage Isolated from Salmonella enterica subsp. salamae. GENOME ANNOUNCEMENTS 2017; 5:e00239-17. [PMID: 28495765 PMCID: PMC5427200 DOI: 10.1128/genomea.00239-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 11/20/2022]
Abstract
A temperate phage, SEN8, having a broad activity against pathogenic Salmonella serovars, was isolated from Salmonella enterica subsp. salamae strain Sen8. The complete genome sequence of phage SEN8 was determined (35,203 bp) and showed relatedness to P2-like phages (Salmonella phages Fels-2 and RE-2010).
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Jan Šmarda
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|